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Harmonic analysis began as a technique for solving partial differential 
equations, in the work of Daniel Bernoulli on the vibrating string equation and 
Fourier on the heat equation. Since then, both subjects have blossomed into 
independent, wide-ranging, central mathematical disciplines with many sub­
specialties and with connections to almost all branches of mathematics, pure 
and applied. I do not think Bernoulli or Fourier would have been surprised by 
the developments in partial differential equations, but they surely would have 
been astounded by the growth of harmonic analysis. I also think they would 
have been pleased by Michael Taylor's new book, which explores some of the 
recent connections between harmonic analysis and partial differential equa­
tions, very much in the spirit of their pioneering work. 

The modern definition of harmonic analysis is roughly the following: there is 
a linear space of functions J^, real or complex valued, ordinary or generalized, 
defined on a domain X on which a group G acts. One seeks first to identify 
those functions in 3F which transform in as simple a fashion as possible under 
(7, then one seeks to expand the general function in & as a series or integral of 
these simple functions, and finally one seeks to use the expansion to solve 
problems which are compatible with the action of G. The simplest cases, such 
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as the Fourier series expansions used by Bernoulli and Fourier, involve abelian 
groups G. In these cases the simple functions are those which lie in one-dimen­
sional spaces invariant under the group action, such as f(x) = einx on the 
circle. But for noncommutative groups there are never enough of these, so the 
appropriate notion is irreducibility of the span of translates of the function. 
For compact groups the irreducibility implies that the span of the translates is 
finite-dimensional, but for noncompact noncommutative groups it is necessary 
to allow infinite-dimensional spans. Thus we have a hierarchy of complexity: 
abelian compact -> abelian noncompact -> noncommutative compact -> 
noncommutative noncompact. The historic development of the subject follows 
this hierarchy closely, but from our present perspective it is totally misleading. 
Chapter 1 of Taylor's book concerns the Heisenberg group, which belongs to 
the most complex category. 

Of course the categorization by the type of the group is not as clearcut as it 
first appears. Consider, for example, the Fourier transform on Euclidean space 
R" (here X = G = additive group of Rn). An abelian group, wouldn't you say? 
But look again. There is a larger group of Euclidean motions, the semidirect 
product of the additive Rn group and the rotation group SO(n) (or the 
orthogonal group 0(«) if you allow improper motions). The rotation group is 
compact but noncommutative, and the motion group is noncommutative and 
noncompact. These groups play a spirited role in the development of the 
theory of Euclidean Fourier analysis, as presented in a standard reference work 
of Stein and Weiss [S-W]. In Taylor's book they show up prominently in 
Chapters 4 and 5. If you like still bigger groups, there is the group of 
conformai transformations which is lurking in Chapter 10. 

There is actually a more refined categorization of Lie groups than the crude 
one above, given in terms of the Lie algebra. The Lie algebra of a Lie group is 
just the algebra of invariant first-order differential operators on the group, 
under the commutator operation, or equivalently the infinitesimal generators 
of one-parameter subgroups. (All the groups considered in Taylor's book, as 
indeed all groups related to differential equations, are Lie groups, but there are 
non-Lie groups that are important in other aspects of harmonic analysis.) The 
Lie algebra plays the role of a "derivative" of the Lie group. So, for example, 
the Lie group (if connected) is commutative if and only if the Lie algebra is. 
Those Lie algebras which are furthest from being commutative are called 
semisimple, as are the associated Lie groups. The technical definition is that the 
natural bilinear form on the algebra, called the Killing form, which measures 
noncommutativity, be nondegenerate. It is then a theorem that an algebra is 
semisimple if and only if it is a direct sum of simple (no nontrivial ideals) 
algebras, which explains the terminology. Among the semisimple Lie algebras, 
it is easy to recognize those that correspond to compact groups—they are 
exactly the ones whose Killing form is negative definite. This is a surprising 
result, since both the compact circle group and the noncompact line have the 
same commutative Lie algebra. Examples of compact semisimple Lie groups 
are the rotation and orthogonal groups, the spin groups, and the special 
unitary groups. Examples of noncompact semisimple groups are the special 
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linear groups (real and complex), the homogeneous Lorentz group, the sym-
plectic and metaplectic groups, and conformai groups. 

At the other extreme, the noncommutative Lie algebras that are closest to 
being commutative are the nilpotent ones, the definition being that all suffi­
ciently long products vanish. Examples of nilpotent Lie groups are upper 
triangular matrices with ones on the diagonal, and the Heisenberg group. 
Again there is a structure theorem: the connected and simply connected 
nilpotent Lie groups are just Euclidean spaces with product defined by 
polynomial laws. A slightly more noncommutative class of Lie algebras are the 
solvable ones, defined by requiring iterated squaring to kill the Lie algebra. The 
solvable Lie groups that appear in Taylor's book are all semidirect products, 
such as the Euclidean motion group, the Poincaré (or inhomogeneous Lorentz) 
group, and the two-dimensional ax + b group. It is really the semidirect 
product structure (G = HN where N is a normal abelian subgroup) rather 
than the solvability that plays a crucial role in the discussion. 

