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ALGEBRAIC ^-THEORY OF HYPERBOLIC MANIFOLDS 

BY F. T. FARRELL AND L. E. JONES1 

ABSTRACT. Let r = TT\M where M is a complete hyperbolic manifold 
with finite volume. We announce (among other results) that Wh T = 0 
where Wh T is the Whitehead group of T. We also announce WI12 r = 0, 
k0(ZT) = 0, K-n(ZT) = 0 (for n > 0), and Whn T 0 Q = 0 (for all 
n). We calculate the weak homotopy type of the stable topological 
concordance space C(M), and hence Waldhausen's WhPL-theory (cf. 
[22]) of M, in terms of simpler stable concordance spaces. When M is 
compact, the calculation is in terms of ^(S1) where S1 is the circle. 

A connected complete Riemannian manifold M is called weakly admissible 
if there exist positive real numbers a < b such that all the sectional curvatures 
of M are less than —a and bigger than —6. A weakly admissible manifold is 
admissible if it has finite volume. In particular, all complete locally sym­
metric spaces having finite volume and strictly negative sectional curvatures 
are admissible Riemannian manifolds. These are precisely the real, complex, 
quaternionic and Cayley complete hyperbolic manifolds of finite volume. All 
complete manifolds of constant negative sectional curvature and finite volume 
occur among these; in fact, they are the complete real hyperbolic manifolds 
of finite volume. The purpose of this paper is to announce the calculation of 
the algebraic K-theory of admissible manifolds. 

We start by stating that the Whitehead group Wh TT\M of the fundamental 
group of an admissible manifold M vanishes. Actually, we proceed to formu­
late and state a bit more general result. A group T is K-flat if Wh(r©Cn) = 0 
for all nonnegative integers n where Cn denotes the free abelian group of rank 
n. The Bass-Heller-Swan formula [3] implies WhT = 0, K0{ZT) = 0 and 
i t_ n (Zr ) = 0 provided T is If-flat and n > 0. 

A smooth fiber bundle F —• E ~y M is admissible if 
p 

(i) M is admissible; 
(ii) F is a closed connected manifold; 
(iii) for each virtually poly-Z subgroup S of 7TiM, p^1(S') is a if-flat sub­

group of niE. 
A group r is admissible if it is isomorphic to the fundamental group of the 

total space E of an admissible fiber bundle. The main result of [9] is: Any 
torsion-free virtually poly-Z group is if-flat. Consequently, the fundamental 
group of an admissible Riemannian manifold is admissible. In particular, any 
torsion-free discrete subgroup T of the Lie group (2, where G is either 0(1, n), 
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£7(1,n), Sp(l,n) or F4, is admissible provided the measure induced on G/Y 
from Haar measure on G is finite. 

THEOREM 1. All admissible groups are K-flat 

Other groups are admissible besides fundamental groups of admissible man­
ifolds. For instance, all torsion-free virtually poly-Z groups are admissible. 
Also, if T is an admissible group and M is a compact admissible manifold, 
then r 0 TTIM is admissible. 

COROLLARY 1. Let Mi, M2, . . . , Mn be compact admissible manifolds and 
Ti = TT\Mi. Let Y be any admissible group, then Y 0 Ti 0 T2 0 • • • 0 Tn is 
admissible and hence K-flat 

Next, we describe the weak homotopy type of Hatcher's stable topological 
concordance space <£(M) (cf. [16]) of an admissible manifold M. When M is 
compact, this is done in terms of £(S*) where S1 denotes the circle. 

A weakly admissible manifold M is almost admissible if the lengths of 
closed geodesies in M are bounded away from 0. Note an admissible manifold 
is almost admissible. Let M be an almost admissible manifold and Si, S2, • • • 
be a possibly finite sequence of circles, one for each closed geodesic in M. 
(We consider two geodesic curves to be the same geodesic if they have the 
same image in M.) Let fi'. Si —• M trace the ith closed geodesic once. Define 
© M ^{S1) to be the direct limit as n —• 00 of the finite Cartesian products 

C ( 5 i ) x £ ( 5 2 ) x . . - x C ( 5 n ) . 

THEOREM 2. If M is almost admissible, then €(M) weakly dominates 
0 M ^(S1), i.e., there are continuous maps 

/ :@C(Si) -<£(M), 
M 

g:<r(M)-0(t(51) 
M 

such that the composite g o f is a weak homotopy equivalence. Furthermore, 
the restriction of f to €(Si) is the map induced by the geodesic curve fi. 

