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INTRODUCTION 

Although the title of this article is almost the same as that of an earlier paper 
in this journal, The classification of the finite simple groups [75], with the added 
similarity that each is divided into four chapters, nevertheless there is almost 
no overlap between the two, beyond the fact that both concern the recently 
completed determination of the finite simple groups. 

My earlier paper focused on the past: its primary aim was to describe the 
finite simple groups (Chapters II and III) and also to present a picture of the 
principal techniques underlying the classification theorem (Chapter IV), with a 
brief global overview of the proof itself (Chapter I), added to put the entire 
discussion in perspective. 

In contrast, the present paper looks to the future: its concern is, on the one 
hand, with the significance of the classification theorem both to future research 
in finite group theory and to its range of applicability in other areas of 
mathematics (topics discussed in Chapter I) and, on the other hand, to the 
fundamental task of constructing a shorter and more readily accessible "sec­
ond generation" classification proof (this is the content of the remaining three 
chapters). 

In preparation for a discussion of the meaning of a "satisfactory classifica­
tion proof," in Chapter II we first illustrate the partially haphazard and 
partially inexorable evolution of the existing proof, developed as it was over a 
thirty-year period without benefit of a predetermined plan. Under such cir­
cumstances, it was inevitable that the final global design included considerable 
inefficiencies and, with hindsight, some avoidable duplications of effort. In 
Chapter III we present a critique of the present proof and discuss alternative 
strategies for constructing a satisfactory proof. 

My own close examination of the present proof over the past several years, 
largely with Richard Lyons, and more recently with Ronald Solomon as well, 
has led to a particular global strategy which, utilizing only presently known 
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group-theoretic techniques, holds out the prospect of achieving as much as a 
five-fold reduction in length, with a commensurate over-all conceptual simplifi­
cation. Chapter IV is devoted to a detailed outline of this proposed plan, 
whose implementation is well under way as of this writing. 

Finally, for completeness, we have included in Chapter I a brief discussion 
of the known simple groups—in particular, the sporadic groups—which are, of 
course, also (more fully) described in [75]. However, concerning the sporadic 
groups, we have focused here on the distinction between the group-theoretic 
context in which each first arose and the specific method by which each was 
subsequently constructed, a point not stressed in the earlier article. 

Although the present paper is self-contained, we should add that the 
nonexpert will certainly find the material in [75] helpful as background for 
understanding this discussion of the finite simple groups. 

CHAPTER I. STATEMENT AND SIGNIFICANCE OF THE THEOREM 

The classification theorem of the finite simple groups asserts that every finite 
simple group is on a completely specified list. Clearly, before we can discuss its 
proof, we must at least briefly describe the groups composing that list. 

Since this classification theorem is generally regarded as a milestone of 
twentieth-century mathematics, I would also like to give some feeling for its 
profound impact on finite group theory and at the same time indicate the 
strong prospects, already partially realized, of its significant application to 
widely diverse areas of mathematics. Finally, in the last section of this part, I 
shall take a more philosophical perspective, discussing its significance within 
the broader context of classification theorems, in general, and shall also 
attempt to explain the inherent complexity of the theorem. 

Our notation will be standard. However, terms unfamiliar to the nonexpert 
will be defined here. In particular, for any group X and subset or subgroup Y 
of X, CX(Y) = centralizer of Y in X= [x e X\xy = yx for all y e 7 } , 
Z(X) = center of X = CX(X), and NX(Y) = normalizer of Y in X = {x e X\ 
x~lYx = Y}. Additional terminology will be introduced as we go along. 

1. Statement of the theorem. We first state the classification theorem in a 
general form and shall then amplify its statement. 

CLASSIFICATION THEOREM. Every finite simple group is isomorphic to one of 
the following: 

(1) A cyclic group of prime order; 
(2) An alternating group; 
(3) A member of one of sixteen infinite families of groups of Lie type; or 
(4) One of twenty-six sporadic groups not isomorphic to any of the above 

groups. 

The group Zp of prime order p is, of course, commutative. For brevity, the 
term "simple group" usually refers to a nonabelian simple group. 

The alternating group An is the subgroup of even permutations of the 
symmetric group 2„ on n letters. An is simple for all n ^ 5. 
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It is the groups of Lie type and the sporadic groups that require fuller 
descriptions. 

A. The groups of Lie type. The sixteen families of simple groups of Lie type 
are finite analogues of (complex) Lie groups. They divide into three general 
types. 

1. The Chevalley groups. There are four infinite families of Lie groups: the 
linear groups An, the symplectic groups C„, and the orthogonal groups Bn, Dn, 
plus five exceptional Lie groups G2, F4, E6, E7, and Es, the subscripts 
referring to their Lie rank—i.e., to the number of fundamental reflections 
generating their Weyl groups. [It is standard to use the notation An for both 
the alternating and linear groups. The context will make clear which group is 
intended.] 

Each of these groups has representations by complex matrices. The finite 
analogues are obtained by using matrices over a finite field GF{q) with q 
elements. 

For example, the general linear group GLm{q) is the group of all nonsingular 
m X m matrices with coefficients in GF{q). Its normal subgroup SLm(q) of 
matrices of determinant 1 is the special linear group, and the factor group 
PSLm(q) = SLm(q)/(group of scalar matrices) is the projective special linear 
group. 

PSLm(q) is the finite analogue of the Lie group An for n = m - 1. 
PSLm(q) is simple for all m > 2 except for m = 2 and q < 3 (in which 

cases it is solvable [just as the alternating groups of degree < 4 are solvable]). 
It was Chevalley [42] who proved the existence of finite analogues of the 

simple Lie groups over any field—in particular over GF(q), q any prime 
power—at the same time establishing their simplicity and showing that they 
have internal structures very similar to those of the corresponding Lie groups. 
Thus we have nine families of finite simple 

CHEVALLEY GROUPS 

An{q)9 Bn(q), Cn(q), DH(q), G2(q), F4(q), E6(q), E7(q), and Es(q). 

2. The Steinberg groups. The Lie groups possess so-called real forms and 
those Lie groups with a symmetric Dynkin diagram have extra such forms: 
namely, 

An o—o—o . . . o—o 

n o—O—O • • • O—& 

O 

and 
o 

which have symmetries of period 2. [The diagram of D4 also has a symmetry of 
period 3, but as the complex numbers do not have an automorphism of period 
3 over the reals, there is no corresponding real form.] 
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The unitary groups are such real forms of the linear groups. 
A matrix X e GLm(Q) is unitary if 

where ~ denotes complex conjugation and t denotes transpose. The set of 
unitary matrices form a subgroup GUm(C), the general unitary group, of 
GLm(C). One can then consider the corresponding groups SUm(C), and 
PSUm(C) = S(/w(C)/scalars, and one has 

PSUm(C) = real form of An for n = m - 1. 

Note also that the map a: X -* (Xl)~l is an automorphism of GLm(C) of 
period 2, and the group GUm(C) is precisely the subgroup of matrices fixed 
by a. 

The unitary groups have finite analogues when q = r2, for then the underly­
ing field GF(q) possesses an automorphism of period 2 (again denoted by "), 
in which each element is raised to the rth power. Using this automorphism in 
place of complex conjugation, one obtains the finite unitary groups in the same 
way as the complex unitary groups (one usually writes GUm(r\ etc., instead of 
GUm(q)). 

It was Steinberg [126] who showed that Chevalley's arguments carry over to 
produce finite analogues of real forms of An, Dn, E6 whenever q is a square, 
as groups of fixed points of appropriate automorphisms of period 2 of the 
corresponding Chevalley groups. Moreover, when q = r3, the cubing map gives 
an automorphism of GF(q) of period 3, which can be used in place of complex 
conjugation to produce a second "real form" of DA(q), known as triality D4. In 
this way we obtain four families of simple groups which are designated as 
follows: 

STEINBERG GROUPS 

2AH(q), 2Dn(q), 3D4(q)9 and 2E6(q). 

Here the exponent indicates the order of the given symmetry, and the corre­
sponding Chevalley groups are defined over GF(q2), GF(q2), GF(q3), GF{q2), 
respectively. 

The linear, symplectic, orthogonal groups, and unitary groups are also 
known as the classical groups. We shall use the notation PSLm(q\ PSp4(q), 
PSO^(q), and PSUm(q) for them; here e = +1 and according as m is even or 
odd and e = 4-1 or - 1 , PSO^(q) corresponds to Bn, Dw, or 2Dn for suitable n. 

3. The Suzuki and Ree groups. When q = 2a, 3a, and 2a, respectively, the 
groups B2{q), G2(q), and F4(q) possess an automorphism group twice as large 
as that predicted by the general Lie theory. Moreover, when a is odd, there is, 
in fact, an extra automorphism of period 2. Taking fixed points with respect to 
these involutory automorphisms yields three further families of simple groups 
for which there exist no complex analogues. Suzuki [132] had constructed the 
first of these families (usually denoted by Sz(q)) without being aware of their 
connection with the Lie theory. However, later Ree [112, 113] realized that 
connection and went on to apply the Steinberg method to the G2 and FA cases. 
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Thus we have the three additional families of 

SUZUKI AND REE GROUPS 

Sz(q)=2B2(q), q = 2' ; 2G2(q), q = 3«; 

2F4(q), 4 = 2*; a odd. 

Together the Chevalley, Steinberg, and Suzuki-Ree groups constitute the 
(finite) groups of Lie type. They are all simple except in very low Lie rank and 
over small fields. Moreover, all isomorphisms among them, as well as with 
alternating groups, have been determined. 

It should be mentioned that the three kinds of groups of Lie type all arise 
from a uniform construction, elucidated by Steinberg [129]: namely, if G 
denotes the Chevalley analogue over an algebraically closed field Fp of 
characteristic p of a complex simple Lie group, then G is, in fact a linear 
algebraic group. Moreover, if a is a surjective endomorphism of G (as an 
algebraic group) whose fixed points CG(a) form a finite group (e.g., o: x -> xq, 
x e Fp9 q = pn\ then every nonabelian composition factor of CG(o) is a 
(finite) group of Lie type, and all groups of Lie type arise this way for some a. 

B. The sporadic groups. The sporadic groups were discovered in the course of 
investigating several quite independent problems. As a result, even a minimal 
description of their origins requires a number of necessary terms, which we 
prefer to introduce at the same time. 

Let X be an arbitrary finite group. 
An element of X of order 2 is called an involution. 
If X is a subgroup of 2„ for some «, X is called a permutation group (of 

degree n). 
We regard 2W as acting on the set £2 = (1 ,2 , . . . , n}. 
X is k-fold transitive on £2 if any ordered /c-tuple of distinct points of £2 can 

be transformed into any other by an element of X. One writes transitive, 
doubly transitive, etc. for 1-fold transitive, 2-fold transitive, etc. 

The stabilizer Xa in X of the point flGÛis the subgroup of all elements of 
X leaving a fixed. If X is transitive, then Xa is determined up to conjugacy 
(and hence up to isomorphism) by a. 

If X is transitive on £2, then the permutation rank r of X is the number of 
distinct orbits of Xa in its action on £2 (i.e., the number of transitive 
constituents of Xa on £2). r is independent of the choice of a e £2. We have 
r > 2 (assuming n > 2) with r = 2 if and only if X is doubly transitive. 

X is primitive on £2 if X is transitive on £2 and £2 cannot be decomposed as 
the union of k > 2 disjoint subsets Ql9 £22,...,£2A: that are transformed into 
each other by X. X is primitive on £2 if and only if X is transitive on £2 and Xa 

is a maximal subgroup of A" for a e £2. 
The set 3> of all transpositions (//'), / ¥=y, 1 < i,j < n has the following 

properties: 
(1) The elements of 2 form a conjugacy class of involutions of 2„; 
(2) 2„ is generated by the elements of Q)\ and 
(3) If JC, y e ^ , then the order |jcy| of xy is 1, 2, or 3. 
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Motivated by these properties, Fischer made the following definition [56]. 
The abstract group X is called a ^-transposition group if X is generated by a 

(union) of conjugacy classes 3f of involutions such that the product of any two 
elements of 2 has order 1, 2, and 3. 

Extending the definition, X is similarly called a {3,4}-transposition group if 
the product of any two involutions of the generating classes 3f has order 1, 2, 
3, or 4. 

Finally, a lattice A is a free abelian group of finite rank n together with a 
real-valued symmetric nonsingular bilinear form (, ). If (, ) is positive definite, 
then A can be embedded in R". A is integral if (x9 y) is an integer for all 
x, y e A, and A is even if, in addition, (x, x) is an even integer for all JC e A. 
Moreover, A is unimodular if for some (any) basis wly w2,...,w/I of A, the 
determinant of the matrix ((w,, Wj)) is ± 1. 

The Leech lattice [98, 99] is a particular 24-dimensional lattice, which we 
shall not describe explicitly. We note, however, that Conway [43] has shown 
that it is the unique 24-dimensional positive definite unimodular even lattice in 
which no vector has square norm 2 (i.e., (JC, x) # 2 for all x e A). 

M ,M ,M ,M ,M The Mathieu groups 
11 12 22 23 24 

J ,J ,J ,J Janko's groups 

.1,.2,.3 Conway's groups 

M(22) ,M(23) ,M(24)' The Fischer groups [M(24)' is 

the derived group of index 2 

in M(24).3 

HS The Higman-Sims group 

Mc McLaughlin's group 

Suz Suzuki's (sporadic) group 

Ru The Rudvalis group 

He Held's group 

Ly Lyons' group 

ON O'Nan's group 

F Harada's group 
5 

F Thompson's group 

F Fischer's "baby monster" group 

F The Fischer-Griess "friendly 

giant" or "monster" group 

TABLE 1. The sporadic groups. 
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Likewise I shall not give the exact definition of the Griess-Norton algebra—a 
certain 196,883-dimensional commutative, nonassociative complex algebra, 
equipped with an associative form, which underlies the construction of Griess' 
"friendly giant," otherwise known as "the monster" [85]. 

Now we can give a schematic picture of the group-theoretic origins of the 
twenty-six sporadic groups and the terms in which they were initially con­
structed (Table 2). It should be pointed out that many were constructed only 
after a lengthy analysis of the particular group-theoretic context in which they 
arose. In fact, in some instances, the individual who found the initial evidence 
for the group was not the same one(s) who carried out the actual construction 
(primarily in those cases requiring computer calculations). Therefore, where 
appropriate, we list separately the original context and the basis for construc­
tion, likewise indicating by the term "(computer)" its dependence on computer 
calculations. 

For brevity, we make no systematic attempt to give full attributions. In 
general, our notation refers to the individual(s) who found the initial evidence 
for the group, except for those cases in which other notation has become 
standard. 

[Although Fl itself is not one of the Fischer transposition groups and the 
initial evidence for its existence arose from a centralizer-of-involution problem, 
we prefer to include it with the transposition groups because of its close 
dependency on F2, whose properties were crucial for its discovery. Note also 
that it is the commutator subgroup M(24)' of index 2 in M(24) that is a 
sporadic simple group.] 

Griess' remarkable construction of F1 was carried out entirely by hand, 
depending only upon the prior existence of .1 (which occurs as the homomor-
phic image of the centralizer of one of the involutions of Fx). In turn, 
construction of .1 requires only prior existence of M24. Hence, as a corollary of 
his existence theorem, Griess immediately obtained a noncomputer proof of the 
existence of the following seven additional sporadic groups, each of which is 
involved in some fashion in Fx\ 

He, M(22), M(23), M(24)', F5, F3, F2. 

[J2, HS, and Mc are also in Fl9 but occur as subgroups of .1.] 
Since the completion of the classification, Ru and J3 have also been given 

noncomputer constructions, so that at the present time only the three groups 

Ly, ON, J4 

depend on computer calculations for their existence. 

2. Applications of the theorem. Some have suggested that the classification of 
the finite simple groups is an essentially isolated result that will have only a 
limited mathematical impact. The problem was there, it was interesting, so we 
solved it—much the same as the four-color problem. I believe this to be a 
serious misreading of the situation, for the evidence to date indicates, to the 
contrary, that the classification theorem is destined to have profound mathe­
matical impact. Indeed, it has already found significant application in such 
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diverse fields as number theory, automorphic functions, finite geometry, model 
theory, algorithms, and coding theory as well as to finite group theory itself, 
and as the result becomes more widely understood and its usefulness appreci­
ated, the number and range of such applications can certainly be expected to 
increase. 

Origin Construction 

1. Multiply transitive groups 

M ,M 5-fold transitive groups 
12 24 

M ,M ,M point stabilizers 
11 22 23 

2 . Centralizers of involutions 

J Subgroup of GL (11) 

J Rank 3 primitive permutation 
2 group 

J ,Ly,He,0M Rank > 3 primitive 
3 permutation groups (computer) 

J Subgroup of GL (2) (computer) 
4 112 

F Subgroup of GL (c) (computer) 
5 133 

F Subgroup of E (3) (computer) 
3 8 

3. Rank 3 primitive permutation groups 

HS,Mc,Suz Rank 3 primitive permutation 
groups 

Ru Subgroup of GL „(C) (computer) 
28 

4. Automorphism groups of integral lattices 

.1 Automorphisms of Leech 
lattice 

.2,.3 Stabilizers of suitable 
Leech lattice vectors 

5. Transposition groups 

M(22),M(23) ,M(24) Rank 3 primitive 
(3-transposition groups) permutation groups 

F ({3,4}-transposition Rank > 3 primitive 
2 group) permutation group 

(computer) 

F ("double cover" of Automorphism group of 
1 F as centralizer of Griess-Norton algebra 

2 involution) 

TABLE 2 
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Here I shall limit myself to some selected applications of a general nature 
that will indicate the scope of the theorem. 

A. Finite group theory. Many general questions about finite groups can be 
reduced to questions concerning simple groups, so that one would certainly 
expect the classification theorem to have important consequences for finite 
group theory. Here are five such applications. 

1. The Schreier conjecture. The automorphism group of every simple group 
has been calculated, so that as a direct consequence of the classification 
theorem one obtains a proof of the celebrated Schreier conjecture: 

THEOREM. Every simple group has a solvable outer automorphism group. 

2. Multiply transitive permutation groups. Likewise one can easily determine 
which simple groups possess highly transitive permutation representations, 
which yields the following further consequence of the theorem: 

THEOREM. Every quadruply transitive permutation group is either an alternat­
ing, symmetric, or Mathieu group. In particular, the alternating and symmetric 
groups are the only 6-f old transitive permutation groups. 

3. The Sims conjecture. Some years ago Sims proved the following result 
[119]: 

THEOREM. If G is a primitive permutation group on a set ti and if a one-point 
stabilizer Gx has an orbit of length 3 on Ü, then \GX\ = 2a • 3 for some a < 4. 

Sims' proof was very interesting, reducing the problem to properties of 
so-called "cubic graphs," previously established by Tutte [148, 149]. [Subse­
quently, Warren Wong [153], using Sims' result, completely classified the 
possibilities for G.] 

From this example, Sims was led to make the following important conjec­
ture. 

SIMS' CONJECTURE. There exists a function f(d) such that if G is a primitive 
permutation group on a set £2 in which a one-point stabilizer Gx has an orbit 
of length d, then \GX\ is bounded by f(d). 

