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On the other side of the coin, this book is still, strictly speaking, not a text. 
Exercises for the student to worry about are virtually nonexistent, although 
many proofs leave sufficient gaps to provide challenge. The removal of some 
peripheral material to exercises would give the book more of a Clifford-Preston 
flavor, while allowing some contact with every chapter in a one-semester 
course. Complaints about choice of content should be forestalled until the 
appearance of a second volume, due out in the near future and promising 
cohomology, semilattices, Lie semigroups, and other topics of current interest. 
It strikes the reviewer that cohomology, which has provided the subject with 
some of its most elegant theorems, would have been well invested in the first 
volume. Nevertheless, the reviewer believes Wallace would be happy with this 
book, and in this subject there can be no better compliment. 
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A linear transformation T acting on a finite-dimensional complex vector 
space SC can always be decomposed as T = D + N, where (i) D is diagonaliz-
able and N is nilpotent; and (ii) DN = ND\ moreover, such a decomposition 
is unique with respect to the conditions (i) and (ii), and both D and N are 
indeed polynomials in T. When % is an infinite-dimensional Banach space, 
such a representation for a bounded operator T is no longer true, but an 
important class of transformations introduced and studied by N. Dunford [3] 
in the 1950s possesses a similar property. 

By definition, a spectral operator T acting on 3C is one for which there exists 
a spectral measure E (i.e., a homomorphism from the Boolean algebra of Borel 
subsets of the complex plane C into the Boolean algebra of projection 
operators on & such that E is bounded and E(C) = / ) satisfying the 
following two properties: (1) TE(B) = E(B)T\ and (2) a(T\E(B)sr) c B, for 
all B (Borel) c C. Such an E is called a resolution of the identity for T, and is 



BOOK REVIEWS 137 

unique with respect to T. Conversely, given a spectral measure E supported on 
a compact subset of C, the Riemann-Stieltjes integral ƒ XdE(X) defines a 
bounded operator S on 3f, which turns out to be spectral with resolution of the 
identity E. Operators admitting such an integral representation are called 
scalar. 

A basic result of the theory of spectral operators states that if T is spectral 
then T = S + £, where (i') S is scalar and Q is quasinilpotent (a(g) , the 
spectrum of Q, equals {0}); and (ii') SQ = QS. Such a decomposition, called 
canonical, is unique; S and Q are called the scalar and radical parts of T7, 
respectively. Also, since every bounded operator that commutes with T does so 
with E9 both S and Q belong to the double commutant of T; T and S have 
identical resolutions of the identity and equal spectra. Moreover, the inverse-
closed Banach algebra generated by T and the range of E splits as a direct sum 
of its radical and the inverse-closed Banach algebra generated by the range of 
E (which is isomorphic to the algebra of ^-essentially bounded Borel functions 
on a(T)). Therefore, a spectral operator admits a rich functional calculus. On 
Hubert space, an operator is scalar if and only if it is similar to a normal 
operator (J. Wermer), which implies that the sum and product of two commut­
ing spectral operators is spectral (a fact not necessarily true in arbitrary 
Banach spaces (S. Kakutani)). 

There are basically two ways in which the notion of a spectral operator can 
be generalized: (a) by extending the notion of a resolution of the identity; and 
(b) by restricting the algebras used to define the functional calculus for the 
scalar part. Colojoarâ and Foia§ [2] considered at length the various types of 
operators that can thus be obtained (decomposable, generalized scalar, gener­
alized spectral, ^-scalar, ^-spectral, ^-decomposable) and extended greatly the 
pioneering work of Dunford, J. Schwartz, W. Bade, S. Kakutani and others. As 
a result of that study the theory became a major focus of attention, and in the 
ensuing decade and a half a number of simplifications, generalizations, solu­
tions to open problems and applications were obtained. In particular, a 
considerable portion of the several variables theory was developed. Since many 
of the interesting classes consist of unbounded operators (for instance, boundary 
value problems often give rise to spectral unbounded operators) acting on 
Fréchet spaces, the extensions had to cover those cases, too. Before we look at 
those developments in more detail we must pause to discuss the elements of 
spectral theory for several commuting operators. 

