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CLASSICAL INVARIANT THEORY 
AND THE EQUIVALENCE PROBLEM 

FOR PARTICLE LAGRANGIANS 

PETER J. OLVER 

ABSTRACT. The problem of equivalence of binary forms under the gen­
eral linear group is shown to be a special case of the problem of equiva­
lence of particle Lagrangians under the pseudogroup of transformations 
of both the independent and dependent variables. The latter problem 
has a complete solution based on the equivalence method of Cartan. 
This leads to the determination of a universal function which relates two 
particular rational covariants of any binary form. In essence, the main 
result is that two binary forms are equivalent if and only if their uni­
versal functions are identical. Extensions to forms in higher dimensions 
are indicated. 

Consider a first-order variational problem 

dx 
C[u] = ƒ L{x,u,p)dx, x,u € R, p = —, 

where the Lagrangian L(x,u,p) is analytic on a domain H C R3. Two 
Lagrangians L and L are equivalent if there exists a change of variables 
x = <p(x,u), ü = tp(x,u) mapping one to the other. The change in the 
derivative is a linear fractional transformation 

c • p + a 
where a = ipu, b = ipx, c = <pu, d = <px. Equivalent Lagrangians must be 
related by 

(2) L(x,u,p) = (c-p + d) -L{x,u,p). 

(This equivalence problem is a restricted version of the "true" Lagrangian 
equivalence problem, in which one can also add in a divergence term, solved 
m [7].) 
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Cart an [1] developed a powerful algorithm that will solve such equivalence 
problems, providing explicit necessary and sufficient conditions for equiva­
lence. The first step is to reformulate the problem in terms of differential 
forms. Following Cart an, we introduce the "coframes" 

ui = du — p • dx, u>2 = L(x, u, p) • dx, 0J3 = dp, 

CJ1 = du — p' dx, u>2 = L(x, u, p) - dx, £3 = dp, 

which are bases for the cotangent spaces T*Q and T*H respectively. It is 
then easily seen that two Lagrangians L and L are equivalent, if and only if 
there is a diffeomorphism $ : fi —• Ü such that the pull-back $* transforms 
the coframes as follows: 

$*(£>!) = A-UJi, $*(d)2) = B-ÜJI+ÜJ2, $*{Üz) = C'ÜJi+D'üJz + E'Us. 

Here A,B,C,D,E are unspecified functions of x,u,p, with A,E ^ 0. This 
condition can be restated more symmetrically by introducing the "lifted" 
coframes 

0\ = A-UJi, 02 = B -0Ji+U>2, 03 — C -Ui + D 'OJ2 + E *^35 

0i = A • cDi, 02 = B - ui + 0J2, Ö3 = C - ui + D • Ü2 + E ' Û3, 

which live on Q x G and Q x G, where G denotes the Lie group consisting of 
all matrices 

[A 0 0 ] 
A,B,C,D,EeR, A,E^0. 

LEMMA 1 [1]. Two Lagrangians L and L are equivalent if and only if 
there is a diffeomorphism ^ : Q x G — • H x G mapping the lifted coframes 
directly to each other: 

* * & ) = 0U * * & ) = 02, 9*(03) = 03. 

The solution to this equivalence problem is now effected by the fundamental 
Cartan algorithm [1,2,3]. There are three distinct branches. If Lpp = 0, then 
the variational problem is trivial. The other two branches depend on whether 
Lpp has the same or opposite sign to L in Q. In both cases, the group reduces 
to the identity, whereby explicit formulas for the parameters A,B,C,D,E are 
determined, and the final structure equations take the form 

d01 = - ƒ . 0 ! A03+02A03, </02 = ±0i A03, d03 = R0\ A03 + S -0i A03. 

(The ± sign depends on the branch.) Thus, there are three fundamental in­
variants for the problem, denoted / , R and S. (However, the "generalized 
Bianchi identity" of [2] shows that S is a function of I and its derived invari­
ants, so there are really only two independent invariants.) We find 

(o\ T _ L ' Lppp + 3LP • Lpp 
( ' \L\W-\L„\W ' 

while the explicit formulas for R and S are quite a bit more complicated [2,7]. 
However, if L depends only on the derivative p, then R = S = 0 and there is 
just one invariant. 

