SMOOTH NONTRIVIAL 4-DIMENSIONAL s-COBORDISMS

SYLVAIN E. CAPPELL AND JULIUS L. SHANESON

ABSTRACT. This announcement exhibits smooth 4-dimensional manifold triads $(W; M_0, M_1)$ which are s-cobordisms, i.e. the inclusions $M_i \subseteq W$, i = 0, 1, are simple homotopy equivalences, but are not diffeomorphic or even homeomorphic to a product $M_i \times [0, 1]$.

The Barden-Mazur-Stallings s-cobordism theorem constitutes one of the foundational stones of modern topology. It asserts, in the smooth, piecewiselinear, or topological categories, that if W is a manifold of dimension at least six, with boundary components M_i , i = 0, 1, whose inclusions into W are simple homotopy equivalences, then W is necessarily a product (see [K, H], RS, KS]). For simply connected smooth manifolds of dimension at least six, this result had already been proven by Smale as the "h-cobordism theorem" [Sm], with the generalized Poincaré conjecture in higher dimensions as a corollary. The s-cobordism statement holds in dimensions one and two, and is equivalent to the Poincaré conjecture in dimension three. Freedman [F1, **F2**] proved the five-dimensional result for topological manifolds with fundamental group of polynomial growth (e.g. finite or polycyclic). Donaldson's extraordinary results imply the failure of the five-dimensional result in the smooth (or piecewise linear) category even for simply connected manifolds; by $[\mathbf{F1}]$ the resulting h-cobordisms will still be topological products. Using Freedman's results, the present authors produced some nontrivial orientable four-dimensional topological s-cobordisms [CS1, CS2]. (See [MS] for a nonorientable and definitely nonsmoothable example.) These topological constructions have been further studied and extended by Kwasik and Schultz [KwS].

We will now use a different construction to produce some nontrivial smooth s-cobordisms. Neither the construction nor the proof rely on any of the results cited above. Let M be a quaternionic space-form; i.e.

$$M = M_r = S^3/Q_r,$$

 Q_r the quaternionic group of order 2^{r+2} . Then it is well known that the orientable manifold M has a one-sided Heegaard splitting

$$M = N(K) \cup H$$
,

where N(K) is the total space of an interval bundle over the Klein bottle K and H is a solid torus. Let E_0 be a closed tubular neighborhood of

Received by the editors January 19, 1987.

1980 Mathematics Subject Classification (1985 Revision). Primary 57R80.

Both authors partially supported by NSF grants.

 $K = K \times \{0\}$ in $M \times (-1,1)$. Then E_0 is a linear D^2 -bundle over K with boundary the double of N(K). Let

$$X = M \times [-1, 1] - \text{Int } E_0.$$

The smooth s-cobordisms will be of the form

$$W = W_r = X \cup_{\partial E_0} E,$$

where E will be a locally trivial smooth fiber-bundle over K with fiber T_0^2 $S^1 \times S^1 - \text{Int } D^2$, with $\partial E = \partial E_0$. In fact, view $S^1 \subset \mathbf{C}$ and define ψ_i , i = 1, 2, by

$$\psi_1(x,y) = (y,yx)$$
 and $\psi_2(x,y) = (y^{-1},y^{-1}x^{-1}).$

Note that $\psi_1^2 = \psi_2^2$. The Klein bottle K is the union of two Möbius bands, and it follows that there is a canonical T^2 -bundle E_1 over K whose restrictions to the cores of the Möbius bands have monodromies ψ_1 and ψ_2 respectively. Since $\psi_i(1,1) = (1,1)$, this bundle has a cross-section, and there is a canonical way to identify a tubular neighborhood of its image with E_0 . We then take $E = E_1 - \text{Int } E_0$ in the above definition of W. Clearly, W is an orientable smooth 4-manifold with two copies of $M = S^3/Q_r$ as boundary.

THEOREM. 1. The smooth four-manifold W is an s-cobordism of M to itself.

2. W is not diffeomorphic or even homeomorphic to a product $M \times [-1, 1]$.

It can also be shown that W is not homeomorphic to any of the topological s-cobordisms of [CS2], and the smoothability of any of them remains open.