In effect, the conjecture gives a general property of the embedding of 
maximal subgroups of finite groups. 

Using the classification theorem, Cameron, Praeger, Saxl, and Seitz [39] have 
verified the Sims conjecture. An interesting feature of their proof is that it 
involves a result of Gödel on logical compactness. 

4. Algorithms. Given a subgroup G of S„ generated by a set Sf of 
permutations, one is interested in properties of G that can be computed from 
Sf in polynomial time—i.e., in which the number of steps in the calculation is a 
polynomial in n. 

A fundamental algorithm of Sims [120] (independent of the classification) 
asserts that \G\ can be determined in polynomial time. Using the classification 
theorem, Kantor [95] and Luks [100] have established the following further 
result. 
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THEOREM. A composition series for G and an element of prime order p dividing 
\G\ can be determined in polynomial time. 

[Standard proofs of Cauchy's theorem require exponential time for de­
termining an element of order p when p is large. We also note that there are 
many questions about subgroups of a group G for which the question of the 
existence of polynomial-time algorithms remains open.] 

5. The groups of Lie type. Finally, we wish to mention Seitz's work on the 
groups of Lie type, which involves a beautiful interplay between the classifica­
tion theorem, on the one hand, and algebraic group theory, on the other. His 
first investigations focused on conditions which force a given subgroup to be 
contained in a proper parabolic [115]. However, as the statements of most of 
these general results include some exceptional cases, we shall not state them 
here. But in the next section we shall describe his subsequent work on maximal 
subgroups of the groups of Lie type. 

B. Number theory. The classification theorem has already had a number of 
significant applications to number theory and automorphic forms. We describe 
three. 

1. Brauer groups. If L and K are fields with L~D K, the relative Brauer 
group B(L/K) of L over K consists of all "Brauer classes of finite-dimen­
sional central simple AT-algebras split by L." Moreover, K is a global field if K 
is either an algebraic number field or an algebraic function field in one variable 
over a finite field. 

Fein, Kantor, and Schacher have established the following general result 
[51], which utilizes the classification theorem in a critical way. 

THEOREM. If K is a global field and L is a nontrivial finite extension ofK, then 
B(L/K) is infinite. 

That the proof should require the classification theorem is remarkable since 
B(L/K) is an abelian group. However, the theorem reduces to verification of 
the following purely group-theoretic assertion, the only known proof of which 
depends upon the classification theorem. 

THEOREM. If G is a transitive permutation group on a set Q, of cardinality 
> 1, then there exists a prime p such that some element of G of order a power of 

p fixes no point of ti. 

2. Galois groups. Emmy Noether [109] was the first mathematician to 
establish a significant sufficient condition for a finite group to be realizable as 
the Galois group of some finite algebraic extension of the rationals Q, and the 
fundamental question of whether every finite group is so realizable is often 
referred to as "Noether's problem." In a long and difficult paper Shafarevich 
[133] has verified the desired conclusion for arbitrary solvable groups. 

However, very little positive was known about the readability of (non-
abelian) simple groups. Apart from the alternating groups, as recently as 1983 
only the single family PSL2(q) (and then only for certain congruences on q) 
and the one group Sp6(2) had been shown to be Galois groups over Q. [The 
case of Mu was not completed until mid-1984, by Matzat.] 
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It is certainly conceivable that«by sophisticated general methods of algebraic 
number theory and function theory, without recourse to any specific properties 
of groups, one could demonstrate that every finite group generated by involu­
tions—in particular, every simple group—is a Galois group over Q. However, 
such a wonderful result appears to be still far off. 

The classification theorem thus provides added stimulus for considering the 
problem with a fresh eye. Indeed, in the last few years Thompson has brought 
his deep understanding of finite groups to bear on the question and his work 
has already produced striking results. He realized the importance of the 
concept of "rigidity" (previously introduced by Belyï [24]) and saw that it 
could be used in many explicit cases to show that a given group G is a Galois 
group over Q ("rational" rigidity) or over some cyclotomic extension of Q 
(general rigidity). 

The definition of rigidity is slightly simpler when G has a trivial center, so 
we limit ourselves to this case. 

First, a conjugacy class X of elements of G is said to be rational if for 
x e X9 x(x) G Q f° r every irreducible (ordinary) character x of G. 

Next, let Xl9 X2,..., Xk be conjugacy classes of elements of G and set 

A = AG(Xl9 X2,..., Xk) = {(xl9 x2,..., xk)\ Xj G Xi9 xxx2 • • • xk = 1 j . 

With this terminology, we say that A = AG(Xl9 X2,..., Xk) is rigid pro­
vided: 

(1) \A\ = |G|; and 
(2) If (xl9 x2,..., xk) e A, then G = (xv x29..., xk). 
Moreover, we call A rationally rigid if, in addition, 
(3) Xt is rational for all /, 1 < / < fc. 
The importance of rigidity is shown by the following result. 

THEOREM. If G is a group with trivial center which is rigid with respect to 
A = AG( Xl9 X29..., Xk) for suitable conjugacy classes Xv X2,...9Xk9 then G 
is a Galois group over some well-specified cyclotomic extension of Q, and if G is 
rationally rigid with respect to A, then G is a Galois group over Q. 

In all known cases in which rigidity has been verified, k = 3. 
Using this result, Thompson has proved [137]. 

THEOREM. The Fischer-Griess monster Fx is a Galois group over Q. 

Thompson [138, 139] and Feit and Fong [53] have applied the theorem to 
obtain the following Galois realizations. 

THEOREM. The groups PSL3(p), p a prime, p = 1 (mod 4), and G2(p\ pa 
prime are Galois groups over Q. 

Feit, Fong, and Srinivasan [52, 54], Thompson [140], and Walter [150] have 
shown that certain other classical groups, in suitable dimensions and over some 
fields, are Galois groups over Q. 
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Finally, the combined work of Hunt, Hoyden, Matzat, Thompson, and Zeh 
[87, 88, 89, 107] has now shown that no less than eighteen of the sporadic 
groups are Galois groups over Q [namely, Mn, M12, M22, Jv J2, HS, Suz, 
ON, .3, .2, .1, M(22), M(23), M(24)', F5, F3, F2, Fx]. 

Strictly speaking, these Galois group results do not constitute applications of 
the classification theorem per se, but rather of the knowledge of the finite 
simple groups gained in the course of establishing the theorem. However, it 
should be mentioned that Matzat [106] has recently obtained some partial 
results on the "extension problem", proving under certain conditions that if X 
and Y are Galois groups over Q, then so is an extension of X by Y. Thus, if in 
the future all simple groups were to be shown to be Galois groups over Q and 
if the extension problem were fully resolved as well, then the classification 
theorem would come to play a crucial role in deriving a solution of Noether's 
problem concerning the readability of every finite group as a Galois group 
ofQ. 

3. Modular forms, graded Lie algebras, and the group Fv Despite the fact 
that the theory of elliptic functions has been thoroughly investigated over some 
150 years, no one seems to have even guessed that the coefficients of the 
expansion of the Jacobi modular function at oo had any special significance: 

j(q) = q-i + 744 + 196,884^ + 21,493,760#2 + 864,299,970?3 + • • • ; 

but shortly after the monster Fx had been discovered, John McKay noticed 
that 

196,884 = 1 + 196,883, 

the sum of the degrees of the trivial representation and of the smallest faithful 
irreducible complex representation of Fv Thompson then checked that the 
next few coefficients were likewise sums of degrees of irreducible representa­
tions of Fx [136]: thus, 

21,493,760 = 1 + 196,883 4- 21,296,876 

864,299,970 = 2 • 1 + 2 • 196,883 + 21,296,876 + 842,609,326. 

Obviously something more than coincidence must be at work here! 
The ultimate meaning of these connections remains to be determined, but 

deep relationships between the group Fx and automorphic forms, on the one 
hand, and infinite-dimensional graded Lie algebras, on the other, have already 
been established. We should like to indicate the general nature of these results, 
without getting into technicalities. 

There is a natural action of the group GL2(R), the group of 2 X 2 real 
matrices of positive determinant, on the upper half plane 3tf= {z\ imz > 0}, 
given by 

- f r l »(: 5)«<*«•>• 
One also sets T = SL2(Z), and T0(N) = (a

c
b

d) G T with c = 0 (mod^V) for 
any positive integer N. 



14 DANIEL GORENSTEIN 

If G is a subgroup of GL^(R) whose intersection with T is of finite index in 
both G and T, then the orbit space of G on J f can be completed to a compact 
Riemann surface XG. Thus associated to G is a field of meromorphic functions 
on XG. Moreover, this field amounts to the field of G-invariant meromorphic 
functions on 3fë— i.e., such functions f(z) on 3tf satisfying 

f(gz)=f(z) for all g €E G. 

We denote this field by &Q(XG). 
In particular, this applies with G = ro(JV) and, for brevity, we set ^0(N) = 

Now consider the group Fv Given "generalized" characters \in, n ^ 1, of Fx 

(i.e., differences of ordinary characters), we form the formal power series 

where \F denotes the trivial character of Fv We can evaluate this formal series 
for each x e Fl9 obtaining in each case a power series 

M{x) = q-X+ £ /».(*)*". 

Beginning with John McKay's serendipitous observation and continuing 
with Thompson's observations, as well as the remarkable numerology of 
Conway and Norton [44], the following result linking Fx to such "meromor­
phic forms" MF has now been established (cf. Fong [57], S. Smith [125] and 
G. Mason [105])! 

THEOREM. There exist generalized characters fin, n > 1, of Fl such that the 
corresponding formal power series M has the following properties: 

(i) For each x e Fx, there exists a positive integer Nx such that M(x) e 
^0(NX)—i.e., M(x) is a T0(Nx)-invariant meromorphic function on Jf; 

(ii) Nx = |*| • h, where h is a divisor ofg.c.d. (24, |JC|), depending on x; and 
(iii) If x = 1, then M(l) = J(q) — 744, where J(q) denotes the Jacobi 

modular function. 
Furthermore, for each x e G, there is a subgroup T0(NX) < Hx < GLj(R) 

such that 
(1) XH has genus zero {i.e., is topologically a sphere)', 
(2) M(x) is meromorphic on XH ; and 
(3) Every meromorphic function on XH is a rational function ofM(x) (so that 

M(x) is a normalized generator of the field of meromorphic functions on XH ). 

There is very strong evidence that the \xn are, in fact, ordinary characters. 
In a major recent work, Frenkel, Lepowsky, and Meurman [59] have 

succeeded in relating Fx and its associated Griess-Norton algebra B to 
so-called "vertex operators" on infinite-dimensional graded vector spaces. 
Here we can only give a conceptual description of their results. 

First, with each even lattice A, they associate in a natural way an infinite-di­
mensional graded symmetric algebra, which they then tensor with the group 
algebra of A over a field of characteristic 0 containing suitable roots of unity. 
This yields a graded vector space VA. For each a e A, the vertex operator 
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X(a, f) is a precisely defined map from VA to the set VA{Ç} of all formal 
Laurent series E ^ . ^ vj", vn e FA, in the indeterminate f, defined in terms of 
suitable exponential series. The coefficient xa(n) of fn is an operator on VA for 
each «. Frenkel, Lepowsky and Meurman refer to this as the homogeneous 
representation or picture. 

A variation of this construction leads to a second space VA, using a slight 
modification of the infinite-dimensional graded symmetric algebra from which 
VA was defined as well as a suitable finite-dimensional module T for a central 
extension Â of A. The xa(n) also operate on FA, and they refer to this as the 
twisted representation or picture. 

Finally, they define X±(a, Ç) = X(a,Ç) ± X(-a,Ç) and denote the coeffi­
cient of £" in **(« ,£ ) by **(«). 

This describes the formal context in which Frenkel, Lepowsky, and Meur­
man operate. Their first result, which is the key to their work, is quite general: 
with suitable restrictions on A and its module 7, they are able to determine the 
operator 

[xa (m)> xp (n)] f° r « J e A and m, n e Z 

in either the homogeneous or twisted picture when the inner product (a, ft) of 
a, fi is 0, - 1 , -2, or -4, with the stipulation that ft = -a in the last case. [Here 
[*« (m), Xp(n)] denotes the Lie product of x^(m) and Xp(n).] 

They then apply this entire machinery to the case A = Leech lattice, with T 
the uniquely determined 212-dimensional irreducible module for the 2-fold 
cover Â of A. [In its action on T, Â/ker(Â) is an "extra-special" group of 
order 225.] In this case there is an involution 0 acting on VA and VA, whose 
±l-eigenspaces split KA, VA into VA + VA , VA

+ + VA~, respectively, and the 
crucial space for the action of Fx and its Griess-Norton algebra B is 

F is a graded vector space with gradings running from +1 to — oo : 

00 

v= L v_„. 
n = -l 

Furthermore, from the definition of 6, it is immediate that the x*(n) act on V. 
Here are the two principal results which Frenkel, Lepowsky, and Meurman 

prove. First, let fv(q)bc the formal power series 

THEOREM. We havefv(q) = J(q) - 744. 

Thus dimF0 = 0 and for n ± 0, dimF_„ is precisely the coefficient of q" in 
the expansion of J(q). Hence the theorem gives a functorially described 
graded module associated with the modular function J(q). 
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Next, we write (Fx, B) for Fl acting on B. 

THEOREM. V is a graded module for (Fv B) in a precisely defined sense. 

There then is the marvelous infinite-dimensional Lie algebra connection of 
Fx with the modular function. It is clear that it will take some time for the full 
significance of these spectacular results to be understood. 

C. Model Theory. The classification theorem has already found two striking 
applications in model theory. The first of these was proved by Cherlin, 
Harrington, and Lachlan [40] and independently by B. L. Zilber [154]. 

THEOREM. A totally categorical theory with no finite models cannot be finitely 
axiomatized. 

A theory is said to be totally categorical if any two models of the theory of 
the same cardinality are necessarily isomorphic. 

The proof of the theorem involves a study of so-called "strongly minimal 
sets" (which I shall not define) and their automorphism groups, which in turn 
reduces to the classification of certain types of primitive Jordan groups. Here a 
group G acting faithfully as permutations of a set ti (of arbitrary cardinality) 
is said to be a Jordan group provided there exists a finite subset X of ti with 
\X\ > 1 and |£2 — X\ > 1 such that the subgroup Gx of elements of G leaving 
X set-wise invariant acts transitively on 2 — X. [Double transitivity corre­
sponds, of course, to the case in which the given condition holds with \X\ = 1.] 

The primitive Jordan groups arising as automorphism groups of strongly 
minimal sets turn out to be "geometrically locally finite" in a well-defined 
sense (they arise as limits of certain sequences of finite primitive Jordan 
groups). The classification of the doubly transitive finite simple groups enables 
one to determine all finite primitive Jordan groups and, in turn, all infinite 
such groups. [There are precisely three types of infinite primitive Jordan 
groups that are geometrically locally finite, corresponding to the cases in which 
£2 has no structure, Ü has the structure of an infinite-dimensional affine vector 
space over some GF(q), or an infinite-dimensional projective space over some 
GF(q) and correspondingly G = 2Q , AGL(iï) < G < ATL(Ü), or PGL(2) < 
G < PTL(ti).] 

It should be noted that Zilber has given a (very difficult) proof of the 
classification of geometrically locally finite primitive Jordan groups, using a 
combination of combinatorial analysis, logic, and algebra, so that the classifi­
cation of the simple double transitive groups can be avoided here. However, 
the theorem effectively illustrates how a question in logic reduces to one 
concerning finite groups. 

The second result, due to Cherlin and Lachlan [41], at present requires the 
full simple group classification theorem and has no other proof. I shall not 
state the theorem precisely; it provides a classification of "stable theories in 
finite relational languages" in which it is possible to "eliminate quantifiers." 

However, I shall state the permutation-theoretic result on which the theorem 
depends, the proof of which uses the classification theorem. 
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PROPOSITION. Let r and s be positive integers. Then there exists a positive 
integer f (r,s) such that for any transitive permutation group G on a set ti of 
cardinality ^f(r,s) for which the number of orbits of G on the Cartesian 
product £25 = Œ x £ 2 x Œ x £ 2 x Œ w less than s, there exists a subset X of Ü of 
cardinality r such that Gx/G

x s 2 r , where Gx denotes the normal subgroup of 
Gx of elements leaving each point of X invariant. 

[Gx/G
x is the permutation group induced on X by its set stabilizer Gx-] 

These results suggest that the classification of the simple groups may well 
play an important role in future developments in mathematical logic. 

3. Whither finite group theory? For a time there was a feeling that comple­
tion of the classification proof might well lead to the demise of finite group 
theory—not to those areas of the subject such as representation and character 
theory, solvable groups, nilpotent groups, etc., which had always had a life 
independent of the classification theorem, but rather to those parts that had 
developed out of the "local group-theoretic" techniques underlying the classifi­
cation proof. And it is true that some simple group theorists have switched 
their interests to such fields as number theory, infinite group theory, or 
geometry. But as the number of significant applications of the theorem has 
grown, it has become increasingly apparent that the vitality of finite group 
theory has remained intact, for the classification theorem and the techniques 
its proof generated are opening up entire new research directions, not only of 
intrinsic interest, but ones that can be expected to yield significant applications 
in the future. 

I shall limit myself here to two particularly active areas of current research: 
the first concerns the interrelationship between representations of groups and 
maximal subgroups, the second describes recent developments in the theory of 
groups of " weak Lie type," a broad generalization of the notion of a group of 
Lie type, whose study involves a delicate interplay of local group-theoretic and 
geometric techniques. 

A. Representations and maximal subgroups. Aschbacher [17] has suggested 
that, in view of the classification theorem, it is important to develop techniques 
which reduce questions about arbitrary finite groups or their representations to 
questions about simple groups or more precisely about "almost" simple 
groups. 

The latter is an important group-theoretic notion, so let me define it. First, a 
group K is said to be quasisimple if K is a perfect central extension of a simple 
group—i.e., K = [K, K] and K/Z(K) is simple. 

In particular, simple groups are quasisimple (the case Z{K) = 1). However, 
the groups K = SLn(q), n > 3 or n = 2 and q > 3, for example, are quasisim­
ple, but not necessarily simple. Indeed, if, say, n is even and q is odd, the 
matrix -I is a nontrivial element of Z(K). 

A group X is said to be almost simple if X contains a normal quasisimple 
subgroup K such that X/Z(K) is a subgroup of the automorphism group 
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Aut(K/Z(K)) of the simple group K/Z(K). [Note that Z(K\ being char­
acteristic in K, is normal in X, so X/Z(K) is well defined.] Thus an almost 
simple group is obtained from a simple group by adding "decoration" at the 
"bottom" (Z(K)) and at the "top" (outer automorphisms). 

Now consider Aschbacher's observation for permutation representations of a 
group G. The indecomposable permutation representations of G are its transi­
tive such representations and these are in a natural one-one correspondence 
with the conjugacy classes of its subgroups, while the irreducible permutation 
representations of G are its primitive representations, which are in one-one 
correspondence with the conjugacy classes of its maximal subgroups. Thus to 
reduce questions about such indecomposable representations to questions 
about such irreducible representations, one needs information about maximal 
subgroups containing a given subgroup—i.e., maximal "overgroups" of sub­
groups. One would also like to be able to reduce questions about maximal 
subgroups of G to questions about almost simple groups. 