The first notion of joint spectrum appears in the work of R. Arens and A. 
Calderón on analytic functions of several Banach algebra elements. For 
ax,...,an in a commutative Banach algebra s/9 the joint spectrum of a = 
(av...,an) relative to s/ is simply o^ia)^ [<p(a):= (<p(a1),...,q>(an)): 
<p e M^} , i.e., a^(a) is the range of the (joint) Gelfand transform of a. Such a 
spectrum possesses a well-behaved functional calculus and is adequate in a 
number of instances. Generally speaking, however, it is much too large. For 
example, if al9..., an generate s/ then o^(a) is polynomially convex, so that 
the functional calculus is basically a polynomial calculus in this case. When a 
is a commuting system in a noncommutative algebra (say an «-tuple of 
commuting operators on #", regarded as elements of l?(5t\ the algebra of all 
bounded operators on #*), various kinds of joint spectra have been considered 
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by many authors, including the left spectrum, the right spectrum, and the 
algebraic spectra relative to (commutative or not) Banach algebras containing 
the Û/S. (Briefly, if the a/s are in the center of the Banach algebra J^, then a 
is said to be invertible with respect to s# if the equation a1bl+ — - +anbn = 1 
admits a solution in s0 (bv..., bn e S/); equivalently, a is invertible relative 
to J& if and only if the closed ideal generated by s/ contains the identity.) 
Each of these notions has its own advantages, but they all share two major 
drawbacks: lack of a sufficiently rich functional calculus and inadequacy to 
properly reflect the joint action of the operators on the space. In 1970 J. L. 
Taylor found a successful notion which gradually began to play a major role 
and became an essential tool in the subject. 

A commuting «-tuple T = (7 \ , . . . , Tn) of operators on a Banach space X 
can be associated with a chain complex K(T, X\ called the Koszul complex for 
T on X, as follows. If A[e] denotes the exterior algebra in n generators 
el9... 9en9 the map dT\ A[e] ® X^> A[e] <8> X9 

dTU®x)= E ( e , A £ ) ® Ttx, J e A [ e ] , x €E X9 
i=\ 

gives rise to the boundary maps d\— dT\Ak[e]9# (the restriction of dT to 
fc-forms); K(T9 X) is then the complex {Ak[e] ® X, dl)n

kmm0. T is said to be 
nonsingular on X if K(T9 X) is exact at every stage, and the Taylor spectrum 
of T9 a(T9X)9 is then defined as the complement of the set of complex 
«-tuples X = (X1? ...jX,,) for which T - X is nonsingular. As an example, 
consider the case « = 2. Then 

K(T9 f ) : 0 - ^ f 4 f e 3T-i X-+ 0, 

where d0(x) = Txx © T2x and dx(x, y) = -T2x + Txy. Then T is nonsingu­
lar if and only if ker7\ n kerT2 = {0}, ranTx -f ranT2 = X, and whenever 
Txy = T2x there exists a vector z e X such that 7\z = x and T2z = y. 

Taylor proved that this joint spectrum is a compact, nonempty subset of the 
cartesian product of the individual spectra, that it is contained in any algebraic 
joint spectrum, and that it possesses a rich functional calculus: if U is an open 
neighborhood of a(T,X) and A(U) denotes the algebra of functions analytic 
in £/, then there exists a continuous unital algebra homomorphism from A(U) 
into S£(X) such that the image of the coordinate function zi is the operator Tt 

(i = 1 , . . . ,«) . Moreover, the values of this homomorphism belong to (T)"9 

the double commutant of T. Taylor also proved the spectral mapping 
theorem in this context: If ƒ = (/i, . . . , fm) e A(UYm) then for 
/ ( 7 ) : = (fl\T)9...Jm(T)) the equality o(f(T),X)=f(o(T,X)) holds. As 
an immediate consequence of this, it follows that whenever o(T,X) is the 
disjoint union of two nonempty compact subsets ox and a2 then X can be 
written as the direct sum of two closed subspaces Xx and X2 such that each is 
invariant under T and o(T\X9Xj) = a, (j = 1,2). 