The proof of 1 uses Van Kampen's theorem and other well-known arguments in homotopy and simple homotopy theory. However, note that the restriction of a suitable diffeomorphism of T^2 isotopic to ψ_i represents a square-root of the monodromy of the figure-eight knot.

We indicate the proof of 2 for the case r=1, the quaternion group of order eight. Let P be obtained from W by identifying $M \times \{-1\}$ with $M \times \{1\}$. Then we explicitly construct a framed 5-manifold U with the following properties:

- 1. $\partial U = P$.
- 2. There is a retraction $r: U \to M$ inducing isomorphisms on fundamental groups and homology with \mathbb{Z}_2 coefficients.
- 3. If U_4 and U_8 are the 4-fold and 8-fold covers of U, respectively, then $|H_2(U_8)||H_2(U_4)|^{-1} \equiv \pm 7 \pmod{16}.$

By contrast, we show that were W a product and U as above satisfying 1 and 2, the quotient (of odd integers) in 3 would necessarily be congruent to $\pm 1 \pmod{16}$. Because of the possible choices for P and r, the proof is somewhat involved. It uses the fact, due independently to J. H. Rubinstein $[\mathbf{R}]$ and the present authors, that a diffeomorphism or homeomorphism of M homotopic to the identity will necessarily be isotopic to it. In the course of the proof, the remaining ambiguity of [KwS] concerning the classification of topological s-cobordisms of M to itself is resolved, and a remark in [CS2] is corrected.

It would be interesting to know if the universal covering space of W is diffeomorphic to $S^3 \times [0,1]$. This is similar to the situation for the exotic $\mathbf{RP^4}$ of [CS3], whose covering space is also potentially exotic [AK]. It is also of interest to observe that for the case r=1, W can be embedded as a codimension zero submanifold of a smooth homotopy 4-sphere.

REFERENCES

- [AK] S. Akbulut and R. C. Kirby, A potential smooth counterexample in dimension four to the Poincaré conjecture, the Schoenstiess conjecture, and the Andrews-Curtis conjecture, Topology 24 (1985), 375–390.
- [CS1] S. E. Cappell and J. L. Shaneson, A counterexample to the oozing problem for closed manifolds, Lecture Notes in Math., vol. 763, Springer-Verlag, New York, 1979, pp. 627-634.
 - [CS2] ____, On 4-dimensional s-cobordisms, J. Differential Geom. 22 (1985), 97-115.
 - [CS3] ____, Some new 4-manifolds, Ann. of Math. (2) 104 (1976), 61-72.
 - [D] S. Donaldson, On Dolgachev's surfaces (to appear).
- [F1] M. Freedman, *The disk theorem for 4-manifolds*, Proc. Internat. Congr. Math., 1984, North-Holland, New York, pp. 647–663.
 - [F2] _____, The topology of 4-manifolds, J. Differential Geom. 17 (1982), 357-453.
 - [H] J. F. P. Hudson, PL topology, Benjamin, New York, 1970.
- [K] M. A. Kervaire, Le théorème de Barden-Mazur-Stallings, Comment. Math. Helv. 40 (1965), 31-42.
- [KS] R. Kirby and L. C. Siebenmann, Foundational essays on topological manifolds, smoothing, and triangulations, Princeton Univ. Press, N.J., 1977.
 - [KwS] S. Kwasik and R. Schultz, Topological s-cobordisms of space-forms (to appear).
- [MS] T. Matumoto and L. C. Siebenmann, The topological s-cobordism theorem in dimension four or five, Proc. Cambridge Philos. Soc. 84 (1968), 85-87.
- [RS] C. P. Rourke and B. J. Sanderson, *Introduction to piecewise linear topology*, Exgeb. Math. Grenzgeb. Band 69, Springer-Verlag, New York, 1972.
- [R] J. H. Rubinstein, On 3-manifolds which have finite fundamental group and contain Klein bottles, Trans. Amer. Math. Soc. 251 (1979), 129-137.
 - [Sm] S. Smale, On the structure of manifolds, Amer. J. Math. 84 (1962), 387-399.

DEPARTMENT OF MATHEMATICS, COURANT INSTITUTE, NEW YORK UNIVERSITY, NEW YORK, NEW YORK 10012

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, NEW JERSEY 08903