Assuming M to be admissible, Gromov [15] has constructed a smooth 
manifold compactification M of M. Let £?i, #2, . • •, Bm denote the connected 
components of dM] Gromov shows each Bi is aspherical and ir\Bi is virtually 
poly-Z. 

THEOREM 3. If M is admissible, then there is a weak homotopy equiva­
lence 

^:C(Bi) x €(B2) x . . . x C(Bm) x f 0 C ( S 1 ) J - C(M) 

such that <p restricted to 0 M ^(S1) is the map ƒ posited in Theorem 2 and 
if to £(Bi) is the map induced by the inclusion of Bi into M. 

COROLLARY 2. Let M be an admissible manifold; then for each nonneg-
ative integer n 

Whn(7TiM)0Z[l/AT]=O 
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where N = [(n + l)/2]!; in particular, 

Wh2(7TiM) = 0 and Whn(7TiM) ® Q = 0 

/or a// n. 

This result is a consequence of Theorem 3, the Main Theorem and Lemma 
2.4 of [17], and Corollary 1.3 of [19]. 

Corollary 2 together with Lemma 4.4 of [8], which uses Borel's calculation 
[4] of Kn(Z) <g> Q, yields the following calculation of Kn(ZiriM) ® Q. 

COROLLARY 3. Let M be an admissible manifold and n be any integer, 
then 

X n ( Z 7 r 1 M ) 0 Q - / / n ( M , Q ) 0 l^H^^^M.Q) V 

Theorem 1 is proved in [12] and Theorems 2 and 3 in [13]. In sequels 
to these papers, we will pursue analogues of Theorems 1, 2 and 3 for wider 
classes of manifolds, including complete nonpositively curved locally symmet­
ric spaces of higher rank. 

Since our most complicated argument occurs in proving Theorem 1, we 
limit ourselves here to a discussion of the ingredients used in its proof. First, 
there is the dynamics of the geodesic flow g1 (t 6 R) on the unit sphere bundle 
S M of a weakly admissible manifold M. Here we make crucial use of work 
of Anosov [2]. In particular, we use that the tangent bundle TSM splits as 
the direct sum of subbundles £p, £s and £u, each of which is left invariant 
by dg1. Furthermore, dg1 preserves the lengths of vectors in £p (where £p is 
the subbundle tangent to the flow lines) and dg1 exponentially, in positive t, 
contracts the lengths of vectors in £a and expands the lengths of vectors in 

For a second crucial ingredient, we use the relationship of metric topology 
to Whitehead torsion as initiated by Connell and Hollingsworth in [7]. To be 
more specific, we prove, in a special case, a foliated version of Ferry's metric 
^-cobordism theorem [14]. (A fibered version had previously been proven by 
Quinn [18] and Chapman [6].) Roughly speaking, we show the following in 
the case M is closed and negatively curved. Given a number a > 0, there 
exists a number 6 > 0 such that any a controlled h-cobordism over S M which 
is 6 controlled in the direction perpendicular to the flow direction has zero 
Whitehead torsion. In fact, we generalize the fibered version to this foliated 
context. In particular, suppose p:E —• S M is a smooth fiber bundle with fiber 
F a closed connected manifold such that P i H H is K-flat for every poly-Z by 
finite subgroup T of TTISM. If W is a /i-cobordism over E which is a controlled 
over S M and 8 controlled perpendicular to the gl flow direction, then W has 
zero Whitehead torsion. We actually generalize this fibered version further in 
two directions—both of which are needed to prove Theorem 1. 

First, suppose S+M —> M is a smooth subbundle of S M —> M whose fiber 
S+M at each point x G M is a closed codimension-0 disc in the unit sphere 
SXM of the tangent space TXM. Also, assume that S + M is an invariant 
subspace under the geodesic flow gl on SM. Let E+ = p~1(S+M) and 
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suppose W+ is a codimension-0 submanifold of W such that W+ is an h-
cobordism over E+. If both W and W+ are simultaneously a controlled over 
SM and 6 controlled perpendicular to the gl flow direction, then the inclusion 
map of E+ into W+ has zero Whitehead torsion. 

Second, in addition to the above, we need to allow M to be noncompact (in 
a controlled way), but W and W+ to have simultaneously product structures 
outside a compact subset of E. In addition to the metric topology techniques 
contained in [14, 18 and 6], the proof of this result uses ideas developed for 
putting combinatorial structures on hyperbolic dynamical systems, cf. [1, 21, 
20, 5, 10, and 11]. 

The piecing together of these two ingredients is complicated, so we will 
not describe it here; rather we refer the reader to [12]; §0 of [12] contains a 
detailed outline of the proof of Theorem 1. 
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