This last property of the Taylor spectrum is of considerable importance in 
the study of decomposable «-tuples of operators. Other properties include the 
upper semicontinuity of separate parts, the superposition property and the 
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uniqueness of the functional calculus. In addition, if T and S are two 
commuting «-tuples of operators on % and A is a map intertwining T and S 
(AT= SA% then for any ƒ = ( f v . . . , fm) e A(U)(m\ U D O(T, %) U o(S, %\ 
one has Af(T) = /(5)^4; in particular, if T and 5 are (jointly) similar, so are 
f(T) and f(S). The Arens-Calderón-Waelbroeck-Bourbaki functional calculus 
for «-tuples in a commutative Banach algebra s/ can be derived from the 
above by observing that for a = (av..., a„) e j ^ ( w ) , o^(a) = a(La, s#\ where 
La = (L ,...,L ) denotes the «-tuple of left multiplications by the a/s 
acting on J*' (regarded as a Banach space). R. Harte's polynomial mapping 
theorem for the left and right spectra (or M.-D. Choi's and C. Davis's version 
for the approximate point spectrum), however, still requires an independent 
argument. As the reader will have probably noticed, both the left, oh and right, 
ar, spectra are subsets of a; also, if 9£ is finite-dimensional, a, = ar = a = q ,̂ 
where sf is the Banach subalgebra of JP(&) generated by the «-tuple. 

The left and right spectra are often adequate in a number of problems (e.g., 
the spectral theory of generalized derivations), but the existence of such a 
well-behaved functional calculus is what makes the Taylor spectrum the 
overwhelming choice in the theory of spectral decompositions. Since the notion 
of nonsingularity has been given in terms of a chain complex, perhaps the 
reader wonders how the actual construction of the functional calculus is 
implemented, and therefore we shall briefly indicate here the main steps. For 
simplicity, assume that 3C is actually a Hubert space. In this case the 
nonsingularity of a commuting «-tuple T can be decided by a single operator 
acting on (the Hilbert space) A[e] ® 3C, namely, T is nonsingular on 9£ if and 
only if R(T) = dT + (dT)* is invertible. The map X -> R(X - T) from 
Cw \a(r ,^") to &(h[e]®SC) is real-analytic with values in the invertible 
operators on A[e] 8 #*. For X * 0, R(X)2 = |X|2,sothat £(X) - 1 = |X|"2^(X). 

The other basic ingredient needed to describe the functional calculus is the 
Bochner-Martinelli formula, which states that an analytic function ƒ in A(U) 
can be represented as 

/(̂ ) = % ^ / / ( M É ( - i r 1 - ^ 1 ^ A d\kAd\, 
(2m) '2 y = i I X - z | i<*<» 

1 ' Any­
where z is an arbitrary point in a compact subset K of U and 2 = dK is 
piecewise smooth. Unlike Cauchy's kernel when « = 1, the Martinelli kernel 

M(X-z) = ( W - l ) ! E ( - l ) / - 1 - ^ ^ A d\k 
y-1 IX — z\ Kfc<n 

does not "create" analytic functions, but it nevertheless reproduces them. It is 
not hard to check that 

M(\ -z) = R(\ - z)-1 {\R(X - z ) - 1 ) " - 1 ^ , 

where S(£) = e1 A • • • A e„ A £, $ G A[e]. If we then let 

M(X -T) = R(X - TT1 {\R(X - T y y - ' s l . . 
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we can define 

f(T)-= - ^ ƒ f(X)M(X - T)d\, 

where 2 = dK is piecewise smooth and K is a compact subset of U containing 
a(T9 X) in its interior. 

This relatively simple form for the functional calculus in Hubert spaces, due 
to the author, was an important breakthrough in the whole theory, since the 
original version of Taylor involved the use of a Cauchy-Weil integral formula 
in homology, which was a highly noncomputational tool. There are now in any 
case several simplifications of Taylor's techniques which make the representa­
tion of f(T) more amenable to the untrained eye, even in the case when X is a 
Fréchet space (M. Putinar, the author and others have extended most of the 
results on Taylor's spectrum to that situation). 

Turning now our attention to the theory of spectral decompositions, recall 
that an operator T acting on a Banach space X is called m-decomposable if for 
every finite open covering {Ul9..., Um) of a(T9X) there exist spectral maxi­
mal spaces <8fl9..., <&m for T such that (i) o(T9 <&j) c \J. (j = 1 , . . . , m) and 
(ii) %= Lylx <&j. (A subspace <& of X is spectral maximal for T if <& is 
invariant under T and whenever 3? is a subspace of SC invariant under T and 
satisfying a(T9 &) c a(T9 <&), 2£ is contained in <W\ a typical example is given 
by the spectral subspace associated to a component of the spectrum of T). T is 
called decomposable if it is m-decomposable for every m > 1, strongly de­
composable if T\cy is decomposable for every spectral maximal subspace ^, 
and weakly decomposable if for every finite open covering {Uv...9Um} of 
a(T,X) there are spectral maximal spaces 8^,. . . , ^m satisfying (i) above and 

