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THE CYCLIC HOMOLOGY AND K-THEORY OF CURVES 

S. GELLER, L. REID AND C. WEIBEL 

ABSTRACT. It is now possible to calculate the K"-theory of a large class 
of singular curves over fields of characteristic zero. Roughly speaking, 
the ÜT-theory of a curve is the X-theory of its (smooth) normalization 
plus a few shifted copies of the if-theory of the field plus a "nil part." 
The nil part is a vector space depending only on the analytic type of 
the singularities, and may be computed locally. We completely compute 
the nil part for seminormal curves and give a conjectural calculation in 
general which depends upon cyclic homology. 

Until recently, very little has been known about the higher algebraic K-
theory of anything but finite fields. In this note we announce the computabil
ity of the X-theory of singular curves in characteristic zero in terms of the 
K-theory of smooth curves and fields. If the curve is seminormal, we give a 
complete calculation; otherwise, the calculation depends on the validity of: 

CONJECTURE. Let B be a finite integral extension of a ring A, and let I 
be the conductor ideal. Assume A contains Q, the rational numbers. Then 
the map 

/f*(i4,B,J)->ffa_i(A,B,/) 

is an isomorphism, where the right-hand term is double relative cyclic homol
ogy taken over the field Q. 

This conjecture is known when B = A/J [OW]. In the absence of this 
conjecture, all our results can be interpreted as calculations of the cyclic 
homology of affine curves. In order to more simply present our results, let us 
set 

!

0 n = 0,l, 

fc 0 Q\ 0 fijj 0 • • • e n^~2 n even, n > 2, 
fifc e nj£ e • • • e n%~2 n odd, n > 3. 

Here Ql
k denotes the ith. exterior of the module fifc of Kàhler differentials of 

fc over Q. As an illustration, we present 
CURVE 1 (TWO INTERSECTING LINES). Let fc be a field of characteristic 

zero, and set A = k[x,y]/{xy), I = {x,y)A, and X = Proj(fc[X,y,Z]/(AY)). Received by the editors June 12, 1986. 
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Then 

HCn{A) = HCn{k) e vn+1 e (/ ® ng), 
/fn(A) = /fn(fc)evn, 
xn(x) = Kn(A) e Kn(fc) e Kn(k). 

Fix a field fc of characteristic zero and let X be a singular curve over k. We 
shall compute the K-theory of X by means of a series of reductions. Using 
analytic isomorphisms [Wl], we reduce to the case in which X is affine, say 
X — Spec (A). If A is not reduced, we can compute the K-theory of A in 
terms of the K-theory of Ared = A/N (N is the nilradical of A) and the 
relative groups of N. The latter are computable in terms of cyclic homology; 
namely, Kn(A,N) = HCn-\{A,N). (This isomorphism is due to Goodwillie 
[G].) We thus reduce to the case in which A is reduced. 

At this point, we break up the K-theory of A into two pieces: the Karoubi-
Villamayor theory and the nil K-theory [W2]. The groups KV*(A) are easily 
computed in terms of the üf-theory of the normalization B of A and the residue 
fields of A and B at the singular points of A. This procedure is outlined in 
[R and W3]. 

The groups nil K*(A) are Q-vector spaces, and it is these that we can 
compute. Since A is reduced and 1-dimensional, nilK*(A) is the direct sum 
over the singular primes m of A of the groups nil K*(Am). These groups 
depend only on the analytic type of the singularity, in the sense that if A is 
the m-adic completion of A, then nil K*(Am) = nil if*(A). 

To illustrate the nature of the last few reductions, the computation for two 
intersecting lines allows us to compute 

CURVE 2 (NODE). Let A = k[x,y}/(y2 = x2 - xs) and 

X = Proj(fc[X, F, Z]/{Y2Z = X2Z - X3)). 

Then Kn(X) = Kn{A) 0 Kn(k) and 

Kn(A) = Kn(k)®Kn.{-1(k)(BVn. 

Similarly, we can calculate the ÜT-theory of any curve whose singularities 
have linearly independent branches by means of the above reductions and the 
following special case. 

CURVE 3 (6+ 1 BRANCHES). Let A = fc[x0,...,a;&]/(z»a;J- = 0,i ^ j). 
Then 

iJCn(A) = ffCn(fc)e U fce II nfc®--® II n^e^Qî j ) , 
c ( 6 , n + l ) c(6,n) c(6,2) 

Kn(A) - Kn{k) e J J f c e H nfc©...© I J n£~2, 
c(6,n) c ( 6 , n - l ) c(6,2) 

where, letting // denote the Möbius function, 

. fi(e/_d), 
e =(M= E J2^p-[bd+ (-D% 

e\q 
q — e even 
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The function c(6, q) counts the number of ways of using the alphabet 
{ 0 , 1 , . . . , b} to write words of q letters around a circle so that (i) no two adja
cent letters are the same and (ii) if rotation by e positions fixes the word then 
( - l ) e = (-1)9 . (For example, the word 012012 is disallowed when q = 6.) 
Since 

c(l, q) is 1 if q is even and 0 if q is odd, the case 6 = 1 recovers Curve 1. Note 
that c(6,2) = (62 + 6)/2, c(6,3) = (63 - 6)/3, c(6,4) = (64 - 62)/4 + (b2 + 6)/2. 
In general c(6,g) ~ 69/ç. 

The elements of Kn(A) are easy to describe using "Loday symbols" 
( ( / i , . . . , fq)) [L]. For each of the c(6, </) words z'i,... , i g and each element 
aodai A • • • A dap of fi£ we get an element 

((aoXi,,..., x»q)) U {a i , . . . , ap} G ÜTp+^A). 

Finally, according to [D], every seminormal singularity has the analytic 
type of AG, where A is the ring of Curve 3 and G is a galois group acting on 
both k and A in a graded way. Since the galois group acts on the EC and 
üT-groups of A in an obvious way, we have 

HCn(A
G) = HCn(k

G) ® j U k\ 0---0(/®n£)G , 

Kn(A
G) = Kn(k

G)®[ U k) ©'• 

\c(6,n) 7 
This completes the computation of the K-theory of seminormal curves. 

Our results for nonordinary singularities are much less complete, if for no 
other reason than our lack of a reasonable classification. We mention just one: 

CURVE 4 (CUSP). Let A = k[x,y]/(x3 = y2) = fc[t2,t3], and I = {x,y)A. 
Then 

HCn(A) = HCn(k) 0 VWi 0 Vn+i 0 (/ ® HJJ) 
and Kn(A) maps onto üfn(fc) 0 Vn 0 Vn 0 H^ for n < 3. Moreover, if the 
Conjecture mentioned above is correct, then for all n, 

Kn(A) = Kn(k) ®Vn®Vn® Ün
k. 

Note that the groups Kn(A) for n = 0,1 are known to agree with the above 
formula [Kr, 12.1]. 
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