These overgroup and reduction-to-simplicity questions have direct analogues 
for linear representations of groups, both over fields of characteristic 0 or 
p > 0. 

Depending on the specific situation being studied, the analysis may involve 
the classification theorem, general group-theoretic methods, the geometry of 
the classical groups, the theory of algebraic groups, or properties of the 
sporadic groups. 

I shall describe a few of the results obtained in these directions, the first 
being a theorem of O'Nan and Scott [21]. 

THEOREM. Let G be a primitive permutation group acting on a set Ü and let N 
be the product of all minimal normal subgroups of G. Then one of the following 
holds: 

(i) N is an elementary abelian p-group for some prime p acting regularly on Q 
(i.e., N = Zp X Zp X • • • XZp, N is transitive on £2, and no nonidentity 
element of N fixes any point of Û); or 

(ii) N = Nx X N2X • • • XNm for suitable isomorphic nonabelian simple 
groups Nl91 < / < m. 

In the case of (ii), the theorem gives much more detailed information, 
asserting that G has one of three possible actions and general structures. We 
mention only the first of these, for it shows how the analysis of the general 
primitive permutation group reduces to the study of such almost simple 
groups. 

This alternative asserts that there exists a subgroup Gx of the automorphism 
group of Nr with the following properties 

(1) if |£2| = n, then n = n™ for some integer nx and GY acts as a primitive 
permutation group on a set Qx of cardinality nx; and 

(2) If Gv G2,...,Gm denote isomorphic copies of Gl9 B denotes the 
symmetric group on the set {G1 ,G2 , . . . ,GW}, and A denotes the direct 
product Gx X G2 X • • • XGW, then G is isomorphic to a subgroup of 
the "semidirect product" of A by B [in the language of group theory, 
G < (Gx wreath 2 J ] . 
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Thus (1) reduces the action of the primitive group G to that of its primitive 
almost simple subgroup Gx, while (2) describes the general relationship be­
tween the structure of G and that of Gv The other two possibilities of the 
theorem likewise provide reductions for the analysis of primitive permutation 
groups. 

As a corollary of the theorem, together with the classification of the simple 
groups, one obtains an essentially complete solution of a long-standing permu­
tation group problem: the determination of all primitive permutation groups of 
prime power degree not containing a regular normal subgroup (in particular, 
all such simple groups). 

Furthermore, in this same terminology, Aschbacher and Scott [21] have 
given a complete general description of the maximal subgroup M of G 
determining the given permutation representation. 

We turn next to linear representations. Aschbacher has obtained the follow­
ing result for the classical groups [12]. 

THEOREM. Let G be a finite classical group of characteristic p and let V be the 
natural module for G. Then there exists a prescribed collection Jt{G) of 
subgroups of G such that if X is any subgroup of G, one of the following holds: 

(i) X is contained in some element of Jt(G)\ or 
(ii) X is almost simple and acts absolutely irreducibly on V. 

The set Jt(G) consists of stabilizers of subspaces or sets of subspaces, 
normalizers of classical groups over subfields or extension fields of the field of 
definition of V, normalizers of subgroups preserving a tensor product decom­
position of V, or normalizers of certain so-called "extra-special" subgroups. 

Seitz has been systematically analyzing the absolutely irreducible subgroups 
X of the general linear group G = GL(V), with V of characteristic p > 0 and 
X a group of Lie type of characteristic p, reducing questions to those for the 
corresponding algebraic groups X and G = SL(V), where V is defined over 
the algebraic closure F of GF(p). 

Here is a first result of Seitz [94] in the same spirit as the above. 

THEOREM. If Y is a subgroup of G containing X, then with a finite number of 
(low Lie rank) exceptions for X, the normal closure of X in Y is an elementwise 
commuting product of groups Yl5 Y2,...,Yn, where each Yt is either a group of 
Lie type of characteristic p or an alternating group. 

In essence, this reduces the general problem to the almost simple case 
Y = Yv In this case Seitz's goal is to reduce to the following algebraic group 
problem. 

(1) Z < ? < G = SL{V)\ 

. . (2) X and Y are simply connected algebraic groups; 
(*) 

(3) The representation of X on V is irreducible; and 
(4) The representation of YonV is rational. 
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Concerning the algebraic group problem (*), Dynkin [47, 48] has obtained a 
complete solution of the corresponding characteristic 0 problem in two long 
and difficult papers. In particular, as a corollary, he has determined all 
maximal connected subgroups of classical groups in characteristic 0. However, 
as Seitz notes, the problem in characteristic p is considerably more involved 
because some of Dynkin's reductions fail and, in addition, there are embed-
dings with which Dynkin did not have to contend. 

I conclude with one of Seitz's algebraic group results, which is important for 
his general theory [116]. 

THEOREM. If X and Y have the same rank as algebraic groups, then the 
following holds: 

(i) X = B„(F2), Cn(F2), F4(F2), or G2(F3); 
(ii) X is generated by a suitable subsystem of root subgroups in a fixed root 

system of Y; and 
(iii) V is completely specified as a Y-module, determined by a suitable 

dominant weight. 

These results should give a good indication of the direction of current 
research in this important topic. 

B. Groups of weak Lie type and parabolic systems. The groups of Lie type 
possess a very precise, uniformly described internal structure, determined by 
generation by their parabolic subgroups. Moreover, with the set of parabolics 
of such a group G there is associated a natural geometry, on which G acts as a 
group of automorphisms. These geometries are examples of what Tits calls 
"spherical buildings" of rank r, where r is the Lie rank of the given group 
G—i.e., the rank of the Weyl group Wof G. A fundamental result of Tits [145] 
gives a complete geometric classification of spherical buildings of rank > 3, 
showing, in effect, that every such building arises as the associated building of 
some group of Lie type. 

In the course of the simple group classification proof, finite group theorists 
were forced to investigate certain groups generated by a set of "parabolic 
subgroups" satisfying conditions somewhat looser than those of a group of Lie 
type. These groups, too, possess natural associated geometries, which were then 
studied abstractly and the results fed back into the classification proof. 

Moreover, beginning with the work of Buekenhout [38] and of Ronan and S. 
Smith [114], there developed, quite apart from the classification proof, an 
interest in finding such geometric descriptions of the sporadic groups in terms 
of their subgroup structure. I might also mention here Timmesfeld's subse­
quent lovely work on "single-bond" geometries [143] and Aschbacher's com­
prehensive investigation of the subgroups of sporadic groups containing a 
given Sylow /^-subgroup and their associated geometries [19]. In fact, since 
completion of the classification, there has been a very intense effort to place 
this " parabolic-geometric" chapter of simple group theory in a general setting. 

I shall refer here to the class of groups involved as groups of weak Lie type. 
Such groups are generated by a parabolic system of subgroups. The associated 
geometries are known as chamber systems. 
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At one end of the spectrum, one stays as close to the given group as possible, 
analyzing its parabolic structure using only local group-theoretic methods. At 
the other end, one studies abstract chamber systems geometrically, divorced 
from any group-theoretic context. In between, there are problems of group 
theory which require a combination of local group-theoretic and geometric 
methods for their analysis. 

This is a very rich subject, which I fully expect to have lasting impact on 
both simple group theory and geometry. One of its natural goals is to define a 
class of geometries capable of classification, but broad enough to encompass 
both the groups of Lie type and the sporadic groups as transitive automor­
phism groups. Such a result, although of considerable conceptual value for 
understanding the simple groups, would not directly affect the classification 
theorem. However, there are other parts of the subject where progress, already 
substantially achieved, will produce significant improvements in portions of 
the existing classification proof. 

I shall limit most of my comments here to the parabolic-geometric situation 
since it is the part of the subject closest to the group-theoretic context. 

First, consider a group G of Lie type of characteristic p. Then G has a 
decomposition entirely analogous to the Bruhat decomposition of a simple Lie 
group. Let U be a Sylow /^-subgroup of G (the letter U because the elements 
of U are " unipotent" in the Lie sense). The normalizer B of U in G is called a 
Borel subgroup. By Sylow's theorem, any two Borel subgroups are conjugate in 
G. Furthermore, B has the form B = HU, where H n U = 1 and H is 
abelian. H is called a Cartan subgroup of G. By the Schur-Zassenhaus 
theorem [66, Theorem 6.2.1], all Cartan subgroups of B (i.e., all complements 
to U in B) are conjugate in B, so all Cartan subgroups are likewise conjugate 
inG. 

The basic structure of G is determined by B and a proper subgroup N with 
the following properties: 

(1) G = BNB\ in particular, G is generated by B and N; 

, x (2) H is normal in N\ and 
(*) 

(3) W = N/H is a group "generated by fundamental reflections" wl9 

w2,...,u>r. 

The group W is called the Weyl group of G (in view of the above 
conjugacies, uniquely determined by G). In particular, the elements wi are 
involutions, which together generate W. I shall not give the precise definition 
of a group generated by reflections, but an example is the symmetric group 
2 r + 1 with wi corresponding to the transposition (/, / + 1), 1 < ƒ < r. 2 r + 1 is, 
in fact, the Weyl group of the linear groups Ar(q)- In general, the integer r is 
called the Lie rank of G. 

There is also a precise rule for multiplying any two elements of G of the 
form xyz for x, z e B and y e N (which we also omit), so that, in effect, the 
multiplication table of G is completely determined by B and N. 
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Next, set ƒ = (1 ,2 , . . . , r} . For any subset J of /, let Wj be the subgroup of 
W generated by the Wj for j ^ J and let Nj be the complete inverse of Wj in 
N. The subgroup Pj generated by B and Nj is called a parabolic subgroup of 
G. We have, in fact, 

Pj = BNjB. 

Moreover, if Uj denotes the unique largest normal /?-subgroup of Pj—the 
so-called "unipotent radical" of Pj—then we have 

(1) Uj contains its own centralizer in Py, and 
(2) The subgroup OP\PJ/UJ) of PJ/UJ generated by its /?-elements is a 

group of Lie type. 
If J = {j}, Pj is called a minimal parabolic and one writes Pp Uj for Pj, 

Uj, respectively. Thus Pj is determined by the single reflection vvy and 
Op'(Pj/Uj) is a group of Lie type of Lie rank 1. This last condition implies 
that B is a maximal subgroup of each P., j e I. 

For any subset J of ƒ, one clearly has 

so that all parabolics are determined from the minimal parabolics. We call 
{ Pj, 1 < j ^ r } a parabolic system for G. 

The Bruhat decomposition of G, as described in (*), is reflected in very tight 
interdependencies among the parabolics Pj. This should provide a rough 
picture of the parabolic structures of the groups of Lie type. 

If one focuses solely on the generational aspects of the parabolics, dropping 
the special structural conditions specified by (*), one obtains a broad generali­
zation of the notion of a group of Lie type. We shall say that a group G 
possesses a parabolic system {Pf-, 1 < / < r} centered at B for some set of 
proper subgroups Pt of G, 1 < z < r, provided 

( 1 ) G = <Pf.|l < / < r > ; a n d 
(2) B is a maximal subgroup of Pt for all /, 1 < / < r. 

One can replace (2) by the weaker condition B < Pt for all /, but in its present 
form the Pt more closely resemble minimal parabolics. The integer r is called 
the rank of G. Since the Pt are proper, condition (1) forces r > 2. 

As in the Lie type case, we set ƒ = {1,2,. . . , r}, and for any subset / of ƒ, 
we define 

The Pj are again called parabolic subgroups of G. 
Without additional restrictions on the structure of the Pj and of B, it 

appears to be very difficult to derive substantial information about the 
structure of G. In practice, the cases of primary interest are those in which the 



CLASSIFYING THE FINITE SIMPLE GROUPS 23 

Pt have structures resembling those of the minimal parabolics in a group of Lie 
type. 

This leads to the following definition. A group G will be said to be of weak 
Lie type of characteristic p provided the following conditions hold. 

(1) G has a parabolic system { Pi \ 1 < / < r } centered at B; 
(2) If U is a Sylow /^-subgroup of B, then B is the normalizer of U in Pt for 

all /', 1 < /' < r, and 
(3) If Ut denotes the unique largest normal /^-subgroup of Pt, then Ul 

contains its own centralizer in Pi91 < i < r; and 
(4) Of'iPj/Uj) is a group of Lie type of Lie rank 1 (or when p 2 a 

dihedral group), 1 < / < r. 
With any group G possessing a parabolic system, there are associated certain 

natural incidence geometries determined by the coset spaces of the parabolics 
of G. In the above notation, one can consider the space ^ of all left cosets gPj 
as / ranges over all subsets of / and g ranges over G, with two objects 
I J G ^ defined to be incident if and only if X D Y =t 0 . Moreover, the 
elements of G induce an incidence-preserving action on the objects of ^ by left 
multiplication, so that G acts as a group of automorphisms of ^. 

It is this incidence geometry that leads to the spherical building description 
of the groups of Lie type. 

Tits [121] has associated a second natural geometry with any such group G, 
defined solely in terms of the parabolic system Pi and its center B, on which G 
acts as a transitive group of automorphisms. The objects of # are the left 
cosets of B (on which G does indeed act transitively) and for each / £ ƒ = 
{1,2, . . . , r } , two cosets gB, g'B with g, g' e G are said to be i-adjacent 
provided gPt = g'Pt. Clearly, left multiplication by elements of G preserves 
/-adjacency, so again G acts as a group of automorphisms on <€. 

<€ is called the associated chamber system of G. The objects of # , called 
chambers, are the elements of the left coset space G/B, while incidence is 
determined by the left coset spaces G/P(, i e I. Observe that the left cosets of 
each Pt define a partition of the set # of left cosets of B, with gB, g'B being 
/-adjacent if and only if they lie in the same element of this partition. 

Tits has used this last observation as the basis of a general notion of a 
chamber system as a set # , called chambers, together with partitions 77, of ^, / 
ranging over some index set /, which determine incidences in <$ by the 
condition c, c' G # are /-adjacent if and only if c and c' lie in the same 
element of the partition TT,. 

Chamber systems can be considered independently of any group-theoretic 
context and analyzed geometrically. This is presently a very active area—the 
kind of assumptions imposed on # are related to the structures of certain 
associated "residue" geometries (such residue geometries also play an im­
portant role in studying chamber systems arising from groups). 

Thus one can analyze a given group G having a parabolic system either 
internally, in terms of the structure of its parabolic subgroups, or externally, in 
terms of its action on its associated chamber system. Depending on the 
context, both perspectives have been effective in obtaining structural informa­
tion about G. 
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In the rank > 3 case, the configurations leading to groups of Lie type can 
usually be identified geometrically. In other cases, the configurations investi­
gated usually lead to an "affine" diagram, so that at least an infinite "covering 
group" G of G can be determined. Moreover, a fundamental result of Tits 
(unpublished) classifies all such affine buildings of rank > 4, so that the 
possibilities for G in this case are determined externally by his theorem. 

Thus the ranks 2 and 3 cases are exceptional, and their analyses seem to 
require a combination of local group theory and geometry. Furthermore, by 
itself that analysis may not determine the possible isomorphism types of G, but 
only the structure of the parabolics Pl9 P2 in the rank 2 case and the 
parabolics (P,, P-), 1 < i,j < 3 in the rank 3 case. In some instances, it yields 
their exact isomorphism types, while in others only their orders, composition 
factors, etc., so that further analysis is necessary to pin down G itself. 

The first rank 2 parabolic system to be considered arose in Sims' work on 
primitive permutation groups G in which a one-point stabilizer P1 has an orbit 
or rank 3. It follows directly from his conditions that for some g e G, if we set 
P2 = Pf, then G is a group of weak Lie type with parabolic system {PVP2} of 
characteristic 2 with center B = Px n P2 a Sylow 2-subgroup of G and such 
that 

P / q s P M . 2 ( 2 ) ( s 2 3 ) , / = 1 , 2 . 

Goldschmidt [63] later investigated the same general situation, but without 
the restriction that Px and P2 be G-conjugate (also requiring only that B be 
Sylow in P,, but not necessarily in G). Goldschmidt's paper is fundamental for 
all subsequent amalgam-type analyses of groups of weak Lie type of ranks 2 or 
3. He considered the "free product (Px * P2, B) amalgamated at B = Px Pi P2 

(i.e., the free group generated by Px and P2, subject to the identification that B 
be a subgroup of both P1 and P2). Associated with this infinite amalgam 
(Px * P2, B) is a tree on which G acts as a group of transformations. By 
analyzing this action, Goldschmidt was eventually able to determine the 
possible isomorphism types of Px and P2. 

His answers include, of course, the parabolic systems of the Chevalley 
groups of Lie rank 2 over the prime field GF(2): namely, PSL3(2), PSp4(2), 
and G2(2), but a number of other possibilities occur as well (e.g., M12). 

In the past few years, the groups of weak Lie type of rank 2 have been 
closely studied, and their possible parabolic systems have now been essentially 
completely determined. The definitive result is due to Delgado and Stellmacher 
[46], based on a simplified approach to the Goldschmidt method, in which his 
geometric so-called " track" analysis is replaced by an easier one more closely 
related to local group-theoretic analysis. We conclude this discussion with the 
statement of their main theorem. 

For brevity, if* G has a parabolic system {Pv P2}, we shall say that G is of 
parabolic type G* for some known simple group G* with parabolic system 
{P*,P*} provided the structure of P,"closely resembles" that of P,*, / = 1, 2 
(in particular, same orders and same composition factors). 
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THEOREM. If G is a simple group of weak Lie type of characteristic p and rank 
2, then one of the following holds. 

(i) G is of parabolic type PSL3(p
n), PSp4(p"), PSU4(p

n), PSU5(p"), 
G2(p

n), or 3D4(p
n) for some n; 

(ii) p = 2 and G is of parabolic type 2F4(2
n), n > 1, 2F4(2)' (of index 2 in 

2F4(2)), G2(2)'(s PSU3(3)), Ml2, or J2, or 
(iii) p = 3 and G is of parabolic type F3. 

4. The general significance of classification theorems. In the course of a 
recent long and very interesting interview in the Mathematical Intelligencer, 
Michael Atiyah [22] comments on several broad philosophical questions about 
the classification of the finite simple groups and classification theorems, in 
general, which raise some issues that will be central to us here: (A) How 
significant are classification theorems for mathematics as a whole? (B) Is an 
internal or external approach to the proof of a classification theorem likely to 
be more effective? (C) Is the central aim of mathematics to establish broad 
general theorems involving no exceptional cases? (D) Doesn't the extreme 
length of the simple group classification theorem signify that group theorists 
have taken the wrong approach? 

I feel that a detailed response to these fundamental questions will serve to 
place the classification of the simple groups in its proper mathematical 
perspective. I shall discuss the four questions separately. 

A. Classification as structure. Atiyah expresses the view that classification 
theorems are of less importance than the action of the given system on other 
mathematical objects. Thus the theory of group representations becomes more 
fundamental than the classification of the simple groups. 