It is clear that strong decomposability implies decomposability (the converse 
is false (E. Albrecht)), that decomposability implies 2-decomposability (the 
converse also holds (M. Radjabalipour)) and that decomposability implies 
weak decomposability (converse false (Albrecht)). The connection of de­
composability to spectrality is achieved by considering the notion of a spectral 
capacity, introduced by C. Apostol in 1968. A map X: Cl(Cn) -> &>(&) (from 
the collection of all closed subsets of C1 to the family of all closed subspaces 
of X) is called an m-spectral capacity if it satisfies the following three 
conditions: (i) X(0)= {0} and X(Cn) = X; (ii) X^^FJ = nf=1X(Fk) 
for all sequences {^fc}^-i c C1(C"); and (iii) for every open covering 
{Ul9...9Um} of C , #*= LjLiX(Uj). If condition (iii) is satisfied for every 
m > 1, A" is called a spectral capacity; A" is a strong spectral capacity if X 
satisfies (i), (ii), and (iii'): for every F e Cl(Cn) and every open covering 
{Ul9...9Um}ofCn

9X(F)^^1X(FnUJ). 
For n = 1, C. Foia§ showed that T is 2-decomposable (resp. decomposable, 

strongly decomposable) if and only if there exists a 2-spectral (resp. spectral, 
strong spectral) capacity X such that X(F) is invariant for T and a(T9 X(F)) 
c F for all F e C1(C). Spectral capacities for a decomposable operator are 
always unique, but not every spectral capacity is the spectral capacity of some 
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decomposable operator (Example (Vasilescu). On $£= { ƒ e C\[0,1]): /(O) = 
/(1) = 0} let X(F)= {ƒ<=#*: supp(/') c F}). It is clear that the above 
characterization can then be used as the definition of «?-decomposability (resp. 
decomposability, strong decomposability) when « > 1 (where o(T, X) will 
now mean Taylor's joint spectrum of T oî &). S. Frunzâ, who introduced this 
notion for «-tuples, proved that if T = (Tl9...,Tn) is 2-decomposable then 
there is only one spectral capacity XT such that TXT(F) = XT(F)T and 
a(T9 XT(F))a F for all F G C1(CW). Moreover, the spaces XT(F) are all 
spectral maximal for T. Concerning the relation of m-decomposability to 
decomposability, the following is a useful theorem: If T is ra-decomposable 
and m > dimo(T, X) + 1 then T is decomposable (Albrecht-Vasilescu). Thus, 
whenever dim a (7*, X) = 0, T is decomposable (trivial observation: any com­
muting «-tuple is 1-decomposable), so that all commuting «-tuples with totally 
disconnected spectrum are decomposable. 

The multivariable theory shares two other properties with the one-variable 
theory. If T is decomposable then (1) o„(T9 X) = a(T9 X) (where am denotes 
approximate point spectrum); and (2) T has the single-valued extension 
property (s.v.e.p). By definition, T has the s.v.e.p. if for every A G C " there 
exists an open disc Dx (A e DX) such that the Koszul complex 

K(T-\9A(DX9Sr)) 

is exact everywhere except perhaps at the last stage (k = «). For an arbitrary 
commuting T the (analytic) local spectrum o(x; T, &) is defined as the 
complement of the set of points \ e C " for which there is an open set U 
containing A such that the equation E"=1(7} ~ zi)Mz) = ^ is solvable in 
A(U9^). The local spectrum has the following properties: 

(i) a(0; r, %) = 0 and, if T has the s.v.e.p., a(x; T, %) = 0 implies 
x = 0; 

(ii) o(x + y; T, X) c o(x; T, X) U o(y; T, X); 
(in) o(\x; T, X) = o(x; T, &)(x E f , À e C \ {0}); 
(iv) if T is m-decomposable (w > 2) then a(x; 7,5*) = fl{F G C1(CW): 

x e Xr(i^)} (JC G 5 ) and XT(F) = ( x e f : a(x; T, ST) c F} . 
Not all of the usual properties enjoyed by operators with the s.v.e.p., 

however, remain true in the multivariable case. For instance, if an operator T 
has the s.v.e.p. and Jt:= { ^ e f : a(x; T, X) c F) is closed (for some 
F G C1(C)), then J( is spectral maximal and a(71|^r) c F. J. Eschmeier has 
recently used the fact that the above result is false f or « = 2 to produce an 
example of a commuting pair of decomposable operators which is not de­
composable; of course, if T = (Tl9...,Tn) is decomposable, so is each Tt 

