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PROPAGATION OF SINGULARITIES OF SOLUTIONS 
TO SEMILINEAR BOUNDARY VALUE PROBLEMS 

FLORIN DAVID AND MARK WILLIAMS 

ABSTRACT. Let P be a second-order, strictly hyperbolic differential 
operator on an open region Q C R n (n > 3) with smooth nonchar-
acteristic boundary. Given a solution u G fffoc(n), s > (n + l ) /2 , to 
Pu = f(x,u), we discuss the propagation of microlocal Hr singularities 
in the range s < r < 2s — n/2 in the general case where the Hamilton 
field of p may be tangent to dT* f2\0 to arbitrarily high finite or infinite 
order. 

Introduction. Recently, M. Sablé-Tougeron [10, 11] and A. Alabidi [1] 
used the calculus of paradifferential operators to obtain, for a quite general 
class of nonlinear boundary value problems, results describing the reflection 
of singularities that travel on bicharacteristics transversal to the boundary of 
a region Q C R n . Using a different approach, similar to the one initiated by 
Rauch [9] and further developed by Beals and Reed [3] in studying interior 
propagation, we have obtained results for second-order semilinear problems 
with Dirichlet conditions in the general case where tangential bicharacteristics 
as well as gliding rays may carry singularities. Our argument has two main 
steps. We first prove an analogue of Rauch's Lemma for a class of spaces 
measuring microlocal Hs regularity up to the boundary. We also require a 
precise linear theorem (Theorem 2), a refinement of the results of Melrose and 
Sjöstrand ([8], see also [6]), which describes the propagation of H9 regularity 
along generalized bicharacteristics. This theorem must apply to equations 
Pu = v for distributions v which lie in our microlocal algebras, but which 
cannot be assumed to be normally regular. A simple inductive argument 
combining the above then yields the desired semilinear theorem (Theorem 1). 
Complete proofs will appear in [4]. 

Spaces of distributions near dû. Let U be a coordinate chart centered 
at so G dQ, and let (x±, x') be coordinates in which fi Pi U (= U) = {x\ > 0}. 
We will use the spaces Hl°t

c,{U) defined in Hörmander [5]. For u e H^l^U) 

we^define WFr{u) C (T*dU\0) U (T*Ù\0) as follows. If a e T*dU\0, a £ 
WFru if and only if for some tangential pseudodifferential operator 0(x, D') 
of order zero, elliptic at (0,a), (j>u G H{oc(U). In this case we write u G Hr(a). 
In T*U, WFr coincides with the usual notion of WFr. Note that the definition 
of WFru is coordinate dependent. However, it is a consequence (see [4]) of 
the Lemma stated below and the fact that <9fi is noncharacteristic, that for 
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solutions u G #fo c(n), s > (n + l)/2, to Pu = / (x,u) , WFrw is coordinate 
independent for s < r < 2s — n/2 + 1/2. 

It was observed in [10] that the spaces H\°$(U) are algebras stable under 
f(x,u) if t > ±, t + t' > n/2, and t + 2t' > \. Thus, given u G Hfoc such 
that Pu = f(x,u), Peetre's Theorem [5, 4.3.1] yields by induction that u G 
#2s-p+2,-s+p-2(k0 f°r all P > 5- This suggests considering, for a G T*dU\Q, 
the following spaces as candidates for microlocal algebras at the boundary: 

Main results. The following lemma is, we think, the natural analogue of 
Rauch's Lemma at the boundary. 

LEMMA. The spaces As^yP(a) defined above are algebras stable under the 
action of C°° functions f{x,u) provided (n + l)/2 < s < s' < 2s — n/2 — p 
and pe (1/2,8 -n/2). 

In the statement of the following theorem we take fi = UJ x RXn, where 
ou C R n _ 1 is an open region with smooth boundary. H and Q denote the 
hyperbolic and glancing regions of T*<9fi\0 (see [8 or 6]). 

THEOREM 1. Let P be a second-order differential operator, noncharac-
teristic with respect to dU, and strictly hyperbolic with respect to the surfaces 
xn = c. Suppose that u G Hfoc(Q), s > (n + l)/2, satisfies Pu = f{x,u) in 
Q. Then for s < r < 2s — n/2, every point 70 £ WFru\WFr(u\dn) is either a 
characteristic point of P in T*Q, or else contained in M\jQ. An open interval 
(—T, T) 9 t - > i(t) with 7(0) = 70 on a generalized bicharacteristic [S, 6] is 
contained in WFru. 