Part of the problem here is the use of the word classification, which conveys 
the idea of simply determining the list of objects satisfying some specified 
axiom system. However, to me, classification refers to an attempt to under­
stand the intrinsic structure of a given mathematical system. 

I can understand a preference for the kind of problems arising from one 
perspective rather than another, but surely determining the basic structure of a 
mathematical system is as inherently significant as studying the way in which 
the system acts. For Brauer the primary objects of interest were first algebraic 
number fields and later finite groups—and he always regarded representation 
and character theory as tools to increase his understanding. 

But beyond this, I think the whole dichotomy between internal properties 
and external actions is an artificial one, for in reality they often represent two 
essentially equivalent ways of viewing the same mathematical object. Thus 

a. Every irreducible representation of a finite-dimensional associative semi-
simple complex algebra A is equivalent to one determined internally by a 
minimal right ideal of A. 

b. Every primitive permutation representation of a finite group G is equiva­
lent to one determined internally by a maximal subgroup of G. 

c. The solvability of a given irreducible equation over Q by radicals (internal 
property) is equivalent to the solvability of the Galois group of the correspond­
ing number field determined by its roots (external action). 
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What is really at issue is the effectiveness of a given perspective in providing 
tools for understanding a particular system or for solving a particular problem. 

B. External versus internal approach to classification. Many mathematicians 
have suggested that the enormous length and complexity of the classification of 
the simple groups is a consequence of our insistence on working entirely 
"inside the system." It should be more effective to study simple groups 
through their representations or some geometric realization, for a much wider 
array of tools would then be available, which will ultimately yield a deeper 
understanding and a shorter classification proof. 

Such an external viewpoint may well be the most appropriate for analyzing 
many mathematical systems, but for the finite simple groups the evidence 
strongly suggests that the techniques developed through the internal approach 
are of much greater power than any that an external perspective is capable of 
providing. How else can one explain the fact that the internal approach has not 
only led to the discovery of eighteen of the twenty-six sporadic groups (the five 
Mathieu and three Conway groups arose from external considerations), but has 
proved that the present list of simple groups is complete, whereas in the 150 
years since Galois, all external manifestations of finite groups have yielded 
only extremely limited information about the structure of the general simple 
group? 

The odd order theorem has been reduced to questions in both topology and 
ring theory, but twenty years after the Feit-Thompson original proof [55], their 
internal strategy remains the only known viable approach. 

I believe that in the end it will be our internal approach to the study of finite 
groups that will provide deep insights into their external realizations rather 
than the other way around. The various examples I have described in §2 and 
§3 give strong evidence in support of this judgment. 

The difficulty of the classification theorem also raises the question of 
whether the theorem was worth the effort, since it is often the case that in a 
given area of mathematics, the most important things may well be of an 
elementary, general nature, for they are the ones with the widest impact. 

But there is also the matter of depth as well as breadth. Many years ago 
George Mackey remarked to me that the best mathematics consists of easily 
understood statements whose proofs involve deep and interesting mathematical 
ideas. 

The Feit-Thompson theorem epitomizes Mackey's observation: its statement 
"Every group of odd order is solvable" takes only a single line, while its long 
and deep 25 5-page proof is filled with wonderful new ideas, foreshadowing the 
developments that led to the ultimate classification of the simple groups. 

C. General versus singular mathematics. In his interview, Atiyah tends to 
down-play the significance of "singular" solutions to problems. Since, in 
practice, one usually encounters only the classical groups, he perceives the 
exceptional Lie groups as a somewhat troublesome complication rather than as 
objects of intrinsic interest. 

Apart from the fact that we have no control over mathematical reality—the 
five exceptional Lie groups and the twenty-six sporadic simple groups are, 
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after all, fixed stars of our universe that no amount of speculation will remove 
—I for one feel it is the existence of singular solutions that gives mathematics 
its rich texture and their suppression, were that possible, would make mathe­
matics too homogenized for my taste. 

Beyond their intrinsic interest, singular solutions often provide insight into 
the nature of general solutions. Tits remarked to me that for him E% is the 
fundamental testing ground for any general property of simple Lie groups he 
may hope to establish. Only when he can construct a proof that works for Es 

does he feel he has reached a true understanding of the property in question. 
His point is that proofs which work for £8 as well as for the classical groups 
are bound to produce deeper insights. For this reason, Tits views the urge to 
find such proofs as a " moral" principle for Lie theorists. 

In a recent article, "Unfashionable Pursuits," Freeman Dyson [49] specu­
lates about the future of physics in a way that vividly captures the appeal of 
singular solutions in mathematics: "I have to confess to you that I have a 
sneaking hope, a hope unsupported by any facts or evidence, that sometime in 
the twenty-first century physicists will stumble upon the monster group, built 
in some unsuspected way into the structure of the universe. This is of course 
only a wild speculation, almost certainly wrong. The only argument I can 
produce in its favor is a theological one. We have strong evidence that the 
creator of the universe loves symmetry, and if he loves symmetry, what lovelier 
symmetry could he find than the symmetry of the Monster?" 

D. The inherent complexity in classifying the simple groups. I have often heard 
the view expressed that the present proof of the classification theorem must 
certainly be the wrong one—no theorem in mathematics can possibly require 
such an absurdly long and technically complex proof! With this in mind, 
Thompson once remarked, only half in jest: "We finite group theorists are 
either unbelievably stupid or very clever." 

I would like to explain the intuitive basis for my deeply held belief that the 
classification of the finite simple groups is an inherently difficult theorem. The 
perspective I shall present here reflects the core of my understanding of the 
finite simple groups and will be critical for all that follows. 

Since the bulk of the simple groups are finite analogues of the Lie groups, it 
is natural to compare their classification with that of the relatively short proof 
that suffices to classify the simple Lie groups—in view of Lie's duality 
theorem, to classify the finite-dimensional complex simple Lie algebras. 

There are several essentially equivalent ways of classifying the finite-dimen­
sional simple Lie algebras L over any field F of characteristic 0, each involving 
the following five basic components. 

1. The existence of Cartan subalgebras H in L. 
2. The Killing form and its realization on the dual space H* of H. 
3. Root space decompositions of L relative to the action of H* 
4. The nondegeneracy criterion on the Killing form for the semisimplicity of 

L (i.e., for the triviality of the radical Rad(L)). 
5. The decomposition of a semisimple algebra as the direct sum of simple 

algebras. 
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Taken together, these five results reduce the classification to the solution of a 
specific geometric problem concerning a spanning set of vectors of the 
Euclidean space H*—the so-called "root lattice" of L—which in turn reduces 
to the classification of "connected" Dynkin diagrams. Indeed, it is ultimately 
shown that Lie multiplication of the elements of a suitable vector space basis 
of L is uniquely determined by its associated diagram. 

Thus the total classification proof is almost entirely internal Lie-theoretic, 
with a short external geometric argument at the end. 

[Uniqueness proves only that there is at most one simple algebra with a 
given connected diagram, and is independent of the question of whether there 
exists an algebra for each such diagram, which requires separate verification.] 

Before comparing Lie algebras with finite groups, it will be useful to 
examine the case of finite-dimensional simple Lie algebras over algebraically 
closed fields of characteristic p > 0, which I visualize as a " half-way station." 
The classification of all such simple Lie algebras is by no means complete, but 
recently Block and Wilson [31] have determined all so-called restricted simple 
algebras when p > 7: every such algebra is either "classical" (a characteristic p 
analogue of a finite-dimensional complex simple algebra) or of so-called 
"Cartan type," a class of algebras introduced by Kostrykin and Shafarevich 
[94], who first conjectured the Block-Wilson theorem. [Right Lie multiplication 
of L by the element x e L induces a derivation of L, called the adjoint 
transformation and denoted by ad x. A Lie algebra L of characteristic p > 0 is 
said to be restricted if (ad x)p is an inner derivation for all x e L. I note also 
that the Killing form of L (in any characteristic) is the bilinear form trace 
(ad x • ad y) for x, y e L.] 

In the characteristic p > 0 case, there still exist Cartan subalgebras, but they 
are no longer necessarily "tori" nor need they all be conjugate. Likewise the 
corresponding dual spaces exist, as do root decompositions of L, but now there 
is no nondegeneracy criterion for semisimplicity. Furthermore, semisimple 
algebras have a far more complex structure than in the classical characteristic 0 
case. Thus Block and Wilson have available only a more complex decomposi­
tion theorem. As a result, their analysis is much more involved and technically 
difficult than in the classical case. In fact, its flavor is not unlike that of local 
group theory. Indeed, they express L as a sum (not necessarily direct) of rank 
2 subalgebras La^ where a, /? are suitable independent roots (relative to a 
suitably chosen Cartan subalgebra). Thus they first need a complete descrip­
tion of all such restricted semisimple rank 2 algebras. When the Cartan 
subalgebra is a torus, they show that there are twenty-three such rank 2 
algebras, while in the general case there turn out to be twenty-three suitably 
parametrized such semisimple algebras. Then by a delicate analysis of the 
global interdependency of the subalgebras La^ Lpy, Lay as a, /?, y range over 
suitable independent roots, they are able to eliminate most potential possibili­
ties for Lap from the given restricted simple Lie algebra L (of rank > 3). 

"Lining up" the L^ ' s enables Block and Wilson to determine the general 
structure of a certain maximal subalgebra L0 of L and the general nature of 
the adjoint action of L0 on the factor space L/L0. This information must now 
be used to identify the possibilities for L. However, this is a far more elaborate 
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task than in the characteristic 0 case. In fact, it is reasonable to view the 
existence of L0 as a "half-way" point in the analysis, for in the case that L 
turns out to be classical, L0 is precisely the centralizer of a suitable element in 
a Cartan subalgebra. Thus the classification theorem splits into two parts: first, 
determining the general shape of the centralizer L0 of a suitable Cartan 
element (as well as of its action on L/L0); then showing that this information 
suffices to force the possibilities for L. 

The second part of the analysis depends critically on a major classification 
theorem of Kac concerning graded Lie algebras [93, 94]. Indeed, L0 determines 
a natural 'filtration" of subspaces of Lt of L: 

• • • D L_2 D L . j D L0^ Lx D L2^ 

This filtration is completely determined by L_x/L0, which can be taken to be 
an arbitrary irreducible L0-submodule of L/L0. Considering the direct sum of 
the factor spaces Ai = Lt/Li+l, one obtains a graded Lie algebra A, which 
Block and Wilson show satisfies the hypothesis of Kac's theorem. In the 
present case his theorem implies that A is either classical or of Cartan type, 
thereby reducing the classification theorem to showing that L and A are 
isomorphic (more precisely, since A need not be simple, that L is isomorphic 
to the second derived algebra A(2) of A). This follows directly from Kac's 
theorem when A is classical. However, the proof is quite elaborate when A is 
"sporadic"—i.e., of Cartan type. The strategy is to plug into a general machine 
designed to determine all simple Lie algebras having a given associated graded 
algebra. 

First, A is of one of four possible types: X= W,S,H, or K (whose 
definitions we omit). Moreover, there is a natural embedding of A into a 
suitable subalgebra X(n) of the infinite-dimensional (nonrestricted) so-called 
Jacobson-Witt algebra W(n), where n = dim A, which in turn yields an 
embedding of L into W{n) compatible with the given filtration of L. On the 
other hand, a theorem of Blattner [30] produces a second embedding of L into 
W{n) that depends only on the existence of L0 and that likewise preserves the 
given filtration of L. 

Blattner's results also yield that the two filtration-preserving embeddings of 
L into W(n) are necessarily conjugate under some automorphism 0 of W(n), 
which implies that L is isomorphic to a subalgebra of 0(X(n)) Pi W(n,l), 
where W(n,l) is a specified subalgebra of W{n). In the restricted case, Kac 
has shown under these conditions that 0 must, in fact, be the identity 
automorphism, in which case L ç X(n,l) = X(n) n W(n,l), and now it 
is easily verified that L is uniquely determined by X and n: namely, 
L = AX/i,l)(2). 

Thus again there is an external realization of the generic simple Lie algebra 
L, but it is reached only after a far lengthier internal analysis than in the 
classical case. Moreover, the external phase of the analysis, beginning with the 
construction of the associated graded Lie algebra A, is likewise much more 
intricate than in the classical case. If one includes the proofs of the various 
supporting theorems as well as the rank < 2 classification, Block and Wilson's 
total argument certainly approaches 500 pages. 
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Furthermore, however impressive their result, a complete classification of 
finite-dimensional simple Lie algebras is still a long way off, requiring exten­
sions of their arguments to nonrestricted algebras of arbitrary characteristic. 
Moreover, the desired result will inevitably be more complicated since simple 
algebras exist of characteristic 2, 3, or 5 that are of neither classical nor Cartan 
type. In addition, if the classification of the simple groups is any guide, the 
case p = 2 promises to be especially difficult. Thus we can reasonably anti­
cipate both the internal Lie-theoretic and external graded Lie algebra phases of 
the analysis to be of very substantial length. 

What then of the finite simple groups, which possess neither root decomposi­
tions nor associated graded groups and, in addition, come with no prespecified 
characteristic? Yet with no premeditated planning their classification followed a 
basic pattern very analogous to the Block-Wilson proof. 

1. "Low-rank" groups required separate analysis, a necessary prerequisite 
before attacking the generic simple group G. 

2. The first phase of the generic case analysis again involved an internal 
determination of the structure of the centralizer of a suitable "semisimple" 
element of G. 

3. The bulk of the second phase was likewise internal: the given centralizer 
information was used to force the exact shape of other portions of the 
subgroup structure of G. 

4. The total subgroup information was used finally to show that G possessed 
a uniquely determined multiplication table. 

However, the analysis was considerably more complex than in the Lie 
algebra case, for it was necessary to develop ab initio a number of new 
techniques to serve as substitutes for the lack of root decompositions in G and 
the inability to associate a graded group with the "coset space" of the 
centralizer of a semisimple element of G. In addition, we had to develop an 
internal criterion for deciding whether G had "even" or "odd" characteristic. 
Only at the very last step were we able to achieve a geometric realization for G, 
equivalently expressed in terms of a presentation by generators and relations. 

Moreover, in part because of the existence of the sporadic solutions, the 
treatment of the low-rank cases was exceedingly elaborate, requiring, in 
particular, a division into "small" and "intermediate" subcases. In the end, the 
sporadic groups all emerged in one of the following two guises: 

SPORADIC SOLUTIONS OF LOW RANK CASES 

Internal odd characteristic: Jl9 Mc, ON, .3, Af(23), Ly. 

Internal characteristic 2: Mu, Ml2, M22, M23, M24, J2, J3, J4, 

HS, He, Ru, Suz, .2, .1, M(22), M(24)', F5, F3, F2, Fv 

There you have the basis for my belief that the classification of the finite 
simple groups is an inherently difficult problem. Moreover, if some 100 years 
after the classification of the finite-dimensional complex Lie algebras, the 
proof is still almost entirely internal, in my opinion it is an illusion to imagine 
that it will ever be possible to associate a geometry with either finite-dimen­
sional simple Lie algebras or finite simple groups without preparing the way by 
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an extensive process of internally distinguishing simplicity. In the simple group 
case, this process has three basic phases which I shall suggestively refer to as 
(a) internal elimination of Rad(G) (the unique largest solvable normal sub­
group of G), (b) internal reduction to the simplicity of Soc(G) (the product of 
all minimal normal subgroups of G), and (c) internal construction of Soc(G). 
The only meaningful question is what is the minimum length required to carry 
out the process, not its necessity. 

The next three chapters should therefore be viewed as an elaboration of 
these various points relative to both the existing and other possible approaches 
to the classification of the finite simple groups. 

CHAPTER II. THE EVOLUTION OF THE PROOF 

The estimated 500 articles encompassing the proof of the classification 
theorem represent no more than a quarter of the papers written on simple 
groups. This is not surprising since it was not until the very end of the period 
that a global strategy was formulated—before then there existed at best a sense 
of direction. 

As a consequence, during much of the period, various paths were explored 
without any certainty of* their ultimate relationship to the classification. Some 
did produce major advances, others completely failed, while some were pursued 
for their own sakes, and still others were bypassed by the ensuing develop­
ments. 

If the Mathieu groups were discovered as highly transitive permutation 
groups and the Conway groups from automorphisms of the Leech lattice, what 
could be more natural and important than to study multiply transitive permu­
tation groups and automorphism groups of other integral lattices? Unfor­
tunately, no further simple groups were discovered in either direction. Simi­
larly, if groups with abelian or dihedral Sylow 2-subgroups could be classified, 
why not consider other types as well? Indeed, for a time it appeared we were 
heading towards a characterization of every simple group or family of groups 
in terms of the structure of its Sylow 2-subgroups—a result which, in its 
general form, was not needed for the final proof. And so it went 

Here I shall focus on the evolutionary nature of the mainstream of develop­
ments. This will provide an appropriate perspective for the discussion of 
Chapters III and IV. 

1. Discovery versus classification. Obviously one cannot even state the full 
classification theorem without a complete list of the simple groups, so that the 
existence of the simple groups constitutes logically a separate chapter of simple 
group theory that precedes their classification. 

However, historically, there was considerable interplay between discovery of 
new simple groups and classification results. For example, Suzuki's family 
Sz(2n) emerged in the course of an attempt to determine all simple groups in 
which the centralizer of every involution was a 2-group [131]. His conjectured 
solution—the groups PSL2(q) for suitable q, plus the single group 
PSL3(4)—was obtained by checking the list of then-known simple groups. 
Arguing by contradiction, he determined the internal structure of a minimal 
counterexample G to his proposed theorem: A Sylow 2-subgroup U of G (of 
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order 22n for some odd n) had a uniquely determined structure as did its 
normalizer B in G (of order 22"(2W - 1)). [A theorem of G. Higman [86] which 
gives a precise description of all 2-groups admitting an automorphism that 
transitively permutes the involutions of the group played a crucial role in 
forcing the structure of B.] Moreover, the permutation representation of G 
on the cosets of B was doubly transitive of degree 22n + 1 (whence \G\ = 
22w(2" - 1)(22" + 1)) with only the identity fixing three cosets. This was the 
evidence phase of his analysis. 

At this point, Suzuki could see that G had an internal structure similar to 
that of a group of Lie type of Lie rank 1, but had no idea whether such a group 
G existed for any allowed value of n. In particular, there was then no known 
group of Lie type with such an internal structure. Eventually Suzuki in a 
brilliant insight discovered a group of 4 X 4 matrices defined over GF(2n) that 
satisfied all the conditions of his group G. Thus his actual construction of the 
groups Sz(2n) was carried out externally. Moreover, it was this matrix repre­
sentation that enabled Ree to connect Suzuki's groups with the family 2B2(2

n) 
of groups of Lie type and thereby led him to the Lie-theoretic construction of 
the families 2G2(3") and 2FA{2n). 

Much of the time, the discovery of new simple groups was keeping pace with 
the new classification theorems being proved. Moreover, the linkage between 
the two developments cut in both directions. For example, the techniques 
Fischer introduced in his analysis of 3-transposition groups led eventually to 
the classification of groups of so-called "Gi7(2)-type," a very important class of 
simple groups [see §4 below]. 