(i = 1 , . . . ,«) . (As is usually the case in multivariable spectral theory, if a 
property P holds for an «-tuple then P holds for each coordinate, but the 
converse is rarely true (e.g., subnormality, similarity, decomposability); in the 
situation at hand, the projection property for the Taylor spectrum allows one 
to get a spectral capacity for the individual operators from that of the «-tuple.) 

We have mentioned at the beginning that there are basically two directions 
in which spectral operators can be generalized, and in the previous paragraphs 
we have discussed one approach. We shall now concern ourselves with the 
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nonanalytic functional calculus perspective. First, one needs to establish some 
basic conditions on the algebras of functions that can be admitted. An algebra 
^ of complex-valued functions on a closed set fi c C" is called admissible if 
°U satisfies (1) 1 e f̂ and_zx,..., zn e # ; (2) # is normal, i.e., for every finite 
covering { Ul9..., Uk} of fl there are functions f l 9 . . . , fk e <% with 0 < /j- < 1, 
SUPP(//) c Uj(j =\,...,k) and fx+ • • • +fk = 1 (Existence of partitions of 
unity); and (3) for every f ^ °U and X £ supp( ƒ ) there exist fv ...,ƒ„ G # 
such that L"»! (X,- — *,•)ƒƒ(z) = / (z ) for all z e Ü. (Example. For £2 compact, 
# = i?(fl), the algebra of bounded Borel functions on 12, is admissible.) 

If °U is an admissible algebra on Û c C", an «-tuple T is called tft-scalar if 
there exists a unital homomorphism 0: ^-•«^(iT) such that 0(z7) = 7] 
( / = 1, . . . ,«) . It is then not hard to prove that if T is ^-scalar then 
X(F):= f|{kerO(/): ƒ e ^, supp(/) n F = 0 } defines a spectral capacity 
for r, so that T is decomposable. For a relatively open set G c £2, O is said to 
be null on G if $( ƒ ) = 0 for every ƒ such that supp( ƒ ) c G. Then 
s u p p $ : = n { F G Q(0): $ is null on Q \ F } = o(T, X) = a ( r y(r) = a,(r) 
= ar(jT); moreover, supp <&(•)* = a(x; T, <X\ for all x G i A ^-scalar 
«-tuple for which Ql is an inverse-closed subalgebra of C(fi) (the continuous 
functions on S2) behaves very much like a spectral operator: 

(a) M { * ( / ) : / e ^ } s a(r, # ) and (* (ƒ )ƒ=ƒ | f f ( r^; 
( b ) a ( 0 ( / ) , ^ ) = / ( a ( r , ^ ) ) ; 
(c) for every ƒ G # , $ (ƒ ) is decomposable and A^ ( / )(F) = XT(f'\F)\ 

F G C1(C); 
(d) O is unique up to spectral equivalence, i.e., for every other unital 

homomorphism ^: °U -» «£?(#*) such that ^(z,) = 7; (/ = 1, . . . , «), one has 
that <£( ƒ ) and ^( ƒ ) are spectrally equivalent ( = quasinilpotent equivalent in 
the sense of [2]) for every ƒ G °ll. 

An important special case is °U = C°°(Cn). A C°°-scalar «-tuple T is said to 
be (generalized) scalar if the homomorphism $ is continuous; $ is then called 
a spectral distribution for T. Spectral distributions (which are not necessarily 
unique) for (generalized) scalar «-tuples T are always extensions of the 
(coherent) functional calculus associated with T. Also, if $ is a spectral 
distribution for the scalar «-tuple T, then $ ( ƒ ) is scalar for all ƒ G C°°(CW). 

