ALMOST COMMUTING MATRICES AND THE BROWN-DOUGLAS-FILLMORE THEOREM

I. DAVID BERG AND KENNETH R. DAVIDSON

The purpose of this note is to announce a constructive proof of the following theorem of Brown, Douglas, and Fillmore [1] which yields a quantitative version subject to a certain natural resolvent condition. Complete proofs will appear elsewhere.

THEOREM 1 (BDF). Let T be an operator on a Hilbert space \nVdash such that $T^{*} T-T T^{*}$ is compact, and such that the Fredholm index $\operatorname{ind}(T-\lambda)=0$ whenever this is defined $\left(\lambda \notin \sigma_{e}(T)\right)$. Then there is a compact operator K such that $T-K$ is normal.

Our quantitative version yields an estimate of $\|K\|$ in terms of the homogeneous quantity $\left\|T^{*} T-T T^{*}\right\|^{1 / 2}$ provided the spectrum of T is in a natural quantitative sense close to the essential spectrum $\sigma_{e}(T)$. Indeed, if N is normal, and $\|T-N\|<\varepsilon$, then

$$
\left\|(T-\lambda I)^{-1}\right\|<(\operatorname{dist}(\lambda, \sigma(N))-\varepsilon)^{-1}
$$

So it is reasonable to assume this inequality when $\operatorname{dist}(\lambda, \sigma(N))>\varepsilon$.
THEOREM 2. Given a compact subset X of the plane, there is a continuous positive real-valued function f_{X} defined on $[0, \infty)$ such that $f_{X}(0)=0$ with the following property.

Let T be essentially normal and satisfy the BDF hypotheses:
(i) $\sigma_{e}(T)=X$,
(ii) $\operatorname{ind}(T-\lambda I)=0$ for all $\lambda \notin X$.

Furthermore let T satisfy the quantitative hypotheses:
(iii) $\left\|T^{*} T-T T^{*}\right\|^{1 / 2}<\varepsilon$,
(iv) $\left\|(T-\lambda I)^{-1}\right\|<(\operatorname{dist}(\lambda, X)-\varepsilon)^{-1} i f \operatorname{dist}(\lambda, X)>\varepsilon$.

Then there is a compact operator K such that $\|K\|<f_{X}(\varepsilon)$ and $T-K$ is a normal operator with spectrum X.

The most important special case in our proof is the annulus $A=\{\lambda \in$ C: $\left.R_{1} \leq|\lambda| \leq R_{2}\right\}$ In this case, the result obtained is much stronger and applies to more general operators.

Theorem 3. Let T be an operator on a Hilbert space with $\sigma_{e}(T)=A=$ $\left\{\lambda \in \mathbf{C}: R_{1} \leq|\lambda| \leq R_{2}\right\}$. Suppose $\|T\|=R_{2}$ and $\left\|T^{-1}\right\|=R_{1}^{-1}$. Then there is an operator K such that

$$
\|K\| \leq 104\left\|T^{*} T-T T^{*}\right\|^{1 / 2}
$$

and such that $T-K$ is normal with spectrum A. If T is essentially normal, then K may be taken to be compact.

Theorem 3 is obtained by using a polar decomposition analogous to the rectangular decomposition used by the second author in [2], where he proves the following absorption theorem, Theorem 4. This construction as described in [2] represents the key technical device which allows us to achieve the results of this note.

Theorem 4. Let T be a matrix acting on a finite-dimensional Hilbert space \mathcal{H}. Then there are normal matrices N and M acting on \forall and $\forall \oplus \nVdash$ respectively such that $\|N\| \leq\|T\|$ and