Another aspect of the historical development was that throughout most of 
the period simple group theorists were convinced that there were still many 
simple groups out there, waiting to be discovered, so that they were never quite 
certain whether a particular tight configuration of subgroups (such as in 
Suzuki's situation above) would lead ultimately to a contradiction or to one or 
more new simple groups. Some simple group theorists, myself included, who 
were primarily interested in general classification theorems, at times attempted 
to avoid the problem of undetected sporadic groups by proceeding axiomati-
cally, so that our arguments would remain valid provided only that any 
yet-to-be-discovered simple group satisfied the given set of axioms. On the 
other side, there were those who spent great effort searching for new sporadic 
groups similar in structure or construction to those already existing. 

This uncertainty over the completeness of the list of simple groups persisted 
until about 1980. It was only then with the determination of the simple groups 
of GF(2)-type that finite group theorists at last began to feel that all sporadic 
groups had very likely been found. 

No matter how intertwined existence and classification may have been, it is 
preferable to regard them as two independent parts of simple group theory. 
Thus classification shall refer solely to the problem of proving that an existing 
list of simple groups is complete. Only the issue of actual construction is 
excluded from classification. This is a natural division, since classification 
appears to be an internal problem, while existence is an external one. 
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2. Local group-theoretic analysis. As has been stressed, the existing classifica­
tion proof is internal, focusing almost completely on the proper subgroup 
structure of the simple group G under investigation. Some of the results 
making up the total proof have noninductive hypotheses, while others are 
inductive. 

As an example of the latter, the odd order theorem is inductive, since the 
hypothesis carries over to subgroups and homomorphic images. Thus Feit and 
Thompson began with a minimal counterexample G—i.e., a counterexample of 
least order—concluding at once that G is simple (of odd order) and each of its 
proper subgroups is solvable. To establish the theorem, it was necessary for 
them to derive a contradiction from this information alone. Every inductive 
classification theorem leads to similar initial general structural assumptions 
about proper subgroups of a minimal counterexample. 

In noninductive problems, the hypothesis typically specifies that some 
proper subgroup H of G, such as the centralizer of an involution, has a 
structure similar (perhaps even identical) to that of some known simple group 
G* (in some instances, similar to that of no known simple group). From this 
initial information about H, one proceeds by a process of "analytic continua­
tion" to obtain structural information about other proper subgroups, ulti­
mately forcing a sufficient portion of G's internal structure to so "closely 
resemble" that of G* that one can then go on to prove that G = G* (or to 
derive a contradiction when no such G* exists). This is the meaning of the 
second step in internally distinguishing simplicity. 

In inductive problems, the initial assumptions are, on the one hand, global, 
since they apply to all proper subgroups of a minimal counterexample G, but 
on the other, loose since they specify only the general shape of these sub­
groups. As a result, the first objective is to force the internal structure of G to 
satisfy precisely the kind of conditions imposed in the noninductive cases, and 
this is the meaning of the first step in internally distinguishing simplicity. 

Furthermore, almost all the techniques developed over the years to study 
simple groups were designed to enable us to make assertions about the 
subgroup structure of G, thus facilitating the process of internally distinguish­
ing simplicity. Primarily, these concerned only the local subgroups of G. Here 
by definition the normalizer in G of a nontrivial solvable subgroup of G is 
called a local subgroup. Furthermore, the study of a simple group's local 
structure, including the underlying body of techniques, came to be called local 
group-theoretic analysis. 

The term provides a more explicit description of the internal approach to the 
classification: the existing proof consists of an analysis of the structure and 
embedding of the local subgroups of the simple group under investigation. This 
statement characterizes the essential nature of the classification theorem. 

3. The Brauer principle. The first significant general inroad into the classifi­
cation problem was made by Richard Brauer, who early on came to the 
following realization: 

If the centralizer of an involution of an abstract simple group G closely 
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approximates that of an involution in a known simple group G*, then methods can 
be developed f or proving that G = G*. 

The statement must be read somewhat loosely, since in a few cases distinct 
simple groups have identical centralizers of involutions—e.g., the groups 
PSL3(3) and Mn and the groups PSL5(2), M24, and He. 

Using the block theory methods he had developed in the 1940s and 1950s, 
Brauer first validated this principle for the family PSL3(q), q odd, characteriz­
ing it in terms of the structure of the centralizers of its involutions [34]. 
Brauer's objective was geometric: to construct a projective 2-space IT on which 
G acted as a group of projective transformations, in which case he could 
"identify" G as PSL3(q). However, his geometry was defined internally in 
terms of the set of involutions of G and their centralizers and related 
subgroups. Properties of the geometry were then established by a combination 
of character theory and internal analysis. Moreover, he encountered an excep­
tional configuration in the PSL3(3) case, which gave rise to the Mn solution. 

As the Brauer principle, as I shall refer to it, came to be verified in more and 
more cases, his geometric approach was superseded, except for some of the 
sporadic groups, by a generator-relations approach. In particular, for char­
acterizations of the groups of Lie type, the aim of the analysis was to force the 
group G under investigation to satisfy the precise conditions of the so-called 
Steinberg presentation [127, 128] (cf. also [76])—equivalently, to force G to 
have the structure of a (Z?, N y pair (Tits [145]; cf. also [76]). However, Brauer's 
geometric approach remained the more effective for many of the sporadic 
group characterizations, in which cases the aim was to construct a graph IT on 
which G acted as a group of automorphisms and then to argue that ir was 
uniquely determined, thereby forcing the isomorphism type of G to be unique. 

In reality, the geometric and generator-relation approaches are 
equivalent—one can pass directly back and forth between them. The critical 
point is that one must force the structure of the abstract group G to be 
uniquely determined; the particular description simply provides the means by 
which one "recognizes" G as a specific known simple group. 

Brauer's discovery was fundamental, for it provided an operative, inductive 
procedure to follow in every general classification theorem: 

(A) Force the centralizer Cx of an involution x in the simple group G under 
investigation to closely resemble that in some known simple group. 

(B) Determine the isomorphism type of G by validating the Brauer principle for 
the centralizer Cx. 

This division came to dominate the entire classification proof. In fact, in 
time the Brauer principle was broadened to include centralizers of elements of 
odd prime order. 

(A) and (B) relate to the internally distinguishing simplicity process in the 
following way: (A) covers the internal elimination of Rad(G) as well as the 
internal reduction to a simple Soc(G), while (B) covers the internal construc­
tion of Soc(G), including the uniqueness of its multiplication table. 

In groups of low Lie rank such as PSL3(q), q odd, all involutions are 
conjugate, so Brauer had no option on which class to base his analysis. 
However, the number of conjugacy classes in the groups of Lie type increases 
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with the Lie rank. It was gradually realized that validation of the Brauer 
principle worked most smoothly for centralizers Cx of involutions x whose 
order was as large as possible and which contained a normal quasisimple 
subgroup. The customary term in this case is standard form with standard 
component K (the general notion due to Aschbacher [6]). However, for empha­
sis, I shall use the more suggestive terms Brauer form and Brauer component, 
including in the definition the case in which x has arbitrary prime order p. 

The typical shape of a centralizer Cx in Brauer form with \x\= p is as 
follows: 

(1) The Brauer component K of Cx has order divisible by p\ and 
(2) H = CC(K) has cyclic (or for p = 2 quaternion) Sylow 2-subgroups. 
To illustrate the existence of Brauer form, take G = GLn(q), n ^ 3 (even 

though G is not simple, the essential structure remains visible, and it is easier 
to make the calculations than in the corresponding simple group PSLn(q)). 
Any element x of prime order p in G coprime to q can be diagonalized over 
some finite extension of the underlying field GF(q). For simplicity, we assume 
this already occurs over GF(q). Thus, up to a permutation of coordinates, 

rv1 0) 

0 
« A kr 

where al9 a 2 , . . . , ar are distinct nonzero elements of GF(q), and 

CY 

where Av A2,..., Ar are arbitrary nonsingular kx X kv k2 X k2,... matrices. 
Direct calculation will yield that Cx consists of block matrices, as described 

above. We see then that 

Cx = GLki(q) X GLk2(q) X • • • XGLkr(q). 

To obtain an element of order p with centralizer in Brauer form, we 
specialize to the case kx = n — 1 and k2 = 1, whence 

Cx s GL^q) X GLx{q). 

Assuming n > 4 or n = 3 and q > 3, the SLn_l(q) subgroup K of GLn_1(q) 
will be quasisimple and normal in Cx\ moreover, the second factor GLx(q) is 
cyclic, isomorphic to the multiplicative group of the field GF(q). Thus indeed 
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Cx has the general shape of the Brauer form. To obtain its precise form, one 
would have to cut down to Cx Pi SLn_1(q) and then factor out by the central 
subgroup of scalar matrices. 

4. Minimal simple groups. In the next two sections, I shall illustrate the 
evolutionary development of the classification proof with a number of exam­
ples describing the more or less piecemeal manner in which major chapters of 
simple group theory grew out of particular aspects of specific classification 
theorems. 

It will be best to begin with some general terminology that will be needed for 
this discussion as well as in later chapters. 

For any group X and prime p, X is a p-group (p'-group) if X has order a 
power of p (order relatively prime to p). 

Op( X) = unique largest normal ^-subgroup of X. 
Op(X) = unique largest normal //-subgroup of X, called the p'-core of X. 
O(X) = OT(X), called the core of X. 
A subgroup Y of X is called a p-local, p'-local, or O-local subgroup of X if 

Y = NX(W) for some nontrivial /^-subgroup, //-subgroup, or subgroup W of 
odd order, respectively. Thus O-local subgroup = 2'-local subgroup; more­
over, /7-local and O-local subgroups are local subgroups (as W is then 
solvable). 

If X is an abelian p-group, m(X) = rank of X = minimum number of 
generators of X. 

If A" is a /?-group, m(X) = rank of X = ma.x{m(A)\ A an abelian sub­
group of X}. 

n( X) = normal rank of X = max{m(^4)| A an abelian normal subgroup of 
X}. 

r(X) = sectional rank of X = max{ra(^4)| A an abelian section of X}. [A 
homomorphic image of a subgroup of any group X is called a section of X.] 

For arbitrary groups X, mp(X), np(X), r(X) = p-rank, normal p-r ank, 
sectionalp-rank of X, respectively, = m(P), n(P), r(P), respectively, where 
P is a Sylow /^-subgroup of X. 

A 2-group X is (a) dihedral, (b) quaternion, or (c) quasidihedral if X is 
generated by elements x, y subject to the relations x2" = 1 and correspond­
ingly 

(a) y2 = 1, x~lyx = y~l, n > 1; 
(b) y4 = 1, x~lyx = y~l, y2 = x2" \ n > 2; or 
(c) y2 = 1, x-lyx = y-1*2"'1, n > 3. 
A 2-group X is wreathed if X is generated by elements x, y, z subject to the 

relations x2" = y2" = z2 = 1, [JC, >>] = 1, z~\xz = y, n > 2. 
If X is a /?-group, then X is extra-special if Z( X) = [ X, X] is of order p 

and Ar/Z(Ar) is elementary abelian (i.e., the direct product of subgroups of 
order p). Moreover X is said to be of symplectic type if X is the product of two 
subgroups Xv X2 with Xx extra-special, Z(XX) < Z(X2), [Xl9 X2] = 1, and 
either X2 is cyclic or p = 2 and X2 is dihedral, quaternion or quasidihedral of 
order > 16. For completeness, we include the possibility Xx = 1, Jf = Jf2 in 
the definition of symplectic type. 

The significance of this last class of /^-groups arises from the following result 
of P. Hall [74, Theorem 5.4.9]. 
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PROPOSITION. If a p-group X contains no noncyclic characteristic abelian 
subgroups, then X is of symplectic type. 

Finally, for arbitrary X, X* = X — {1} = set of nonidentity elements of X. 
Also, for the ambient simple group G under investigation, we write, for 
simplicity, Cy , NY for CG(Y), NC(Y), respectively, for any subgroup or subset 
7 of G. 

Our first set of examples is connected with Thompson's fundamental classi­
fication of the minimal simple groups [110]—simple groups of even order each 
of whose proper subgroups are solvable. Once the odd order theorem had been 
completed, it was natural for Thompson to consider this family of simple 
groups. The group As, of order 60—the simple group of smallest order—is 
clearly an example of a minimal simple group. 

Given the local methods that Thompson had used in the odd order theorem, 
it soon became apparent to him that he did not require this solvability 
assumption on all subgroups of G, but only on its local subgroups. Thompson 
dubbed a group satisfying this weaker condition an AJ-group and his goal was 
to determine the isomorphism types of all simple JV-groups. 

I shall describe five obstructions (out of a considerably greater number) that 
Thompson was forced to overcome to establish his celebrated classification 
theorem. As we shall see, each of these subsequently developed into a major 
chapter of simple group theory. 

A. The 2-rank < 2 case. In the odd order proof, Thompson was forced into 
quite distinct lines of argument to pin down the "jp-structure" of G according 
as mp{G) < 2 or mp(G)^ 3 for a given odd prime p. This rank distinction 
persisted in the JV-group case. In particular, Thompson soon found that he had 
to single out the m2{G) < 2 case for separate treatment. 

It is an elementary fact that a 2-group of rank 1 is either cyclic or 
quaternion. It follows therefore from the odd theorem for the 2-rank 0 case, 
and from a result of Brauer and Suzuki [37], for the quaternion case, (plus an 
elementary transfer result of Burnside for the cyclic case) that there are no 
(nonabelian) simple groups of 2-rank < 1, so it was the case m2(G) = 2 that 
concerned Thompson. 

Using so-called fusion-theoretic methods, Thompson's objective was to force 
the possible isomorphism types of a Sylow 2-subgroup of G. 

Here if p is a prime and P a Sylow /^-subgroup of G, p-fusion refers to the 
conjugacy in G of distinct elements or subsets of P. There already existed a 
number of classical transfer results, giving conditions on /^-fusion for a group 
to possess a normal subgroup of index p. Thompson added his own elemen­
tary but important transfer result, applicable solely to the prime 2: 

LEMMA. If S is a Sylow 2-subgroup of a group G, T a subgroup of index 2 in 
S, and x an involution of S — T, then either G has a normal subgroup of index 2 
{not containing x) or else x is G-conjugate to an involution of T. 

At about this time, Glauberman, extending the Brauer-Suzuki character-
theoretic quaternion argument, established his fundamental Z*-theorem 
[62], a result that was destined to become an essential tool throughout the 
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entire classification proof, and which subsequently went through many gener­
alizations. Again it applies only to the prime 2; it derives its name from the 
term Z*(G), which denotes the preimage in G of the center of the group 
G/0(G). 

THEOREM. If S is a Sylow 2-subgroup of a group G and x an involution of 5, 
then either x e Z*(G) or else x is G-conjugate to an involution of S — (x). 

Thompson transfer works "at the top" of G, while the Z*-theorem focuses 
on its "bottom." Since Thompson's N-group G was assumed to be simple, 
these two results could be used in conjunction to force a certain amount of 
G-fusion to take place within a given Sylow 2-subgroup S of G. Since 
m(S) = 2, this placed severe restrictions on the subgroups S, ultimately 
leading to a complete determination of their possible isomorphism types 
(homocyclic abelian, dihedral, quasidihedral, wreathed, or of order 64 and 
isomorphic to a Sylow 2-subgroup of PSU3(4)). 

In most of these cases, Thompson could then invoke existing classification 
results to obtain the possible isomorphism types of G. 

B. Core obstruction. The remaining obstructions deal with the m2(G) > 3 
case, where the expected answers for G were certain groups of Lie type of 
characteristic 2: namely, the families PSL2(2

n) and Sz(2n), plus a few individ­
ual groups. 

Borel and Tits [33] (some time later) established a basic general property of 
the /?-local subgroups H of a group of Lie type of characteristic p: namely, for 
any such subgroup H, 

(1) CH(Op(H)) < Op(H). 

In particular, as Op,(H) centralizes Op(H% it follows that 

(2) 0,(H) = 1. 

In time, an arbitrary finite group each of whose /?-local subgroups satisfied 
condition (1) came to be called a group of characteristic p type, the groups of 
Lie type of characteristic p thus being the prototypical examples of such 
groups. 

Thompson thus knew that as a first step in forcing the ultimate isomorphism 
type of his simple JV-group G, he would have to argue that G was of 
characteristic 2 type. In solvable groups, it is easily shown that conditions (1) 
and (2) are equivalent, so in TV-groups the characteristic 2 type conclusion 
reduced to the assertion 

(3) 0(H) = 1 for every 2-local subgroup H of G. 

It can be easily shown that to verify (3), it suffices to prove the weaker 
statement 

(4) 0(CX) = 1 for every involution x of G. 

Hence the existence of nontrivial cores in the centralizers of involutions 
presented a second obstruction to Thompson—what I shall refer to here as 
core obstruction. 
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Removal of this core obstruction is the precise formulation for TV-groups for 
internally eliminating the 2'-part 0(G) of Rad(G). 

C. The existence of large subgroups. When (4) fails, Thompson proved that G 
contains an O-local subgroup M with the following properties: 

(5 a) S < M for some Sylow 2-subgroup S of G; and 
(5b) NT^ M for every 1 * T < S. 
Note that (5b) is equivalent to the assertion that M intersects its distinct 

G-conjugates in subgroups of odd order. 
Since M contains the normalizers in G of all nontrivial subgroups of S, M is 

a "large" subgroup of G. Thus it is O(M) (nontrivial, as M is an O-local 
subgroup) that was Thompson's candidate for the 2'-part of Rad(G), and he 
had to derive a contradiction from the existence of such an O-local subgroup 
M to complete the removal of core obstruction. 

The standard term for a subgroup M of a group G satisfying the conditions 
of (5) is strongly embedded, so that Thompson's third obstruction came from 
the existence of strongly embedded O-local subgroups within his group G. 

D. The normal 2-rank 2 case. Thompson's construction of M turned out to 
be especially difficult when a Sylow 2-subgroup S was "small," for his 
arguments required a certain degree of freedom within S, which was absent 
when n(S) = 2. Thus the case m2(G) > 3, n2(G) = 2 provided a fourth 
obstruction. 

E. The 02 symplectic type case. The bulk of Thompson's analysis occurs after 
he has succeeded in proving that his JV-group G is of characteristic 2 type. 
Here we mention only one of the obstructions he encountered. 

A substantial portion of that analysis focuses on a certain maximal 2-local 
subgroup M of G constructed by Thompson. In the general case, M is strongly 
p-embedded in G for suitable odd primes p (here the term strongly 
/^-embedded is defined by direct analogy with that for the prime 2, taking S 
now to be a Sylow /^-subgroup of G). The ensuing delicate argument concerns 
nontrivial elementary abelian normal 2-subgroups A oî M and the possible 
embeddings in M of G-conjugates of subgroups of A (this has come to be 
called Thompson's weak closure analysis). 

However, the argument collapses when \A\ = 2, so that the case in which M 
contains no such elementary abelian normal subgroup of order > 4 is excep­
tional. However, in the latter case 02(M) cannot contain a noncyclic abelian 
characteristic subgroup B, otherwise the involutions of B would generate an 
elementary abelian normal (in fact, characteristic) subgroup A of M of order 
> 4. Hence, by Philip Hall's result, 02(M) must be of symplectic type! 