Another important choice for <% is B(Q), the algebra of bounded Borel 
functions on Q. For many 2?(î2)-scalar «-tuples T, the spectral capacity XT can 
be described in terms of a (projection-valued) spectral measure E defined on 
the Borel subsets of £2 by XT(F) = E(F)&, for F G C1(C). If J is a 
commuting «-tuple and E is a spectral measure such that TiE(F)Xci E(F)& 
(/ = 1 , . . . , «) and o(T, E(F)X) c F (for all F G C1(C)), then Tdecomposes 
uniquely as S + Q, where St = ƒ XidE(X) and g, is quasinilpotent (/* = 
1 , . . . , «); moreover, Sl9...,Sn, Ql9...,Qn mutually commute. (Example: An 
«-tuple T similar to a commuting «-tuple of normal operators on a Hubert 
space 3tf has a spectral measure E on o(T, J(f) with the above properties.) 

The construction of the analytic functional calculus for several commuting 
operators and the axiomatic study of spectral decompositions both in the 
multivariable case and for single operators constitute the two central parts of 
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this book. The author has made a commendable effort to present the Cauchy-
Weil integral for commuting systems on Fréchet spaces with very little use of 
homological algebra, thus making the construction more accessible to the 
nonexpert, although there is naturally a certain loss of elegance. For Hilbert 
spaces, the connection between the Cauchy-Weil integral and the functional 
calculus given by the Martinelli kernel is also well established. A number of 
results concerning parametrized chain complexes, Fredholm complexes, and 
applications of Taylor's theory on Banach spaces have been stated and proved 
in the context of Fréchet spaces. All the needed facts from the theory of several 
complex variables are either proved or have adequate references. In this aspect 
the book is quite self-contained, and it includes a wide spectrum of basic 
topics, ranging from the definition of dimension for metric spaces to a proof of 
Cauchy's formula at infinity. 

A whole chapter is devoted to a systematic presentation of examples, 
counterexamples and applications, related both to the notion of decomposabil-
ity and to joint spectra; in most cases, full details are given. They supplement 
the material presented in Chapters III and IV and enhance the importance of 
decomposable systems in operator theory. A discussion of the relation between 
existence of a nonanalytic functional calculus for an operator and growth 
conditions on its resolvent is also included, following in general terms the 
scheme that (for spectral operators) Dunford presents in [3, §4]. 

The book under review is an English version of the author's monograph, 
Calcul functional analitic multidimensional (in Romanian), published in 1979. 
The author has made a number of improvements, additions and corrections; 
new results have been incorporated either in the text or as part of the 
References and Comments section at the end of each chapter. There are very 
few typographical errors, most of them minor ones; we mention, however, four 
that may cause some confusion: in the statement of Lemma IV.1.20, "U n K 
= 0 " should read "Un D = 0"; in the statement of Corollary IV.7.11, 
"F G C1(CM)" should read "F e C1(C)"; in the proof of Lemma IV.1.19, 
F = Fx U F2; and in Definition IV.1.5(2), each Fj must be assumed to be in 
&'. The Subject Index refers a word or notion to a section number rather than 
a page number; there is at times too much dependence on the material of 
Chapters I and II, and the Notation Index helps alleviate that to a great extent 
(e.g., a reader who wants to skip those chapters and turns to p. 68, line + 7 
("For every r G ^ ( I ) . . . " ) will find the definition of V(X) nowhere in 
Chapter III; # ( X) is actually defined on p. 9> and the notation index includes 
that information.) 

As the author states in the preface, the book "is intended to be read by 
specialists in operator theory and graduate students who want to go more 
deeply into the matter." A potential reader must have a solid knowledge of the 
basic tools of functional analysis and operator theory. Assuming this, the book 
does provide enough material for a topics course. The chapter on spectral 
decompositions contains a wealth of results that make the treatment quite 
comprehensive and detailed, m-decomposability, however, has been replaced 
by a more general notion, (^ , <p, m)-decomposability, where & is a pseudo-
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ring of closed sets in a topological space £2, <p: J*"-» C1(S2), and m > 1; 
although no motivation is given for such an increase in generality, its useful­
ness later becomes apparent (for instance, in the study of real decomposable 
operators). (To prepare the reader for Chapter IV, E. Albrecht's survey article 
[1] may prove to be quite helpful.) In the chapter on multivariable spectral 
theory, the author focuses attention almost exclusively on Taylor's notion of 
joint spectrum (W. Zelazko's axiomatic approach is, however, treated at some 
length), and as a result of that, many important related topics are skipped. This 
is quite understandable if one recalls that the main purpose of the chapter is 
the detailed construction of the analytic functional calculus as an indispensable 
tool for the theory of spectral decompositions. A similar assessment can be 
made regarding the bibliography, which, although substantial, is "far from 
being extensive. It contains mostly works that have [strict connections with the] 
text and only a few works of general interest." 