A 
B 
C 

0 
1 
D 

0 
0 
E 



EQUIVALENCE PROBLEM FOR PARTICLE LAGRANGIANS 23 

Associated with the basic invariants 7, R, S are their derived invariants Ij, 
Rji Sj-> J = 1,2,3, defined by the formula dl = J2^j ' ®3-> e^c- ^ L depends 
only on p, the only one of these which does not automatically vanish is 

u) i - j - | L | 1 / 2 dI 

THEOREM 2. For the Lagrangian equivalence problem, the derived invari­
ants are functions of the fundamental invariants: 

ƒ,• = *>(ƒ,£, S), Rj = G,iI,R,S), Sj = Hj(I,R,S), j = 1,2,3. 

Moreover, two nontrivial Lagrangians L and L are equivalent if and only if 
(a) the ratios Lpp/L and Lpp/L are either both positive or both negative, 
(b) if an invariant for L is constant, the corresponding invariant for L has 

the same constant value, 
(c) the functions relating these invariants are identical: Fj = Fj, Gj = Gj, 

Hj = Hj, and 
(d) the invariant equations 

I(x,u,p) = /(x,û,p), R{x,u,p) = R(x,u,p), S(x,u,p) = S(ï,ö,p), 

have a common real solution. 

In particular, if L(p) does not explicitly depend on x or w, and is not an 
affine function of p, then there is just one nontrivial universal function F 
relating the invariants (3), (4): J = F (I). The term "universal function" 
is used because, along with the sign, constant and solvability restrictions, it 
completely determines the equivalence class of a Lagrangian L(p). 

Turning to classical invariant theory, a homogeneous polynomial function 
n 

of two (real or complex) variables is called a binary form of degree n. Two 
forms ƒ and ƒ are called equivalent if they can be transformed into each other 
by a suitable element of the real or complex general linear group GL(2). One 
of the principal goals of classical invariant theory [5,6,8] is the classification of 
binary forms using invariants or covariants. Despite the constructive methods 
used to generate the covariants themselves, it is by no means clear which of 
the many available covariants play the crucial role in the equivalence problem. 

Given a binary form, let g(p) = ƒ (p, 1) be the associated nonhomogeneous 
polynomial. Note that the action of GL(2) reduces to the same linear frac­
tional transformations (1), with corresponding action 

g(p) = (c • p + d)n • g(P) = (c • P + d)n • ~9 ( j ^ ) 

on the associated polynomials. Define the "Lagrangian" 
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(For complex forms, L will be multiple-valued; for real forms, L will be defined 
and positive on the domain where g is positive. This leaves out negative 
semidefinite forms, which can be treated by replacing g by — g provided it 
is kept in mind that for forms of even degree this does not correspond to 
a transformation in GL(2,R), and hence such forms are in a separate real 
equivalence branch.) 

We now translate Theorem 2 into the language of classical invariant theory 
by expressing the invariants I and J in terms of known covariants. We first 
note that 

where H = fxxfyy — fxy 'IS the Hessian of ƒ. (This formula gives an elementary 
proof of the classical result that ƒ is the nth power of a linear form if and 
only if its Hessian vanishes identically; cf. [8, Proposition 5.3].) Assuming H 
is not zero, and n > 2, then 

( n - 1 ) 1 / 2 T n-1 g-U 
n3/2 | #p /2 ' J ~ 2n(n - 2) H3 ' 

where T and U are the Jacobian covariants 
T = (ƒ, H) = fx • Hy — fy • Hx, U = {H, T) = Hx Ty — Hy • Tx, 

re-expressed in terms of p. (For quadratic forms, I and J are both zero.) 
As a direct consequence of Theorem 2, we have the following fundamental 
theorem on the equivalence of binary forms (for simplicity, we slightly modify 
the covariants I and J). 