Furthermore, if we then denote the central involution of 02(M) by JC, it 
follows that M = Cx (since M is a maximal 2-local subgroup of G and 
M < Cx). Thus a fifth obstruction encountered by Thompson was the case in 
which 02(CX) is of symplectic type for some involution x of G. 

We shall now describe the five chapters of simple group theory that over 
time emerged from the above five obstructions. 

A*. Groups of 2-rank 2. Work on simple groups of 2-rank 2 had begun well 
before Thompson's TV-group theorem. Indeed, the groups PSL3(q), q odd, 
have quasidihedral or wreathed Sylow 2-subgroups according as q = -1 (mod 4) 
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or q = 1 (mod 4). Thus Brauer's first classification theorems dealt with the 
2-rank 2 case. Moreover, John Walter and I had begun our investigation of 
arbitrary simple groups with dihedral Sylow 2-subgroups [82] while Feit and 
Thompson were still occupied with groups of odd order. 

Thus it was clear all along that the family of simple groups of 2-rank 2 was 
of intrinsic interest. Nevertheless, it was the TV-group paper that served to put 
this family in perspective within the context of broader classification problems, 
at the same time strongly indicating that the classification of such simple 
groups would require its own special methods. 

In the mid 1960s Alperin established a basic fusion result [1] (cf. also [74, 
Theorem 7.2.6]), which in essence asserted that for any group G, prime p, and 
Sylow /^-subgroup P of G, G-fusion of any two subsets of P could be described 
"/^-locally" via a product of conjugations occurring in the G-normalizers of a 
well-specified collection 3> of nonidentity subgroups of P—such a collection 
Sd came to be called a conjugation family for P (with respect to G). 

As an application of his theorem, and using the fusion results described 
above, Alperin showed that Thompson's rank 2 A/-group result held in 
arbitrary rank 2 simple groups [3] (cf. also [76]). 

THEOREM. If G is a simple group of 2-rank 2, then a Sylow 2-subgroup of G is 
either homocyclic abelian, dihedral, quasidihedral, wreathed, or of order 64 and 
isomorphic to a Sylow 2-subgroup of PSU3{$). 

Ultimately Walter and I handled the dihedral case, Alperin, Brauer, and I 
the quasidihedral and wreathed cases [2, 3], Brauer the abelian of order > 8 
case [128], and Lyons the PSU3(4) case [102], the final theorem reading as 
follows. 

THEOREM. If G is a simple group of 2-rank 2, then G = PSL2(q), PSL3(q), 
PSU3(q),qodd, PSU3(4), An, or Mn. 

B*. The signalizer functor method. In the A/-group m2(G)> 3 case, Thomp­
son's construction of the strongly embedded subgroup M in the face of core 
obstruction was quite cumbersome, and his method looked as though it would 
be very difficult to generalize. However, it was clear at the time that core 
obstruction would be a major problem in all classification theorems (this was 
certainly true in the 2-rank 2 classification theorem), for the cores of central­
izes of involutions in the known simple groups have a very simple structure: 

PROPOSITION. If G is any known simple group and x an involution of G, then 
0(CX) is cyclic. 

Thus, if one were ever to reach Brauer form for the centralizer of some 
involution in a given classification theorem, one would certainly have to 
establish some strong results about cores of centralizers of involutions in 
arbitrary simple groups—not necessarily that they had to be trivial (as in the 
iV-group case), but at least that they had a very restricted structure. 

In the late 1960s, I discovered an abstract formulation of the problem of 
core obstruction and simultaneously developed a general method for attacking 
it. Underlying my approach was the notion of a signalizer functor and the 
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related, basic solvable signalizer functor theorem [82]. My ideas and original 
proof of the theorem were later greatly improved by Goldschmidt [67, 68] and 
others—in particular, extending the result to arbitrary primes. 

Let A be an elementary abelian /^-subgroup of a group G, p a prime, and 
suppose that for each a e A*, there is associated an A -invariant subgroup 
0(a) of Ca of order prime to p with the key property 

6(Ca) n ca. = 8(ca.) n Ca 

for every pair a, a' e A*. Then 0 is called an A-signalizer functor on G. [Note 
that the abelian condition is required to insure that A < Ca for each a e A#.] 
0 is said to be solvable if each 6(a) is a solvable group. For p = 2, the odd 
order theorem guarantees that every ,4-signalizer functor 0 is solvable. 

Furthermore, taking 0(a) = 1 for all Û £ . 4 # clearly yields an A -signalizer 
functor—the so-called trivial functor. Finally, for a given A -signalizer functor 
0, the subgroup 0(G\A) generated by the groups 0(a), a ranging over A#, is 
called the closure of 0 in G. 

The solvable signalizer functor theorem asserts the following: 

THEOREM. Let p be a prime and A an elementary abelian p-subgroup of rank 
> 3 of a group G. If 0 is a solvable A-signalizer functor on G, then the closure 

0(G;A) of 0 is ap'-group. 

In particular, the theorem shows that 0(G\A) is a proper subgroup of G. 
The theorem provides a further illustration of the " rank > 3 phenomenon." 

Moreover, it is, in general, false in rank 2, which helps to explain why special 
methods were required to study simple groups of /?-rank < 2. 

For a suitable choice of elementary abelian /?-group A and A -signalizer 
functor 0, it is the subgroup 0(G;A) that is our internal candidate for the 
p'-part 0 ,(Rad(G)) of Rad(G). Thus the precise operational meaning of 
internally elminating Rad(G) is: proving the triviality of A -signalizer functors 
for certain elementary abelian /^-subgroups A of G, p ranging over suitable 
prime divisors of |G|. 

On the other hand, when 0 is nontrivial, it is the subgroup Ne(G.A) that is 
our internal candidate for a large subgroup of G. The essential point of the 
signalizer functor theorem is that it guarantees that 0(G;A) is proper. Since G 
is simple and 0(G\A) is assumed nontrivial, it thus yields the crucial conclu­
sion that Ne(G.A) is a proper subgroup of G, which is a necessary first step in 
establishing its largeness. 

C*. Groups with a strongly embedded subgroup. The work of Suzuki on 
doubly transitive permutation groups culminated in Bender's complete classifi­
cation of groups with a strongly embedded subgroup [25]. 

THEOREM. If G is a simple group containing a strongly embedded subgroup, 
then G - PSL2(2

n\ PSU3(2
n\ or Sz(2n) for somen. 

One checks in each case that the strongly embedded subgroup M of G is not 
an (9-local subgroup, so Bender's theorem implies that simple groups never 
contain large O-local subgroups, a crucial step in the internal elimination of 
the 2'-part of Rad(G). 
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But the theorem is applicable more generally, insuring that a minimal 
counterexample to any proposed classification theorem cannot contain a 
strongly embedded subgroup of any kind, a fact which is also important for 
the internal construction of Soc(G). 

We note that Bender's theorem is a characteristic 2 result, in contrast to the 
2-rank 2 classification theorem, which is essentially an odd characteristic 
result. 

Subsequently Aschbacher [4] extended Bender's theorem, classifying groups 
in which the corresponding subgroup M is assumed to satisfy only the weaker 
condition 

NT^M f o r a l l T < 5 with m(T) > 2. 

The subgroup generated by the set of such NT is called the 2-generated core of 
G (relative to the given Sylow 2-subgroup S of G). 

Aschbacher's result effectively enabled one to define large subgroups in 
terms of proper 2-generated cores rather than strong embedding. This was a 
decided advantage, for direct application of the signalizer functor method (for 
the prime 2) produces O-local subgroups containing only the 2-generated core. 

D*. Groups of sectional 2-rank < 4. As in the jV-group case, removal of core 
obstruction in other classification problems required the normal 2-rank 2 case 
to be treated separately. Unfortunately, this condition does not carry over, in 
general, to subgroups and homomorphic images, so that one could not use 
induction to classify such groups. 

Thompson hoped it would be possible to proceed as in the 2-rank 2 case, 
first forcing the possible structures of a Sylow 2-subgroup S of an arbitrary 
simple group G with «2(G) = 2byan analysis of 2-fusion, and then determin­
ing all simple groups with such Sylow 2-subgroups. However, the problem 
turned out to be less tractable than anticipated, and his student MacWilliams 
was forced to settle for strong partial results [85]. Among these was the 
following general fact: 

THEOREM. If S is a 2-group with n(S) = 2, then r(S) < 4. 

However, sectional 2-rank is a condition that carries over to subgroups and 
homomorphic images, so that it is possible to proceed inductively to classify 
the broader family of simple groups of sectional 2-rank < 4, and thereby 
determine all simple groups of normal 2-rank 2 as a corollary. Harada and I 
were the ones who carried this out [78]. Because we now had complete general 
information about the proper subgroup structure of a minimal counterexample 
G to our proposed theorem, we were able to pin down, by a combination 
of 2-fusion and 2-local analysis, the possible isomorphism types of Sylow 
2-subgroups S of G, and then proceed to classify all such simple groups with 
such Sylow 2-subgroups (some of these specified Sylow 2-group cases were 
treated by others), thereby showing that no counterexample existed. However, 
in total, it was a painful undertaking, involving very detailed, technical 
analysis, running to some 800 journal pages. 
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The effort did, however, have significant further payoff, for the sectional 
2-rank < 4 theorem was repeatedly invoked in subsequent classification theo­
rems to dispose of unpleasant low 2-rank configurations. The result would 
never have been available if group theorists had somehow found an easy, direct 
way of settling the normal 2-rank 2 problem. 

E*. Groups of GF(2)-type. The N-group paper also served to focus attention 
on the class of simple group G containing an involution JC with 02(CX) of 
symplectic type. This condition is, in fact, a characteristic property of many of 
the families of groups of Lie type defined over the prime field GF(2)\ and for 
this reason such groups came to be called GF(2)-type. 

A more exciting development was the fact that many of the sporadic groups 
then being discovered were also turning out to be of Gi7(2)-type—ultimately 
sixteen of the twenty-six sporadic groups had this property. Thus there was a 
strong incentive for finding all simple groups of GF(2)-type. The principal 
architect of the resulting classification theorem was Timmesfeld [118], who 
pushed Fischer's transposition theory far beyond the original 3-transposition 
case. However, several others were involved in the complete GF(2)-type 
classification theorem, notably Stephen Smith [122, 123, 124], Aschbacher [8, 
9], and Janko [91]. 

5. Other major developments. The preceding discussion shows how the 
Af-group theorem by itself, rather than any grand design for classifying the 
simple groups, provided the impetus for a number of major developments. The 
same remark applies to the three further important developments we now 
discuss, each of which arose within a specific classification context. 

We shall need the definition of two additional terms. First, a quasisimple 
subgroup A' of a group X is called a component of X if every X-conjugate of K 
distinct from K commutes elementwise with K. Thus the normal subgroup 
generated by all X-conjugates of AT is a product of pairwise commuting 
quasisimple subgroups, each isomorphic to K. 

Second, if S is a Sylow 2-subgroup of X, then a subgroup T of S is said to 
be stongly closed in S with respect to X provided for every / e T # , any 
J^-conjugate of t which Hes in S is necessarily contained in T. [S itself is, of 
course, strongly closed in S with respect to X.] 

A. The Bender method. As noted earlier, Thompson's method of removing 
core obstruction was quite cumbersome. It was based on certain arguments in 
the odd order paper that had led there to the existence of strongly /?-embedded 
subgroups for odd primes p (when mp(G) > 3). Walter and I [81] used 
essentially the same procedure in the dihedral case, its execution being even 
more complicated than for iV-groups since now G could contain nonsolvable 
local subgroups. [A deep character-theoretic result of Brauer, fortunately, 
enabled one to by-pass what would surely have been an even more difficult 
analysis in the quasidihedral and wreathed cases.] 

Once the dihedral Sylow 2-group theorem had been completed, Walter 
turned to groups with abelian Sylow 2-subgroups [150]. Since the 2-rank of 
such a group could be arbitrarily high, he hoped that in the course of 
determining all such simple groups, he would be able to develop effective 
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techniques for studying increasingly broader classes of simple groups. How­
ever, Walter, too, was forced to follow the same general approach in dealing 
with core obstruction and his final analysis was horrendously intricate, offering 
little hope of generalization and further applicability. 

It was out of deep frustration with these unpleasant core obstruction 
developments and the impending impasse towards which they were inexorably 
heading that I began to search for an alternative approach and was eventually 
led to the signalizer functor method. 

About the same time, Bender, after completing the strongly embed­
ded subgroup theorem, re-examined Thompson's construction of strongly 
/^-embedded subgroups in the odd order paper, producing an ingenious sim­
plification [27]. His approach was so effective that he tried next to apply it to 
the abelian Sylow 2-group problem [26]. His results were even more striking, 
for they led to a very short proof of Walter's classification theorem and, in 
particular, the removal of core obstruction. Soon thereafter he produced an 
equally dramatic simpHfication of the dihedral Sylow 2-group classification 
theorem [29]. 

In contrast to the signalizer functor method, which is essentially constructive, 
Bender immediately focuses on a maximal subgroup M of G containing the 
centralizer Cx of a suitable involution JC of the group G under investigation. 
Using the fact that M is not strongly embedded in G, he developed general 
techniques—subsequently named the Bender method—for forcing severe re­
strictions on the structure of both Cx and M, the effect of which carried him a 
long way towards pinning down the exact structure of Cx (in the abelian case, 
approximating Brauer form; in the dihedral case Brauer form does not exist, as 
then Cx is necessarily solvable). 

After that, Goldschmidt [69] applied the Bender method to obtain an 
important extension of the latter's abelian Sylow 2-group theorem, classifying 
simple groups in which a Sylow 2-subgroup S contains a nontrivial abelian 
subgroup A that is strongly closed in S with respect to G (the case S = A 
corresponding to the abelian Sylow 2-group case). Goldschmidt's result in turn 
became a general tool for analyzing 2-fusion in later classification theorems. 

For a time, the Bender method vied in importance with signalizer functors. 
However, we gradually learned that, in general, the case in which CM(Op(M)) 
< Op(M) for some odd prime p presents seemingly intractable difficulties, so 
that it is now believed that its effectiveness is limited primarily to groups with 
certain restricted types of Sylow 2-subgroups, where one has sufficient control 
of 2-fusion and subgroup structure to surmount these intrinsic problems. 

B. The B-conjecture, L-balance, and the classical involution theorem. There is 
a general formulation of core obstruction in terms of the structure of the 
centralizers of involutions in the simple group G (or, more generally, arbitrary 
finite groups), which Thompson called the B-conjecture. Throughout the 1970s, 
verification of this conjecture was a major focus of simple group theory. 

Walter and I, using signalizer functor methods, were the first to consider the 
conjecture [84], always limiting ourselves, however, to groups with internal 
structures resembling those of groups of Lie type of odd characteristic. It was 
not until much later that we discovered (independently) how to extend the 
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method to broader situations. However, in the course of these investigations we 
discovered a fundamental property of centralizers of involutions in arbitrary 
finite groups (later extended to elements of any prime order /?), called 
L-balance. L-balance captures a formal connection between the structures of 
the centralizers of two distinct commuting involutions of a group G. To 
comprehend the full classification proof, and in particular, the significance of 
the 2?-conjecture, it is essential to understand this concept. 

Diagram 1 conveys its basic content. Here, x, y are commuting involutions 
of G, Cx = Cx/0(Cx\ Cy = Cy/0(Cy\ and K is a component of CX. Since 
x, y commute, y e Cx and x ^ Cy. Although the result holds more generally, 
we assume for clarity that y leaves K invariant and we let / be a component 
Cj((y), I its preimage in Cx n Cy, and / the image of / in Cy. 

cxncy 

image 

Cy 

DIAGRAM 1 

L-balance asserts that there exists a component J of C (in some cases the 
product of two components of Cy) such that 

/ is a component of Cj ( x ). 

Here is how L-balance is applied in practice: One starts with the component 
K. Then, from the table of centralizers of involutions acting on known simple 
groups, one can determine the possible isomorphism types of I and hence also 
of I. Since ƒ is a component of Cj(x) and / is quasisimple, one can now 
reverse the table and use it to determine the possibilities for J. _ 

In this way we obtain information about the structure of Cy from that of Cx. 
For example, if K = PSL4(4)9 and, say, y induces a field automorphism of K 
of period 2, then / = PSL4(2) (= As\ and the table yields the following 
possibilities for J: 

PSL4(2), PSL4(4), A2n, n > 4, or HS. 

This passage, 

is called the pumping-up process, and we say that I pumps up to J. 
Notice that the cores 0(CX) and 0(Cy) really do act as obstructions to the 

process, forcing us to work inside the factor groups Cx/0(Cx) and C /0(C ) . 
The significance of the 2?-conjecture is that, once established, it removes these 
obstructions, thereby enabling us to perform the pumping-up process within 
the groups Cx and Cy themselves. In that case, K is a component of Cx, la. 
component of CK(y), and / is a component of Cy, so that the pumping-up 
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process goes directly from 

K -> / -> / . 

This gives the essence of the B-conjecture; equivalently, of the removal of core 
obstruction. 

Shortly thereafter, Thompson tried to establish the B-conjecture, in general, 
using the Bender method. Despite making considerable progress, he soon 
encountered the inherent difficulty, mentioned above, in applying the method 
in so broad a context. However, one aspect of the problem led him to raise a 
very interesting general question. After some slight reformulation, it became 
the basis of Aschbacher's celebrated classical involution theorem, which pro­
vides a deep characterization of the groups of Lie type of odd characteristic in 
terms of their so-called "canonical SL2(q) subgroups." 

An involution JC of a group G is said to be classical provided: 
(1) Cx = Cx/0(Cx) has a component K = SL2(q) for some odd q\ and 
(2) x is the central involution of K. 
Aschbacher proved [7] 

THEOREM. If G is a simple group which contains a classical involution, then G 
is necessarily a group of Lie type of odd characteristic. 

This beautiful result turned out to be the key to the ultimate verification of 
the 2?-conjecture and, in addition, provided the basis for validating the Brauer 
principle for centralizers of involutions in Brauer form with Brauer component 
of Lie type of odd characteristic (apart from some low Lie rank exceptions). 

C. Fischer's theory of transpositions and the root involution theorem. As 
mentioned in Chapter I, Fischer's sporadic groups M(22), Af (23), Af(24)' were 
discovered in the process of classifying simple groups G containing a con-
jugacy class of 3-transpositions [56]. 

Given the success of this effort and the new techniques that Fischer 
introduced in the course of the proof, it was natural to attempt to classify 
groups having a conjugacy class of involutions satisfying variations of the 
3-transposition condition. The first major extension was due to Aschbacher [5], 
who treated the case in which, for x, y e @, 

(1) |*y |= 1,2, or odd. 

Meanwhile, Fischer and his disciple Timmesfeld considered the case in 
which, for JC, y e @, 

(2) | j cy |= l ,2 ,4 ,o rodd . 

This case has an obvious division: namely, one can either postulate or not 
that whenever |;cy| = 4 for x, y e @9 

( 3 ) The involution (xy) e @. 