$$
\|T \oplus N-M\| \leq 75\left\|T^{*} T-T T^{*}\right\|^{1 / 2}
$$

Let us briefly sketch the scheme of the proof of Theorem 4. We will avoid technical difficulties that would arise in getting the estimate of the right order. Write $T=A+i B$ as a sum of its real and imaginary parts. Let $\varepsilon^{2}=$ $\left\|T^{*} T-T T^{*}\right\|=2\|A B-B A\|$. Use the spectral decomposition of A to split the space into a direct sum of spectral subspaces for intervals of length ε. With respect to this decomposition, A is "block diagonal". Since $\|A B-B A\| \leq$ $\varepsilon^{2} / 2$, it follows that the matrix entries $B_{i j}$ of B satisfy $\left\|B_{i j}\right\|=O(\varepsilon)$ for $|i-j| \geq 2$. So after a $O(\varepsilon)$ perturbation, B is "tridiagonal". Let $R=$ [$\varepsilon^{-1 / 2}$] and let B^{\prime} be the tridiagonal matrix obtained from B by setting the $(k R, k R+1)$ and $(k R+1, k R)$ entries equal to zero. This B^{\prime} is block diagonal with respect to this coarser decomposition corresponding to spectral subspaces of A for intervals of length $R \varepsilon \doteqdot \varepsilon^{1 / 2}$. Let A^{\prime} be the block diagonal matrix which is scalar on each big block, with value equal to the midpoint of the corresponding interval. So $\left\|A^{\prime}-A\right\| \doteqdot \varepsilon^{1 / 2} / 2$. The normal matrix $N=$ $A^{\prime}+i B^{\prime}$ works. The point is that $T \oplus N$ is close to $\left(A^{\prime} \oplus A^{\prime}\right)+i\left(B \oplus B^{\prime}\right)$. Since B and B^{\prime} agree on long sequences of blocks it is possible to think of them "locally" as looking like $B \otimes I_{2}$, which is a tridiagonal matrix with entries

$$
\left(\begin{array}{cc}
B_{i j} & 0 \\
0 & B_{i j}
\end{array}\right)=B_{i j} \otimes I_{2}
$$

where I_{2} is the 2×2 identity matrix. One writes down a projection which is a block diagonal operator with respect to the original decomposition, of the form $\sum_{j=-R}^{R} \oplus I \otimes P_{j}$ where P_{j} slowly varies from $\left(\begin{array}{ll}0 & 0 \\ 0 & I\end{array}\right)$ to $\left(\begin{array}{ll}I & 0 \\ 0 & 0\end{array}\right)$ and back to $\left(\begin{array}{cc}0 & 0 \\ 0 & I\end{array}\right)$. A computation shows that this almost commutes with $T \oplus N$ because of the zero off-diagonal entries of B^{\prime} at every Rth block. In this way $B \oplus B^{\prime}$ is approximated by a block diagonal operator B_{0}. The block projections commute with $A^{\prime} \oplus A^{\prime}$ and are supported on two adjacent big blocks. So $A^{\prime} \oplus A^{\prime}$ is close to a selfadjoint operator A_{0} which is scalar on each of the block projections of B_{0}. So $A_{0}+i B_{0}$ is normal, and close to $T \oplus N$.

Now let us show how Theorem 3 is applied to the proof of Theorem 2. Given an essentially normal operator T with zero index data, it is always possible to approximate T by an operator unitarily equivalent to $T \oplus N$ where N is normal with $\sigma(N)=\sigma_{e}(N)=\sigma_{e}(T)$. This normal can in turn be approximated by a
normal operator N_{1} with a bigger spectrum which is topologically nice (finitely connected, smooth boundary). A conformal mapping is used to straighten this set out. Then a small perturbation splits this operator into a direct sum of operators $\sum_{i=1}^{n} \oplus T_{i}$ so that $\sigma_{e}\left(T_{i}\right)$ is conformally equivalent to the annulus. By Theorem 3, each T_{i} is normal plus compact. Hence T is the limit of operators which are normal plus compact.

An operator T is called quasidiagonal if there is an increasing sequence P_{n} of finite rank projections with $s-\lim P_{n}=I$ such that

$$
\lim _{n \rightarrow \infty}\left\|P_{n} T-T P_{n}\right\|=0
$$

Such operators have a small compact perturbation $T-K$ which is of the form $\sum_{n \geq 1} \oplus T_{n}$ where each T_{n} acts on a finite-dimensional space. It is a consequence of the spectral theorem that every normal operator is quasidiagonal. The set of quasidiagonal operators is norm closed and invariant under compact perturbations. Hence our essentially normal operator T with zero index data is quasidiagonal.

