
RESEARCH ANNOUNCEMENTS 

BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 14, Number 1, January 1986 

DEFORMATION SPACES ASSOCIATED TO COMPACT 
HYPERBOLIC MANIFOLDS 

BY DENNIS JOHNSON AND JOHN J. MILLSON 

Recently, there has been considerable interest in spaces of locally homoge­
neous (or geometric) structures on smooth manifolds, motivated by Thurston 
[6, 7]. If M is a smooth manifold, we will let C(M) denote the space of 
conformai structures (with marking) on M and P(M) the space of projective 
structures (with marking) on M. Since these spaces are a measure of the 
complexity of the fundamental group, it makes sense to consider the case in 
which M admits a hyperbolic structure. We note that in case n, the dimen­
sion of M, is strictly greater than 2, this hyperbolic structure is unique by the 
Mostow Rigidity Theorem. Hence, C(M) and P(M) each have a finite number 
of distinguished points, the conformai and projective structures associated to 
the hyperbolic structure with the various possible markings of TTI(M). 

In order to study C(M) and P(M), it is convenient to replace C(M) 
and P(M) with the space of conjugacy classes of representations of T, the 
fundamental group of M, into the automorphism groups SO(n + 1,1) and 
PGLn+i(R) of the model spaces Sn and R P n . This is possible because of a 
general result of Lok [2]. 

Let S(M) be a space of (marked) locally homogeneous structures modelled 
on a homogeneous space X = G/H with G a semisimple linear algebraic 
group. Given a structure s G S (M), by continuing coordinate charts around 
elements of T, we obtain the holonomy representation p of T into G and a 
map 

hol:S(M)-+Hom(r,G)/G 

defined so that hol(s) is the orbit of p under conjugation by G. Then Theorem 
1.11 of Lok [2] states that hoi is an open map which lifts to a local homeomor-
phism from the space of (G, X)-developments to Hom(r, G). We will refer to 
this result as the "Holonomy Theorem". Unfortunately hoi is not necessarily 
a local homeomorphism. To deal with this point we say that a representation 
p of T is stable if the image of p is not contained in a parabolic subgroup 
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of the complexification of G. The set S of stable representations is open in 
Hom(r, G) and the action of G on S admits slices through every point of S. 
It follows from the Holonomy Theorem that if p = hol(s) is stable there exist 
neighbourhoods U of s in S(M) and V of p in Hom(r, G)/G, finite groups Hi 
and #2 with H\ C #2 (the isotropy subgroups of s and p) and finite quotient 
mappings U = U/Hi, V = V/H2 such that hoi lifts to a homeomorphism 
from U to V. Now, if M is a marked hyperbolic n-manifold, we have the 
uniformization representation po: T —• SO(n, 1). The distinguished conformai 
and projective structures associated to the hyperbolic structure correspond 
under hoi to the representations obtained by composing po with natural rep­
resentations SO(n, 1) - • SO{n + 1,1) and SO{n, 1) -• PGLn+i(R). We will 
denote the resulting compositions again by po. Since the image groups po{T) 
have infinite covolume, it is possible that they will have nontrivial deforma­
tions. 

In order to state our theorem to this effect, we define r to be the number 
of connected hypersurfaces in a maximal collection of disjoint, nonsingular, 
two-sided (i.e., having trivial normal bundle), totally geodesic hypersurfaces 
in M. For example, in a hyperbolic surface of genus g it is well known that 
r = 30 — 3. We remark that for each n, r may be made arbitrarily large by 
choosing suitable congruence covers of the hyperbolic n-manifolds constructed 
from unit groups of quadratic forms over totally real number fields. We have 
the following theorem. 

THEOREM l . The spaces 

Hom(r, SO{n + 1, l ) ) /50(n + 1,1) 

and 
Hom(r, PGL n + 1 (R)) /PGL n + 1 (R) 

each have dimension greater that r. 

COROLLARY. The spaces C(M) and P(M) have dimension greater than 
or equal to r. 

To state our second theorem, we let G denote either SO(n + 1,1) or 
PGLn+i(R) and G denote the complexification of G. Then Hom(r,G) is 
a real algebraic set. Also since G is reductive, by Newstead [3] there is a 
quotient variety of Hom(r, G) by G which we denote X(r , G). This variety 
is defined over R, we denote its real points by X(r ,G) . We have the fol­
lowing theorem for suitable congruence subgroups of the arithmetic groups 
mentioned above. We assume n > 4. 

THEOREM 2. (i) Hom(r,G) has a nonisolated singularity at po- ^ par­
ticular, there exist irreducible representations of T in G which are singular 
points. 

(ii) X(r , G) has a nonisolated singularity at the class of po. In particular, 
there exist classes of irreducible representations of V in G which are singular 
points. 

REMARK. One should be able to show, by using the Kuranishi theory (see 
Kodaira-Morrow [1, Chapter IV]), that C{M) and P(M) are real analytic 
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spaces and that hoi is a local equivalence. Consequently, C(M) and P(M) 
would have singularities by Theorem 2. 