This is not an artificial condition, for in the groups of Lie type of character­
istic 2 the conjugacy class of so-called "root" involutions satisfy conditions (2) 
and (3) (with \xy\ = 4 for some pair x, y e ^ ) , except for the unitary and 
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symplectic groups, which instead satisfy Aschbacher's condition (1). Timmes-
feld called such a conjugacy class 9> satisfying (2) and (3) a class of root 
involutions—nondegenerate or degenerate according as |jcy| = 4 for some pair 
x, y e 3> or not. 

Ultimately Timmesfeld obtained the following magnificent characterization 
of the groups of Lie type over GF(2n) [141]. 

THEOREM. If G is a simple group which contains a nondegenerate conjugacy 
class of root involutions, then either G is a group of Lie type of characteristic 2 
(apart from PSUm(2n) or PSpm(2"))9 A6, or J2. 

The degenerate case was, of course, covered by Aschbacher's and Fischer's 
prior results. The root involution theorem had significant impact on the 
classification of the simple groups—in particular, forming the basis for 
Timmesfeld's general classification results on groups of GF(2)-type. 

6. Simple groups of non-characteristic 2 type. These examples amply il­
lustrate the step-by-step development of the classification proof. Each new 
theorem, whether a classification result or a new technique, became a platform 
on which to see a little further, and as our understanding of the simple groups 
grew, so, too, the scaffolding extended our horizons. Nevertheless, it was not 
until nearly 1980 that a complete global strategy became fully visible. 

On the other hand, we knew in a general way where we were heading. One 
couldn't even contemplate the general classification theorem without knowing 
that groups of odd order were solvable. Likewise, it clearly made most sense to 
begin by investigating simple groups that were "small" by some measure. Later 
we knew, too, the central importance of ehminating core obstruction to reach 
Brauer form for the centralizer of some involution. And, of course, we also 
fully realized that no final resolution would ever be possible until all simple 
groups had been uncovered. 

But where was it all leading? Again it was the iV-group paper that pointed 
the way. Since Thompson's first objective (when m2(G) > 3) had been to force 
G to be of characteristic 2 type, so too this same conclusion became an 
overriding objective for our minimal counterexample G to the general classifi­
cation theorem. 

Once the U-conjecture was proved, simple group theory reached a new 
plateau, for then if G was not of characteristic 2 type, yet another fundamental 
result of Aschbacher—known as his component theorem—was directly appli­
cable to G [6]. 

THEOREM. If G is a simple group of non-characteristic 2 type in which the 
B-conjecture holds, the centralizer of some involution xofG is in Brauer form. 

It is this theorem that internally forces Soc(G) to be simple. 
Thus, to complete the proof that a minimal counterexample G is indeed of 

characteristic 2 type, we are left with the task of validating the Brauer principle 
for every possible Brauer component K. In other words, we must " plug in" all 
covering groups of known simple groups for K and in each case internally 
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construct Soc(G) and then use it to identify the isomorphism type of G 
(deriving instead a contradiction when there exists no simple group having a 
Brauer component A' of a given isomorphism type). 

This turned out to be a very formidable undertaking, requiring many years 
of effort by some 50 individuals. The complete verification of the Brauer 
principle is spread across some 75 separate papers, covering perhaps 2,000 
journal pages. 

I shall not attempt to give a complete list of solutions of the Brauer 
principle, but they include all the groups of Lie type of odd characteristic and 
alternating groups (excluding some small cases) plus most of the sporadic 
groups. 

It will be instructive to summarize diagrammatically the basic flow chart of 
the proof that a minimal counterexample G to the classification of the finite 
simple groups is of characteristic 2 type (see Diagram 2). 

Groups of non-characterist ic 2 type 

small groups: 
odd order, 
low 
low 
2-

2-rank, 
normal 
•rank 

the generic case: 
central izers of 

involut ions 

special methods: 
2- fusion, 

character theory, 
Bender method 

strongly embedded 
0-local subgroups 
or proper 0-local 
2-generated cores 

Bender-Suzuki-Aschbacher 
c lass i f i ca t ion theorem 

central izers oFI 
involutions in 
Brauer form 

val idat ion of the 
Brauer pr inc ip le 

DIAGRAM 2 

7. Simple groups of characteristic 2 type. To complete the classification of 
the simple groups, we were thus left with the task of determining those of 
characteristic 2 type—the anticipated answer being the groups of Lie type of 
characteristic 2, together with a few small groups of Lie type of odd character­
istic and the remaining sporadic groups. 
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Here, too, Thompson's JV-group paper laid out the path. However, consider­
able time elapsed before any major attempts to extend his result to broader 
classes of groups of characteristic 2 type, primarily because of the enormous 
effort expended on proving that a minimal counterexample was, in fact, of 
characteristic 2 type and on searching for new sporadic groups. 

Thus it was not until 1976 that the first major extension was achieved—the 
classification of simple groups of characteristic 2 type with solvable 2-local 
subgroups (in place of the solvability of all local subgroups). The proof closely 
followed Thompson's iV-group format. He had introduced the key general 
notion of the odd 2-local rank e (G) of G as the maximum /?-rank mlp{G) of a 
2-local subgroup H of G, taken over all such H and all odd primes p, and had 
realized the necessity of singling out the cases e(G) < 2 for special treatment. 

The "generic" e(G) > 3 solvable 2-local case was handled by Lyons and me 
[79], using the signalizer functor method, but now for suitable odd primes p, 
with nontrivial functors on the one hand, leading to the construction of 
strongly /7-embedded 2-local subgroups and trivial functors, on the other, to 
"Brauer form" for the centralizer of a suitable element of order p (the concept 
analogous to Brauer form for centralizers of involutions; however, in the 
present restricted context, they arose only for p = 3). The e(G) < 1 and 
e(G) = 2 cases were treated by Janko [131] and Fred Smith [98] respectively, 
while the exceptional GF(2)-case was handled by Lundgren [101]. 

Thus a pattern was emerging very similar to that for groups of non-
characteristic 2 type, but focusing instead on odd primes rather than on the 
prime 2: namely, "small" groups (e(G) < 2 and GF(2)-type) again requiring 
special treatment, and the general case (e(G) > 3) being analyzed by means of 
an analogous internally distinguishing simplicity process. Undoubtedly it was 
this close parallel to the non-characteristic 2 case that explains why the 
complete determination of the simple groups of characteristic 2 type, although 
requiring some 3,000 journal pages, took only about six years: Aschbacher, 
Lyons, and I [14, 20, 80] handled the e(G) > 3 case, Aschbacher [13] the 
e(G) < 1 case, subsequently extended by Mason [99] to the e (G) < 2 case (the 
latter itself consuming almost 1,000 pages!), Timmesfeld and Stephen Smith 
[122, 123, 124, 142] (and others) treated the G.F(2)-type case, Aschbacher [15, 
16] proved that the strongly ^-embedded 2-local case, p odd, led to a 
contradiction, and Gilman and Griess [161] (with the support of Finkelstein, 
Frohardt, and Solomon for Brauer components defined over GF{2)) substanti­
ated the Brauer principle for odd primes. [As part of our analysis, Lyons and I 
showed that only Brauer components of Lie type of characteristic 2 had to be 
considered.] 

To carry through the analysis, however, some fundamental new techniques 
were required. Most notable is Aschbacher's theory of "blocks" [10] (cf. also 
[76]) {Aschbacher blocks are certain types of subgroups of a group, somewhat 
similar to components; they bear no relation to Brauer's blocks of characters). 
Such blocks are intimately connected with the Baumann-Glauberman-Niles 
theory of "pushing up" 2-local subgroups [23, 64, 66], and their analysis 
culminated in the fundamental "C(G; S )-theorem," which determined all sim­
ple groups G of characteristic 2 type having a proper characteristic 2-core 



50 DANIEL GORENSTEIN 

C(G;S). Here, by definition, if S is a Sylow 2-subgroup of G, 

C(G;S) = (NT\1 * Tcharacteristic in S). 

Obviously, if G has a strongly embedded subgroup, it has a proper char­
acteristic 2-core, but the converse is by no means true. Indeed, if C(G;S) ^ M 
for some proper subgroup M of G and M is not strongly embedded in G, it is 
easily shown that some maximal 2-local subgroup of G must contain an 
Aschbacher block (under the assumption that G is of characteristic 2 type). 
Moreover, the C(G\ S)-theorem was obtained as a corollary of the classifica­
tion of simple groups of characteristic 2 type in which some maximal 2-local 
subgroup possesses an Aschbacher block. Here is the statement of the 
C( G ; S)- theorem (see Foote [53] for a discussion of the theorem). 

THEOREM. If G is a simple group of characteristic 2 type in which C(G;S) is a 
proper subgroup, S a Sylow 2-subgroup of G, then either G has a strongly 
embedded subgroup (whence G is determined by Bender's theorem) or 
G s PSL3(2

n), PSpA(2n\ PSL2(q\ q a Fermât or Mersenne prime or 9, 
PSL3(3), M22, orM23. 

As a corollary, one obtains a classification of all simple groups G of 
characteristic 2 type, in which a Sylow 2-subgroup S of G is contained in a 
unique maximal subgroup M, for then obviously C(G;S) < M, whence 
C(G\S) is a proper subgroup of G. 

Furthermore, near the end of the characteristic 2 type analysis, Goldschmidt's 
theory of amalgams [63], which was just then emerging as a subject of intrinsic 
interest and importance, played a crucial role in eliminating certain difficult 
residual configurations of 2-local subgroups. 

Nevertheless, summarizing the proof of the classification of groups of 
characteristic 2 type, we obtain a diagram (Diagram 3) strikingly similar to 
that given in the previous section for groups of non-characteristic 2 type. 

It will be convenient, for brevity, to refer henceforth to groups of non-
characteristic 2 and characteristic 2 type as groups of noneven and even type, 
respectively. [As noted above, the noneven groups include not only the groups 
of Lie type of odd characteristic, but also most of the alternating and sporadic 
groups.] They constitute a fundamental division in the existing classification 
proof, providing the basis for internally distinguishing whether G is corre­
spondingly of odd characteristic or of characteristic 2. 

8. A partitioned proof. The fact that we worked during most of the " thirty-
year war" with only a limited picture of the final outcome was crucial in 
shaping our perspective towards the classification of the finite simple groups. 
Since we neither knew all the simple groups nor had a strategy for completing 
the proof, we were unable to seriously consider a minimal counterexample to 
the full classification theorem. 
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The military metaphor is apt, for we definitely felt embattled in those years, 
fighting an adversary far stronger than ourselves. Indeed, Richard Brauer died 
in 1977 with the conviction that a complete classification, if attainable at all, 
was far in the future. Since we never knew what lay ahead, we were inevitably 
forced to view each classification theorem under consideration as necessarily 
an independent result, completely divorced from the general classification 
theorem itself. This was our way of "protecting our flank." 

This necessity to establish only compartmentalized results became so deeply 
ingrained an attitude that it persisted for most simple group theorists until the 
very end, even though by 1978, when at least "evidence" for the existence of 
each of the sporadic groups had been obtained, our understanding of the 
simple groups henceforth justified consideration of a minimal counterexample 
to the full classification theorem. 

For brevity, I shall refer here to the existing classification proof as parti­
tioned. 

Groups of characteristic 2 type 

small 
e(G) 
GF(2)-type 

groups: 
< 2, 

the generic case: 
e(G) > 3: 

centralizers of 
elements of odd 
prime order 

special 
methods 

strongly 
p-embedded 

2-local subgroups 
for odd p 

Contradiction via 
Thompson-Aschbacher 
weak closure method 

central izers of 
elements of odd 
prime order in 
Brauer form 

validation of the 
Brauer principle 

DIAGRAM 3 

9. Inevitable or accidental proof? In describing the evolutionary character of 
the classification proof, I have stressed the groping quality of our early 
investigations, the specific contexts from which major developments grew, and 
the lack of global strategy until the final few years. Taken together, they 
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perhaps convey substantial arbitrariness, group theorists at various junctures 
choosing one path among many, filling in the open links as they plugged along, 
and ending up with a patchwork sort of proof. 

But I also noted that many of the paths we pursued became blocked, 
repeatedly forcing us in the directions of our past successes, so that the links 
being forged did seem to possess some inherent tension. 

The history of the use of character theory in the proof provides a good 
illustration of this forcing process. In the early years, it was the most effective 
available tool, and throughout most of the period many group theorists 
vigorously attempted to increase its range of applicability. But gradually the 
method's limitations came to be understood: character theory could be used to 
derive structural information about simple groups only when tight conditions 
were imposed on the structure and embedding of critical proper subgroups. If 
effort alone were the only measure of success, character theory would surely 
have played a much more dominant role throughout the entire proof! It was 
the underlying reality, not our preferences, that forced finite group theorists to 
develop other techniques for analyzing the general simple group. 

My own view is that, while several options may have been available for 
verifying a particular portion of the long chain of the proof, its global design 
possesses an inexorable quality of profound import for understanding the 
finite simple groups. 

First, the striking similarity between the flow charts of §§6 and 7 for the 
classification of the groups of noneven and even types, respectively, is too great 
to be entirely coincidental. In fact, almost all Thompson's work on JV-groups, 
which as I have pointed out earlier represented the schematic basis for the 
attack on the general group of even type, was completed well before central-
izers of involutions in the general group of noneven type were investigated. 
Conversely, since the iV-group theorem focused on solvable subgroups, its 
proof had essentially no impact on the study of components of centralizers of 
involutions. 

Thus the basic approaches for analyzing the simple groups of noneven and 
even types seem to have been developed independently of each other. Yet, 
there is the unmistakable fact that the basic outlines of their analyses are 
essentially identical. 

Moreover, what is not generally realized is that, even though a group of odd 
order contains no involution, the global outline of the proof of its solvability 
has the same general form as those of groups of noneven and even types! 
Indeed, the first part of the Feit-Thompson analysis again involves the 
structure and embedding of the maximal subgroups of G containing a given 
Sylow /^-subgroup of G (where now p ranges over all prime divisors of \G\). 
Bender's simplification of the original Feit-Thompson argument covers the 
case mp(G) ^ 3. However, the /?-rank 2 case is very difficult, requiring its own 
separate analysis. Thus again low-rank cases are exceptional. 

This local analysis portion of the proof yields very precise information about 
the structure and embedding of every maximal subgroup of G (there are five 
possible types of maximal subgroups; a general description of their structure 
and embedding is given in [77, §1.2]). Considering the nature of the subsequent 



CLASSIFYING THE FINITE SIMPLE GROUPS 53 

analysis, it is reasonable to regard the resulting patterns of maximal subgroups 
as "odd order analogues of Brauer form." Indeed, the ensuing character-
theoretic arguments eliminate all but a single such configuration of maximal 
subgroups and so can be viewed as the first major step in validating the Brauer 
principle in groups of odd order. 

This final configuration involves two closely linked maximal subgroups M 
and N, with which there is associated a field F = GF(pn) for some odd prime 
power p", which can be interpreted as the "field of definition" of the minimal 
counterexample G. [Actually, a second field over GF(qm), q =£ p, is associated 
with G in an entirely parallel fashion. The field F on which the analysis focuses 
is distinguished by the condition p > q.] Thus it is also reasonable to view the 
pair M, N as constituting "the odd order analogue of strong Brauer form." 
[See Part IV, §13, for the definition of strong Brauer form.] Again the 
terminology is justified by the nature of the generator-relation analysis of the 
interdependent subgroups M and N that leads to a final contradiction. 
Indeed, this generator-relation portion of the proof ultimately forces the 
multiplicative group of F to have a certain crucial property, which is then 
shown, on purely field-theoretic grounds, to be impossible in any finite field of 
odd characteristic. 

Many years of reflection on such considerations has led me to the conviction 
that no matter how any future proof of the classification theorem may be 
packaged, it will necessarily include the following five components as an 
irreducible minimum: 

(1) An internal criterion for G to be of even characteristic. 
(2) A separate analysis for small size groups. 
(3) Internal elimination of Rad(G) by excluding large subgroups. 
(4) Internal construction of Soc(G) by validating the Brauer principle. 
(5) Determination of the possible isomorphism types of G in terms of a 

presentation by generators and relations (or its equivalent). 

CHAPTER III. CONSTRUCTING A SATISFACTORY PROOF 

Normally, significant new theorems are carefully checked by the experts and 
later read by a broader spectrum of mathematicians, in the process becoming 
part of the accepted body of mathematical knowledge. Yet it can be safely 
asserted that no one individual has read the proof of the classification theorem 
in its entirety. Indeed, some of the individual papers have been of such lengths 
that journal editors were forced to assign separate portions of them to different 
referees! Thus, just as the proof itself was a team effort, so, too, has been its 
reading. 

Moreover, along the way a number of local errors have been 
discovered—hardly surprising, given the length and number of papers in­
volved. These have been corrected as soon as pointed out, most often on the 
spot. Nevertheless, this is somewhat disconcerting since no matter how parti­
tioned its organizational structure, the argument is, after all, in totality 
inductive, so that the possibility of an apparently "local" error having "global" 
implications is ever present. 



54 DANIEL GORENSTEIN 

This problem is not unique to simple group theory—we can all cite accepted 
"theorems" that later actually turned out to be false. What makes the 
classification theorem so exceptional is that the inordinate length of the proof 
forces the checking process to continue long after the initial announcement of 
the theorem. 

This then is the present unsatisfactory reality. Most simple group theorists 
are fully convinced that the "essential" shape of the existing classification 
proof is correct. Perhaps the best evidence of its over-all validity is the fact 
that, despite some earlier predictions to the contrary, no new simple groups 
have been found since its announcement! 

However, these comments underscore the opening statement of Graham 
Higman's Melbourne, Australia, lectures in January, 1981: "The single most 
important problem facing simple group theory is to place the classification 
theorem on a sound footing." 

In making this comment, Higman also had in mind the added obligation of 
simple group theorists to provide present and future generations of mathemati­
cians reasonable access to the theorem. 

Hence, for all these reasons, I believe it is imperative that a satisfactory 
proof of the classification theorem be constructed. 

1. Revising the proof. Unfortunately, there are aspects of the classification 
proof that make its systematic checking extremely difficult—in fact, in practi­
cal terms, essentially impossible. 

First, as the discussion of Chapter II indicated, each investigator, with the 
notable exception of Bender, took up his work at the point where the last had 
left off: the task ahead always seemed so enormous that little incentive was left 
for re-examining what had already been achieved. Moreover, proofs of individ­
ual theorems were themselves of such lengths that it became standard practice 
to invoke any and all available results, without ever seriously investigating 
whether a short additional argument might, in a particular case, have avoided a 
given reference. Thus, the collection of ostensibly "independent" classification 
theorems, forming the primary links of the global proof, in reality depend 
critically on an elaborate network of supporting results, often even including 
prior such " independent" theorems. 

Moreover, the final pattern of the proof is so intricately intertwined that 
there are only a handful of group theorists presently capable of even delineat­
ing a detailed flow chart of the argument. 