THEOREM 3. Let /(x,y) be a binary form of degree n, which is not the 
nth power of a linear form. Define the absolute rational covariants 

T2 f U 
(6) / = # 3 ' J = ~W' 
If I is not constant (so J does not vanish identically), define the universal 
function F so that J = F(I). Then two binary forms f and f are equivalent 
under the complex general linear group GL(2, C) if and only if either 

(a) the covariants I and I have the same constant values 1 = 1, or 
(b) 7, / are not constant, and the universal functions F and F are identical: 

F = F. 

Therefore, the complete solution to the complex equivalence problem for 
binary forms depends on merely two absolute rational covariants—/ and J! 
Actually, Theorem 2 provides a complete classification over the reals. Surpris­
ingly, there are only two additional branch restrictions, depending in essence 
on the relative signs of ƒ and H, along with the solvability of the real in­
variant equation I(p) = I(p) in the nonconstant case. (Note also that in the 
nonconstant case the equation I(p) = I{p) implicitly determines the linear 
fractional transformation taking ƒ to ƒ.) More rigorously, one needs to check 
whether ƒ is positive semi-, negative semi- or in-definite, and whether H is 
positive semi-, negative semi- or in-definite on the domains where ƒ is positive 
or negative. Some further consequences of the equivalence method follow. 
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THEOREM 4. Let f{x,y) be a binary form of degree n. 
(i) If H = 0, then f admits a two-parameter group of symmetries. 
(ii) If H =̂ 0, and I is constant, then f admits a one-parameter group of 

symmetries. 
(iii) If H ^ 0, and I is not constant, then ƒ admits at most a discrete 

symmetry group. 

COROLLARY 5. A binary form f is complex-equivalent to a monomial, 
i.e. to xl - yn~%, if and only if the covariant T2 is a constant multiple of H3. 

EXAMPLE.* For the binary quartic there are two important invariants, 
called i and j \ cf. [5, §89]. To evaluate the universal function, we use the 
fundamental syzygy 

and the identity 
U=\f{i-H-j-f), 

cf. [5, pp. 98, 99]. Therefore the absolute covariants I and J have the form 

/ = - f + \i • s2 - \j • s3, J = \i • s2 - \j • s3, where s = f /H. 

Thus, 7 is constant, and hence ƒ is equivalent to a monomial, if either i = j = 0 
or ƒ is a constant multiple of H. (Actually, the first implies the second.) 
Otherwise, eliminating s, we see that the universal function J = F(I) appears 
as the implicit solution to the cubic equation 

6y2(2J - 2J + l ) 3 = z3(27 - 3J +1) 2 . 

Using the classification of complex canonical forms for binary quartics given 
by Gurevich [6, p. 292], we see that cases I and II have nonconstant invariant 
/ , while III and IV have constant invariant L The classification over R, cf. 
[6, Ex. 25.13,14], can also be effected using the relative signs of ƒ and if; the 
details will appear elsewhere. 

These methods are easily extended to forms in higher dimensions, e.g. 
ternary forms. The equivalence problem for homogeneous polynomials /(z), 
z G Rfc, is easily translated into an equivalence problem for multiparticle 
Lagrangians L(x,u, p), x G R, u G Rfc_1, p = du/dx, under the change of 
variables x — <p(x,u), ü = tp(x,u). Indeed, we just let p = (pi , . . . ,pjfc-i) = 
{zilzk,-">Zk-i/zk) be the corresponding homogeneous coordinates, and 
2/(p) = v^/(p, 1), where n is the degree of ƒ. The equivalence problem 
is set up as before [3], and has been solved [4], although the solution has not 
yet appeared in the literature. The ternary case (A: = 3) would be especially 
interesting to investigate in detail. 

It is a pleasure to thank Niky Kamran and Bill Shadwick for igniting my 
interest in the Cart an equivalence method, and for many valuable discussions 
and correspondence on the subject. I would also like to thank Robert Gardner 
for helpful comments on an earlier version of this paper. 

*In this example, the normalizations of H, T, U have been modified to conform with 
those in [5]. 
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