This brings us to the matrix problem. Since $\sum_{n \geq 1} \oplus T_{n}$ is essentially normal, it follows that

$$
\lim _{n \rightarrow \infty}\left\|\left[T_{n}^{*}, T_{n}\right]\right\|=0
$$

The following problem is still open.
Problem 1. Let T be a matrix of norm one such that $\left\|T^{*} T-T T^{*}\right\|$ is small. Is T close to a normal matrix?

More precisely, given $\varepsilon>0$, is there a $\delta>0$ so that $\left\|T^{*} T-T T^{*}\right\|<\delta$ implies that $\operatorname{dist}(T$, Normals $)<\varepsilon$? This problem has been considered by several authors, in particular the first author of this note, and the interested reader is referred to [2] for further information.

Theorems 3 and 4 provide a method for circumventing Problem 1 while still obtaining a result good enough for BDF because of the abundance of normal summands available. Because of the existence of isolated eigenvalues, a solution to Problem 1 is required if there is to be an "ideal" quantitative version. Theorem 5 below is a generalization of Theorems 3 and 4, which correspond to the annulus and disc cases. Let X be a compact subset of the plane, and let $\operatorname{Nor}(X)$ be the set of normal matrices with spectrum contained in X. For $t \geq 0$, let $S_{t}(X)$ denote the set of matrices T such that
(i) $\left\|T^{*} T-T T^{*}\right\|^{1 / 2} \leq t$, and
(ii) $\left\|(T-\lambda I)^{-1}\right\| \leq(\operatorname{dist}(\lambda, X)-t)^{-1}$ for λ such that $d(\lambda, X)>t$.

THEOREM 5. There is a continuous function f_{X} defined on $[0, \infty)$ with $f_{X}(0)=0$ so that if T belongs to $S_{t}(X)$, there are normal matrices N and M in $\operatorname{Nor}(X)$ such that $\|T \oplus N-M\|<f_{X}(t)$.

Theorems 1 and 2 now follow. Indeed, let T be an essentially normal operator with zero index data. We have shown that T is quasidiagonal. So we see $T-K \cong \sum_{n \geq 1} \oplus T_{n} \oplus N$, where N is a diagonal normal operator and $\sigma(N)=\sigma_{e}(T)=X$. The finite-dimensional operator T_{n} belongs to $S_{t_{n}}(X)$ and $\lim _{n \rightarrow \infty} t_{n}=0$. If T satisfies the hypotheses of Theorem 2 , then
one also can arrange that $\sup _{n>1} t_{n} \leq \varepsilon$. Using Theorem 5, one attaches to each T_{n} a summand N_{n} of N so that there is a normal matrix M_{n} with $\left\|T_{n} \oplus N_{n}-M_{n}\right\| \leq t_{n}$. So

$$
T-K \cong \sum_{n \geq 1} \oplus\left(T_{n} \oplus N_{n}\right) \oplus N
$$

which differs from the normal operator $\sum_{n \geq 1} \oplus M_{n} \oplus N$ by a compact operator of norm at most $f_{X}\left(\sup _{n \geq 1} t_{n}\right)$.

There are many questions left open for consideration. One of the most pertinent problems is the following.

Problem 2. Is there a universal constant C so that if T is a matrix with $\left\|T^{*} T-T T^{*}\right\|^{1 / 2}=t$, then there are normal matrices N and M so that the eigenvalues of N belong to $\left\{\lambda \in \mathbf{C}:\left\|(T-\lambda I)^{-1}\right\|>t^{-1}\right\}$ and $\|T \oplus N-M\| \leq$ Ct?

A positive solution would yield a stronger version of Theorem 2.

References

[^0]
[^0]: 1. L. G. Brown, R. G. Douglas, and P. A. Fillmore, Unitary equivalence modulo the compact operators and extensions of C^{*}-algebras, Proc. Conf. Operator Theory, Lecture Notes in Math., vol. 345, Springer-Verlag, Berlin and New York, 1973, pp. 58-128.
 2. K. R. Davidson, Almost commuting Hermitian matries, Math. Scand. 56 (1985), 222-240.

 Department of Mathematics, University of Illinois, Urbana, Illinois 61801

 Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1