This completes the cast of characters, as far as groups are concerned. Why 
does the Heisenberg group get star billing? There are a number of compelling 
reasons. We recall the definition, first of the Lie algebra: hn is the (In + 1)-
dimensional algebra generated by the operators d/dxv. . . , 8 /8JC„ , multipli­
cation by xl9...,xn9 and the identity. The only nontrivial commutation 
relations are Heisenberg's canonical commutation relations [9/9x -, Xj] = /. 
The associated simply connected group is easily described by the multipli­
cation rule 

( ' i>?i>/>i)°( '2>tf2>/>2) = (('1 + h + \(P\ ' Qi~ Pi' 4i), 4i + q2> Pi + Pi) 

for tj e R, qj9 p. e R". The representation theory of the Heisenberg group is 
especially simple: there is only one interesting representation, and we have 
already described it, at least on the Lie algebra level, by our description of hn. 
Actually one obtains a whole family of representation from this one by 
composing with the dilations 

S±,(t,p,q)=(±Xt,±\^q,X^p). 

Aside from some unimportant one-dimensional representations, these are all 
the irreducible representations (this is the Stone-von Neumann theorem). It is 
easy to get a Fourier inversion formula and Plancherel formula using these 
representations from the analogous results for the line. But now the basic 
representation of the Heisenberg group begins to pay dividends. Since the Lie 
algebra generators are represented by differentiation and coordinate multipli­
cation, the alert reader will suspect pseudodifferential operators are waiting in 
the wings. And indeed they are; both the Kohn-Nirenberg calculus and the 
Weyl calculus emerge naturally when the basic representation is exponentiated. 
This approach explains the connection between the two and shows clearly why 
the Weyl calculus is more natural. 

The Heisenberg group begets the symplectic groups Sp(n,R) of linear 
transformations preserving the skew-symmetric form 

°((tfi> Pi)> (anPi)) =Pi' Qi- li'Pi 
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in that these give rise to automorphisms (t,q,p)^> (t,o(q,p)). The basic 
representation of hn extends in a natural way to the Lie algebra of the 
symplectic group, and this exponentiates to the famous metaplectic represen­
tation, not of the symplectic group itself but of its two-fold covering group. 

The Heisenberg group has a basic subelliptic differential operator, the 
Heisenberg Laplacian. When viewed through the basic representation, this 
operator becomes the harmonic oscillator -A + \x\2, whose spectral theory 
leads to the Hermite functions. All these aspects of the Heisenberg group are 
featured prominently in Taylor's book (they are also discussed in an article by 
Roger Howe [H] in this Bulletin). There are still other reasons for liking the 
Heisenberg group: for example, in several complex variables, it plays the role 
of a model space for the boundary of a strictly pseudoconvex domain in the 
work of Folland and Stein [F-S]. In fact, choose any current research journal 
and you are likely to find an article about some aspect of the Heisenberg 
group. 

Partial differential equations comprise the other half of the story in Taylor's 
book. What kind of equations? Basically the big three equations of mathemati­
cal physics: Laplace equation, heat equation, and wave equation, only mod­
ified so the basic Laplacian part reflects the noncommutative groups under 
discussion. For example, on the Heisenberg group it is 

If we write A for any of these general Laplacians on X, then the heat and wave 
operators on R X X are d/dt — A and d2/dt2 — A, respectively. One can also 
consider a Laplace operator d2/dt2 + A on R X X. There are a number of 
elementary connections among these operators. For example, one can pass 
back and forth between the Laplace and wave equations by analytic continua­
tion in the / variable from / to it (similarly, from the heat equation one can 
obtain the Schrödinger equation). And the Laplace equation can be solved 
using the heat equation and the subordination principle. On a formal level the 
solutions of all these equations can be given in terms of functions of the 
Laplacian A on X, as e'A, cos tJ-A, e~^~A, for heat, wave, and Laplace 
equation, respectively. On the other hand, once one understands the solution 
cos tif^E of the wave equation, one can construct a general calculus of 
functions of A by Fourier synthesis, 

f(fj[) = — f f (t) cos tyTXdt 
2TT J_O0 

for suitable even functions ƒ. There are other ways as well to construct such a 
functional calculus, and Taylor's book is brimming over with explicit computa­
tions in a variety of contexts. 

Indeed, this book is a cornucopia of formulas. Scarcely a page goes by 
without at least a half-dozen numbered displays. Mostly these are identities, 
such as the Plancherel formula, or the Poisson integral. One aspect of contem­
porary harmonic analysis that is absent from this book is the Lp estimate: for 
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this the reader will have to consult other works (such as Stein-Weiss [S-W], 
Stein [S], and the more recent Garcia-Cuerva-Rubio de Francia [G-R]). 

This is a book for mature readers. The author does not hesitate to use ideas 
and results from diverse branches of mathematics—special functions, func­
tional analysis, partial differential equations, differential geometry. But for the 
reader with a strong background, or a willingness to accept a non-self-
contained presentation, this book offers many pleasures. In addition to the 
concrete computational results already mentioned, the book contains concise 
and insightful presentations of a number of important abstract topics, includ­
ing induced representations, representations of compact groups, conformai 
transformations, Clifford algebras and spinors. Taylor has an original point of 
view, and is able to bring new insights to familiar topics. 
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Many mathematicians do not highly appreciate theories which have prefixes 
like near-, semi-, hemi-, para-, quasi-, and so on. This certainly should not 
apply in the case of near-rings. As the name suggests, a near-ring is a 
"generalized ring"; more precisely, the commutativity of addition is not 
required and just one of the distributive laws is postulated. 

Near-rings arise very naturally in the study of mappings on groups. If 
(G, + ) is a group (not necessarily abelian) then the set M(G) of all mappings 
from G to G is a near-ring with respect to pointwise addition and com­
position of mappings. If G is abelian and if one only takes "linear" maps 