Theorem 1 is proved by an inductive argument using the lemma and the 
following linear theorem. Note that the assumptions on P in Theorem 1 and 
the coordinate invariance of WFru for u G H*oc satisfying Pu = f(x,u) (r G 
[s, 2s — n/2-f \)) allow us to reduce to the case where P and fi are as described 
in Theorem 2. We denote points in T*Rn by (xi, x', £1, £'). 

THEOREM 2. Suppose Q C R£ = {xi > 0} and write dQ = ïïndKf.. Let 
P = D\x —R(x, D') be a second-order differential operator on O strictly hyper
bolic with respect to the planes xn = c. Suppose Pu = ƒ m Q, where for some 
s' > l,u G ^ 2 , - 0 0 ( Ï Ï ) , ƒ G fll?c_oo(n), and t i j E ^ ' + H f o ^ O ) : X l > 

0, x near dû}. Then every point 70 £ W^s'+i/2?A(^^V ƒ U WFs/+i/2(u|dn)) 
is ei£/ier a characteristic point of P in T*Q, or else contained in M U Q. An 
interval (—T,T) 3 t - > ^(t) with 7(0) = 70 on a generalized bicharacteristic 
is contained in WF^+i^u. 

Sketch of the proofs. We begin with the lemma. Any u G As,s>,p(a) can 
be extended to an element u G Hfoc(U) such that ü = u\ -f i^, where u\ G 
Hfóc{Ü) and where u2 G H^Lp,-s+p{U) has the property that <j>(x,Df)u2 G 
#2s-p,oo(R-n) for <KX> Ö') supported sufficiently near (0,o*). Now given it and 
v in ^s,s',p(0-), we first choose such extensions ü = u\ -f 1*2, # = v\ + v2- We 
then show that tangential operators of order zero of the form x{D') ° 'll)2{x)) 
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where xjj G Co°(Rn), map üv into Hs (Rn) provided they are supported suf
ficiently near (0,<T). For uiv\ this is immediate, and the convolutions corre
sponding to the products u\V2 (or U2V1) and U2V2 are examined separately. 
The stability of the algebras under smooth ƒ (x, u) then follows by considering 
Df(x,u), using the chain rule and an inductive argument like the one given 
in Beals [2, Corollary 1.8]. 

Next we will sketch an argument that can be used to prove Theorem 2 when, 
for example, 70 G # or 70 G Qd (the diffractive region). Say 70 = <* G Qd, 
where the xn-coordinate of a is 0. Given Pu = f(x,u) G Hs (<J), tx|ac/ G 
j y - ' + i / a ^ u e #« '+i/2(r_) , where T_ c T*f7 is the portion in xn > -e of 
the incoming tangential ray passing over <r, we must show u E Hs'+1^2(a). 
We can suppose f Q Hs ( r_) . By solving a mixed problem in [/ we first find a 
distribution w € H^1'2^) such that u' = u-w satisfies Pu' = ƒ, o £ WF 
u'\du, u' G i J 5 , + 1 ( r_ ) . Extend ƒ to an element ƒ G i f ^ L ^ t / ) such that 
\{x,D')f G i P (Rn) for all x € L° supported sufficiently near (0, cr). Now 
solve, in Ï7, the extension problem: 

Pv = ƒ, v = u' near T_ in xn < — e/2. 

One then shows that ;4(z, £>')*> G iP '+^R/ 1 ) for all A G L° supported suffi
ciently near (0,<r). (It is obvious that Av G # 5 + 1 (p _ 1 (0 ) ) for such A.) Next 
choose such an A = 1 near (0, a) and solve the mixed problem in U: 

Pw' = 0, wf\du = Mu' ~ v)\du, w' = 0 in xn < -e/2. 

Since J 4 V | W G # 5 ' + 1 / 2 , w' G #ioC
+1/2(£/)- The results of Melrose [7] and 

Taylor [12] imply a $ WFb(u' - {v + w')). Hence u' G tfs'+1/2(<r), which 
implies u G H9'^~1^2(a) as desired. 

In cases of finite-order tangency where the incoming or outgoing generalized 
bicharacteristic is a gliding ray, and in the case of infinite-order tangency, our 
proof of Theorem 2 follows the arguments in Hörmander [6, §24.5] closely. 
Again, an appropriate mixed problem is solved first. The remainder of the 
proof involves checking that the L2 pairings in [6, 24.5] remain bounded under 
the hypotheses of Theorem 2. 

It is a pleasure to thank Richard Melrose for helpful conversations con
cerning the linear theorem, and for encouraging us to pursue the case of 
higher-order tangency. 

NOTE ADDED IN PROOF. The proof of Theorem 2 has been simplified 
in [4]. A method similar to that sketched above for a G Qd can be used to 
handle all points cr G M U Q. The revised argument allows Hr regularity for 
r <2s — n/2 + \ to be propagated in Theorem 1. 
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