We now discuss the proofs of Theorems 1 and 2. Theorem 1 is proved 
by using an algebraic version of Thurston's bending deformation-for the geo­
metric version see Sullivan [5]. Let H be a collection of r disjoint, two-sided, 
totally geodesic hypersurfaces in M. Let U be the complete inverse image 
of the collection )/ in M, the universal cover of M. We may associate a 
graph X to # and a graph Y to U such that X is a tree, T acts on X and 
the quotient graph of X is Y. These graphs are obtained by taking a ver­
tex for each connected component of the complement of the elements of )l 
in M (or )/ in M), an edge e for each hypersurface, taking for the terminus 
of e the vertex corresponding to the component containing the positive side 
of the hypersurface Ne corresponding to e and for the origin of e the vertex 
corresponding to the component containing the negative side of Ne. Then, 
by Serre [4], we find that T is the fundamental group of a graph of groups 
and that the edge group Te is the fundamental group of the hypersurface Ne. 
The main point is that because Ne is totally geodesic the centralizer oi po(Te) 
contains a one-parameter group at{e). We use the r one-parameter groups 
{at(e): e an edge of Y} to construct an r-parameter deformation of po- This 
is possible because the relations defining the fundamental group of a graph of 
groups are very simple. 

We now discuss the proof of Theorem 2. Suppose that M contains two 
totally geodesic hypersurfaces which intersect in a codimension 2, totally 
geodesic submanifold. From the previous discussion, N\ and N2 give rise 
to curves ptl and pt2 of representations. As is well known, we may identify 
the tangent vectors p\ and p2 to these curves with crossed homomorphisms 
from T to 0, the Lie algebra of G. We may ask if the crossed homomorphism 
Pi + f>2 is also tangent to a curve in Hom(r, G). To answer this, we associate 
to p\ + pi an Eilenberg-Mac Lane 2-cocycle on T with values in 9, denoted 
[pi + h, P\ + P2], by the formula 

[pi + P2,Pi +P2]{%6) = [(pi +p2)(7),Ad po{i){{pi + fc){6))]. 

Here the bracket on the right denotes the Lie bracket in 9, and 7 and 6 are 
in T. It is easy to see that a necessary condition for p\ + p2 to be tangent 
to a curve in Hom(r, G) is that [p\ + P2,pi + pi] be an Eilenberg-Mac Lane 
coboundary. We can construct examples where this is not the case. This 
proves that Hom(r, G) is singular, since its tangent cone is not a linear space. 
To obtain nonisolated singularities, we find a totally geodesic hypersurface 
Ns disjoint from Ni and JV2. Then the curve in Hom(r,G) obtained by 
bending along JV3 consists entirely of singular points (bending along N$ does 
not change the restriction of po to the fundamental groups of N\ and N2). 

We should give some indications of how to compute the cup-product 
[pi + P2ÎPI + P2]' It is immediate that [pi + P2,pi + P2] is cohomologous to 
2[pi,p2]. We then calculate the dual homology classes (with coefficients in 
g) to pi and p2 and compute the intersection product of representing dual 
cycles by geometry. This is possible because these dual cycles have a very 
simple description as follows. The fundamental group of a totally geodesic 
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hypersurface N in M has a unique invariant line L in g. Choose any OJ in L. 
Then the fundamental class of N may be combined with u to obtain a cycle 
with coefficients denoted N®OJ (in fact N does not have to be orientable, only 
two-sided). We can find invariants uj\ and 002 so that pi is dual to Ni <g>ui and 
f>2 is dual to N2 ® CÜ2- The calculation then reduces to computing iVi fi ./V2, a 
tractable calculation since N\ and N2 are totally geodesic. 

We conclude this announcement by thanking S. Y. Cheng, Larry Lok, John 
Morgan and especially Bill Goldman for helpful discussions. Our paper would 
never have been written were it not for Bill Thurston's idea of bending a 
Fuchsian group. Our paper will appear in Discrete groups in geometry and 
analysis, the proceedings of a conference held at Yale University in honor of 
G. D. Mostow on his sixtieth birthday. 

REFERENCES 

1. K. Kodaira and J. Morrow, Complex manifolds, Holt, Rinehart and Winston, 1971. 
2. W. L. Lok, Deformations of locally homogeneous spaces and Kleinian groups, 

thesis, Columbia University, 1984. 
3. P. E. Newstead, Introduction to moduli problems and orbit spaces, Tata Institute, 

1978. 
4. J. P. Serre, Trees, Springer, 1980. 
5. D. Sullivan, Discrete conformai groups and measurable dynamics, Bull. Amer. 

Math. Soc. (N.S.) 6 (1982), 57-73. 
6. W. P. Thurston, The geometry and topology of three-manifolds, Princeton Univer­

sity Lecture Notes. 
7. , Three dimensional manifolds, Kleinian groups and hyperbolic geometry, 

Bull. Amer. Math. Soc. (N.S.) 6 (1982), 357-381. 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA AT LOS ANGE­
LES, Los ANGELES, CALIFORNIA 