Since the landmark monograph of Colojoarâ and Foia§, the theory of 
spectral decompositions has made a significant progress. The author, as one of 
the chief contributors to these developments, has presented here a state-of-the-
art account. In the last two years, however, various contributions have been 
made, and we would like to mention the following: J. Eschmeier's local 
analytic spectral theory has been refined and improved by M. Putinar and the 
author; M. Putinar has developed a sheaf-theoretic model for commuting 
«-tuples, which seems to provide a better generalization of decomposability, 
and is relevant to the study of generalized Bergman kernels (for certain 
subnormal «-tuples, the obstruction to being decomposable can be measured 
in terms of the cohomology of their sheaf models); E. Albrecht and R. Mehta 
have considered a "spatial" local spectral theory in the Calkin algebra (Toep-
litz operators with continuous symbols are generally not decomposable, despite 
the fact that modulo the compact operators they have a rich functional 
calculus, and this work is aimed at understanding that phenomenon); the 
author has begun a study of the decomposition theorem for analytic operators 
(operators from the space of entire analytic functions on Cn to a Fréchet space 
#*); and M. Putinar has shown that a hyponormal operator is subscalar of 
order 2. Concerning multivariable spectral theory, recent developments include 
the following: an index theory for Fredholm «-tuples has been independently 
obtained by R. Carey and J. Pincus, and by M. Putinar; the spectral and 
Fredholm theory of generalized derivations has been described in terms of 
joint spectra (L. Fialkow, A. Carrillo-C. Hernandez, and the reviewer); an 
L-shaped domain has been used to provide an example of a non-type I 
C*-algebra of Toeplitz operators (P. Muhly and the reviewer); subnormal and 
Toeplitz «-tuples have been investigated by M. Putinar, N. Salinas, the 
reviewer and others; M. Cowen and R. G. Douglas have extended to several 
variables their work on the classes Bn(ti); and a systematic study of closures of 
joint similarity orbits has been initiated by D. A. Herrero and the reviewer. 
The theories of spectral decompositions and of joint spectra will continue to 
actively interact with complex geometry and with the theory of several complex 
variables. 
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Recurrence relations occur in a variety of mathematical contexts. They 
connect a set of elements of a sequence of some type, usually either numbers or 
functions, such as coefficients in series expansions obtained by undetermined 
coefficients, moments of weight functions, and members of families of special 
functions. They can be used either to define the sequence or to produce its 
elements. 

They lead to concise algorithms which are useful for either manual or 
automatic calculations and can allow great economy in tabulation or ap­
proximation. Algorithms based on recurrences are particularly useful for 
automatic computers because of the compact programs to which they lead, 
with concomitant economies in memory requirements and in error elimination. 

Serious difficulties may be encountered, however, when inexact arithmetic or 
initial values are used. For example, the modified Bessel functions of the first 
kind, In(x) satisfy the recurrence: 

(1) >Wi(*) = ~(2n/x)yH(x) + ^ I I _ 1 ( J C ) . 

For x = 1, they are positive for all «, and decrease monotonously toward 0 as 
n increases. Using values for 70(1) = 1.266065878 and ^ ( l ) = 0.5651591040, 
correct to 10 significant digits, and computing I2(l), I3Q),... by (1), we find 

" /„(I) 

0 0.1266065878 ( + 1) 
3 0.2216842400 (-1) 
6 0.2296600000 (-4) 
9 -0.1307056000 (-2) 
12 0.1044007639 ( + 2) 

n 7„(1) 

1 0.5651591040 (00) 
4 0.2737126000 (-2) 
7 -0.4176000000 (-5) 
10 0.2360843800 (-1) 
13 -0.2510353092 ( + 3) 

" /„(I) 

2 0.1357476700 (00) 
5 0.2714160000 (-3) 
8 0.8143000000 (-4) 
11 -0.4734758160(00) 
14 0.6537358115(4-4) 

These absurd numerical values are caused by instability in using this recur­
rence for In(x) for increasing n. Such difficulties are familiar to numerical 
mathematicians in many contexts, although they may not be as generally 
recognized as would be desirable. 