The most striking example of this interweaving occurs in connection with 
completion of the proof of the U-conjecture. The proof involves some dozen 
difficult papers, so closely linked that a very careful reading is required to 
convince the reader that, taken together, they in fact establish the desired 
result. Furthermore, just when one is struggling towards the finish une, 
suddenly out comes a "blockbuster" independent theorem—its only critical 
usage in the entire classification proof!—to provide the coup de grace: namely, 
the classification of all simple groups with Sylow 2-subgroups of order < 210, 
the complete solution of which is comparable in length and technical difficulty 
to the sectional 2-rank < 4 theorem, on which the proof is modeled. 
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A similar phenomenon occurs in the final validation of the Brauer principle 
for centralizers of involutions, which, as already noted, covers a great many 
papers. Again a considerable effort is required just to convince oneself that all 
possible Brauer components have indeed been considered. 

A second, equally unpleasant feature of the proof is that many of the early 
papers, still essential for the full classification theorem and often having very 
long proofs, were written without benefit of later developed techniques, so that 
a line-by-line checking does not seem to be the appropriate response—it would 
clearly be more fruitful to rethink the given theorem (with or without its 
original proof as guide). The quasidihedral, wreathed Sylow 2-group classifica­
tion theorem—covering more than 300 journal pages—illustrates the point. 
Rather than reading the proof in detail, one would be far better advised to first 
extract the gist of the argument and then to ask, on the one hand, to what 
extent the Bender approach might simplify the local group-theoretic portion of 
the analysis, and, on the other, whether it is possible to replace Brauer's 
delicate block-theoretic calculations by more elementary arguments. [Indeed, 
the first of these questions has recently been successfully tested, while work on 
the second is in progress.] 

Thus, whether we wish it or not, attaining Higman's "sound footing" is 
forcing us to carry out some type of revision of the existing theorem, for it is 
evident that by itself the checking process will never lead to a convincing, let 
alone satisfactory, proof. 

What will such a revision entail? There are four quite distinct ways of 
approaching the problem, which I shall colorfully call the "Radical," "New 
Idea," "Conservationist," and "Major Surgery" parties, each applicable to a 
portion of or to the proof as a whole. 

The Radical party considers the finite simple group theorists responsible for 
the present 15,000 page mess and no amount of reshaping of their internalized 
proof will improve the situation very much. For them, a satisfactory proof 
must await the discovery of some revolutionary, most likely external approach 
to the classification. 

The New Idea party views our present understanding as inadequate for 
achieving the stated objective—it, too, submitting the present 15,000 page 
proof as supporting evidence. It believes that new internal ideas and techniques 
are required before it will be possible to find a satisfactory classification proof. 

At the other end of the political spectrum are the Conservationists who feel 
that the basic structure of the proof is quite sound. Hence for them, it will be 
entirely sufficient to revise and otherwise separately improve the major pieces 
of the simple group theory puzzle to obtain a satisfactory proof. 

Finally, the Major Surgery party, too, feels that the present global frame­
work is sound, but believes that a complete re-examination, even though 
limited by the existing state of technology, but having the advantages of 
hindsight, can lead to a substantially reorganized, more conceptual—what one 
may call a "second generation"—classification proof. 

Considering the long-range mathematical significance of the theorem, I feel 
that all four approaches should be simultaneously intensely pursued. As I shall 
describe in the next section, my own analysis of the existing proof has led me 
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into the major surgery camp. Indeed, I believe that that approach offers the 
best prospects for deriving as satisfactory a proof as our present knowledge 
will permit. Moreover, the sounder the health in which we leave the classifica­
tion theorem at this time, the more accessible we can make it, the greater will 
be the chances of fundamental new ideas or even alternate approaches being 
discovered in the future. 

2. A critique of the existing proof. About four years ago, as it was becoming 
increasingly apparent that the classification was nearing completion, I began 
for the first time to think about the proof we were fashioning as a single 
totality. No matter how forced our moves had been, given the evolutionary 
nature of its development, it would be too much to expect that the proof we 
were constructing would miraculously turn out to be the most efficient and 
coherent attainable by the existing techniques. 

Indeed, I was soon discovering a number of puzzling features of both the 
global strategy and its execution. The first collection of these clustered around 
the way in which the groups of Lie type of characteristic 2 were being 
determined, and the second emerged from a comparison between our treat­
ment of centralizers of involutions in groups of noneven type, on the one hand, 
and centralizers of elements of odd prime order in groups of even type, on the 
other. (For brevity, I shall refer here to the latter two situations as the 
involution and odd prime cases, respectively.) 

A. The groups of Lie type of characteristic 2. To me, the single most 
surprising feature of the proof was the fact that our global strategy involved 
four distinct characterizations of the groups of Lie type of characteristic 2: 

1. As part of the validation of the Brauer principle for centralizers of 
involutions. 

2. In validating the Brauer principle for centralizers of elements of odd 
prime order. 

3. In classifying the groups of G.F(2)-type. 
4. In establishing the root involution theorem. 
Whatever significance I wished to assign each of these independent classifi­

cation theorems, I could not escape the redundancy they collectively embodied. 
Certainly the groups of Lie type of characteristic 2 are somewhat special, 
particularly as the internal structure of the sporadic groups strongly suggests 
that they are linked to the groups of Lie type over the prime field GF(2). But 
could there really be something so intrinsically distinguishing about these 
families that they should require four separate characterizations, whereas one 
sufficed for all the other simple groups? Or rather was this simply a product of 
the evolutionary, accidental growth of the proof? 

B. Centralizers of elements of prime order. The diagrams at the end of 
Chapter II reveal the striking global conceptual parallel between the analysis of 
groups of noneven type versus groups of even type, particularly with respect to 
the use of the signalizer functor method in studying centralizers of involutions, 
in the first case, and centralizers of elements of odd prime order, in the second; 
i.e., between the involution and odd prime cases. Yet despite this strong 
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parallel, there were a number of major differences in how the two cases were 
being handled: 

1. Groups of normal 2-rank 2. We have seen the historical importance of this 
family of simple groups, their classification leading to consideration of the 
inductive family of simple groups of sectional 2-rank < 4, whose subsequent 
classification constitutes one of the major chapters of the present proof. In 
contrast, in the odd prime case, no analogue of the sectional 2-rank < 4 
theorem was either established or required. Indeed, a short argument enabled 
us to incorporate the normal /?-rank 2 case within the general analysis. 

2. The classical involution theorem. No analogue of Aschbacher's fundamen­
tal classical involution theorem was either established or required in the odd 
prime analysis. 

3. The B-conjecture. For each prime p, one can formulate what one may call 
the Bp-conjecture for finite groups (the l^-conjecture being the same as the 
^-conjecture), which makes precise the removal of /?'-core obstruction in 
centralizers of elements of prime order p. Moreover, the full classification 
theorem implies the validity of the Z^-conjecture in arbitrary finite groups for 
all primes p. 

As we have earlier described, verification of the B-conjecture held a domi­
nant position throughout the analysis of the involution case. Yet, in the odd 
prime p analysis, only a partial form of the corresponding ^-conjecture was 
ever needed. 

4. Signalizer functors. In the proof of the classical involution theorem—which 
can be properly viewed as the general case of the B-conjecture—Aschbacher 
was able to apply the signalizer functor method very smoothly, so that core 
obstruction per se was not a very serious problem for him. In contrast, Lyons 
and I were forced to elaborate lengths to achieve the removal of /?'-core 
obstruction in the odd prime p case. 

5. Validation of the Brauer principle. In the involution case, validation of the 
Brauer principle for Brauer components K of Lie type of odd characteristic is 
derived as a direct corollary of the classical involution theorem (except for 
certain low Lie rank K's). However, in the odd prime case, with the corre­
sponding K of Lie type of characteristic 2, validation of the Brauer principle 
was carried out by the ostensibly quite distinct neighbor method, as it has 
come to be called. 

Actually, the distinction is not as great as appears, for a portion of 
Aschbacher's analysis can be interpreted as determining the isomorphism type 
of G by the neighbor method. However, the context in which his argument 
occurs is so different from that of the odd prime case that this inherent 
parallelism is almost completely camouflaged. 

Thus, it is likewise natural to wonder how essential or accidental are the 
differences between the treatments of the involution and odd prime cases. 

3. A unitary perspective. In my prior work on simple groups I had been as 
steeped in the developmental, partitioned approach to the classification as any 
other group theorist. But how else could I analyze the troubling questions I 
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have just raised without coming to think of the classification of the simple 
groups as a single theorem? 

1. Can the global proof be reorganized in such a way that the groups of Lie 
type of characteristic 2 are characterized only once—in the process of validat­
ing the Brauer principle in the odd prime case for Brauer components of Lie 
type of characteristic 2, thereby avoiding (a) verification of the Brauer principle 
in the involution case for Brauer components of Lie type of characteristic 2, (b) 
separate treatment of the general G.F(2)-type case, and (c) any reference to the 
root involution theorem? 

2. Is it possible to handle the normal 2-rank 2 involution case in the same 
easy way as had been done in the odd prime case? 

3. Given the striking similarity between the schematic diagrams of the 
involution and odd prime cases, is it possible to carry through the signalizer 
functor method for all primes simultaneously—at least in the generic cases? 
And if so, what would be its conceptual significance? 

4. In the same vein, can the Brauer principle be validated in the involution 
case for Brauer components of Lie type of odd characteristic by the neighbor 
method, thereby merging this case with that of the corresponding odd prime 
case of Brauer components of Lie type of characteristic 2? 

5. Pursuing this line of inquiry, can one perhaps locate other major sections 
of the proof amenable to consolidation and simplification? For example, can 
the various subcases of the 2-rank 2 analysis (dihedral, quasidihedral, wreathed, 
homocyclic abelian, or type PSU3(4) Sylow 2-groups) be handled simulta­
neously by the Bender method? Similarly, are there any portions of the proof 
that can be simplified by greater use of the Goldschmidt amalgam method? 

As I began to think about these questions in a more systematic, but still 
general way, I gradually became convinced there was a high probability of 
obtaining affirmative answers. Thus I was being led inescapably towards a 
major restructuring of the classification theorem. This unitary perspective, as I 
have come to call it, held out the promise of a more coherent, much more 
efficient proof than presently exists. I visualized perhaps as much as a five-fold 
reduction—3,000 versus 15,000 pages. Certainly a great improvement, but still 
of inordinate length. However, I could see no way of producing a substantially 
shorter proof on the basis of techniques now available. 

Sketching out the general lines of such a unitary proof is one thing, but 
whether the proposed grand strategy is, in fact, viable can only be decided in 
the process of detailed verification of its major components. The sheer magni­
tude of carrying this out demanded a cooperative effort of a number of finite 
group theorists. 

Thus, first, Richard Lyons and later Ronald Solomon joined me in the task 
of turning the general sketch into the kind of detailed global outline that would 
clearly be a necessary prerequisite for achieving the desired unitary proof. The 
process has taken several years—reality continually forcing subtle shifts in our 
blueprint. Although we cannot be certain until the full proof is completed, we 
believe that our outline is now essentially in its final form. I shall refer to this 
as the GLS unitary approach, and shall describe its general shape in Part IV. 
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Our confidence in the GLS blueprint derives from the fact that some of its 
individual parts have already been completed, while work on others is in full 
progress. In addition to our joint efforts, Delgado and Stellmacher, Foote, and 
Stroth, respectively, are presently in the process of carrying through three 
further major steps of the program. 

It should also be mentioned that improvements in other areas of the 
classification proof have been made that, although not motivated by the GLS 
unitary blueprint, nevertheless dovetail with it very effectively. These include 
the Bender-Glauberman-Sibley-Peterfalvi [65, 118, 155] work on groups of odd 
order, Peterfalvi's re-examination of the Suzuki-Bender work on groups with a 
strongly embedded subgroup [110], and Enguehard's similar effort [50] con­
cerning the extremely difficult Thompson-Bombieri [32, 135] validation of the 
Brauer principle for centralizers of involutions with Brauer components K = 
PSL2{q\ 4 = 3, 5 (mod8), q > 5. 

4. A partitioned versus unitary approach. A number of simple group theorists 
believe that a partitioned approach will lead to a more effective classification 
proof, for its key independent theorems will, on the one hand, provide deeper 
insight into the basic structure of simple groups than could a unitary approach, 
and, on the other, possibly have direct application to other problems. Thus 
they argue that, although a partitioned proof may entail some degree of 
duplication, its advantages justify the extra effort. 

We have examined this position with great care, for now, while our proposed 
second-generation proof is still taking shape and before our results are put in 
final form, there is yet time to modify our blueprint. However, on closer 
inspection, we have concluded that the differences between a partitioned and 
unitary proof will, in fact, be much less than their names suggest, for the 3,000 
pages of a unitary proof will be as divided into separate chapters, each with its 
own individual theorems, as will any partitioned proof. Rather, the primary 
distinction between the two approaches appears to be that a unitary perspective 
will push to the forefront a different set of theorems than a partitioned one. 

To illustrate, the proposed GLS proof anticipates a result of the following 
general shape: _ 

Let G be a simple group, x an element of G of prime order /?, and K a 
component of Cx = Cx/Op,(Cx) with K of Lie type of characteristic r # p and 
assume that among all such x and K, the order of K is as large as possible. If 
the Lie rank of K ^ 3, then one of the following holds: 

(1) Cx is in Brauer form with Brauer component K isomorphic to a covering 
group of AT; or 

(2) G contains a strongly /^-embedded //-local subgroup M (with Cx < M). 
If (1) holds, then validation of the Brauer principle (by the neighbor 

method) will show that G itself is isomorphic to a group of Lie type of 
characteristic r, while if (2) holds, we should be led to a contradiction. In other 
words, the existence of a single "generic" component of Lie type of character­
istic r # p in the centralizer of an element of order p in a simple group G is 
enough to force G to be of Lie type of characteristic r, which clearly expresses 
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a deep general structural property of simple groups. In fact, the result is very 
much in the same spirit as the classical involution theorem, but is valid for all 
primes p. 

Thus, without a careful comparison of the key theorems making up a unitary 
versus a partitioned classification proof, it is not really possible to decide 
which collection provides deeper insight into the structure of simple groups, 
and very likely such judgment will ultimately rest on personal preference. 

However, I would add the following point in favor of a unitary approach: in 
viewing the classification as a single theorem, one is forced towards an 
understanding of the indispensable core of a classification proof, and the 
knowledge thereby acquired represents what I consider to be the single deepest 
insight into the structure of simple groups. 

This last comment also bears on a "semi-unitary" approach to the classifica­
tion proposed by some simple group theorists: determine the simple groups of 
noneven type along the lines of some improved version of the present proof, 
but determine those of even type from their 2-parabolic structures—thus, in 
effect, viewing the full classification as two separate theorems. 

Pushing through such a 2-parabolic approach will entail a very broad 
development of the Goldschmidt amalgam method, covering minimal 2-para-
bolics of seemingly arbitrarily complex structures. The method has certainly 
been very effective in dealing with " tight" characteristic 2 type configurations. 
However, my own sense is that just as with the Bender method in the 
involution case, so, too, there are inherent difficulties in extending the 
Goldschmidt method to the general group of even type. In any event, no one 
has yet succeeded in producing a detailed, viable program for determining all 
simple groups of even type by the amalgam method. 

Indeed, at present we seem to have developed only a single effective tool for 
analyzing the internal structure of the general simple group: pumping up 
components in conjunction with the signalizer functor method. 

Many years ago, Thompson advised simple group theorists to "stay away 
from nilpotent groups, wherever possible." What he meant was this: Only as a 
last resort try to solve a given classification problem by forcing the exact 
structure of a Sylow 2-subgroup, for subgroups having more complex struc­
tures are easier to analyze. 

There seems to be an obverse side to Thompson's dictum: namely, "Wherever 
possible, work with components, for they are the easiest subgroups to analyze!" 

5. The A'-group hypothesis. If G is a counterexample of least order to the 
complete classification theorem, then any simple group of order lower than G 
will obviously be isomorphic to a known simple group. In particular, this will 
be true for the composition factors of any proper subgroup H of G (for 
brevity, we call such a group H a K-group). 

If the classification of the simple groups is being viewed as a single theorem, 
one begins with such a minimal counterexample G and so imposes a global 
A'-group hypothesis on the subgroups of G at the very outset. However, as in 
Thompson's minimal simple group problem, the ensuing analysis seems to 
require this assumption almost exclusively on the local subgroups of G. Let us 
therefore call a group K-local if each of its local subgroups is a A-group. 



CLASSIFYING THE FINITE SIMPLE GROUPS 61 

Hence the unitary approach leads to the following formulation of the 
classification theorem: 

If G is a K-local simple group, prove that G is a K-group. 

Clearly this will imply that a minimal counterexample does not exist. 
It is the presence of this global A'-group hypothesis that prevents one from 

proving any results about arbitrary simple groups along the way—only when 
the complete theorem has been established do such intermediary results 
become general properties of simple groups. However, they are general results 
about A'-local simple groups. Thus, a unitary proof should be visualized in the 
following way: the classification theorem is to be constructed from a sequence 
of independent results concerning K-local simple groups. Phrased in these terms, 
the distinction between a unitary and a partitioned proof becomes even more 
blurred, reducing, in effect, to how global or selective the .K-group assumptions 
are. 

For example, the amalgam method deals with a group G = (Pt; | 1 < i< n), 
where { Pl9 P2,..., Pn} is a parabolic system for G. Since the analysis of such 
parabolic systems focuses solely on these parabolics, it suffices to require the Pt 

themselves or at worst the subgroups of G generated by pairs, triples, etc. of 
the Pj to be ^-groups. Hence in this chapter of simple group theory, global 
K-group hypotheses on the subgroups of G are unnecessary. 

It should also be pointed out that, although the existing classification proof 
is viewed as partitioned, the groups of even type have been determined only 
under a global .K-group hypothesis on proper subgroups, despite the fact that 
from the perspective of the schematic diagrams of §§6 and 7 of Part II their 
classification constitutes half the total proof. 

Some group theorists attach considerable weight to the nature of the 
A>group hypotheses of a given theorem, but to me this seems a very minor 
issue for the classification of the simple groups as a whole. 

There is, however, a more significant side to the issue. Essentially all of the 
independent theorems of a partitioned proof will themselves be proved by 
induction, but a considerable effort may well be required to complete that 
induction. If I may cite the classical involution theorem again, Aschbacher's 
paper divides into thirty-one sections. However, it is not until section 29 that 
one reaches the general "connected" case! All prior sections (excluding two 
that give a general description of the finite groups of Lie type of odd 
characteristic) are devoted to special cases: largely low-rank configurations 
plus the general orthogonal case (which from the classical involution viewpoint 
is somewhat exceptional) and a general "characteristic 2 type" case. 

Had Aschbacher been operating under a global A'-group hypothesis, a 
portion of his wonderful argument could have been abstracted to yield a short 
self-contained proof covering the "generic" component case (including large 
orthogonal groups), thus highlighting the essence of the theorem. 

6. Noninductive results. Given the classification statement, with its twenty-six 
singular sporadic solutions, it is hard to even visualize the general nature of a 
complete proof of the theorem that at some point would not require one to 
investigate a minimal counterexample in close detail. Thus it seems inevitable 
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that some theory of K-groups, analogous to Philip Hall's classical theory of 
solvable groups (cf. [74, Chapter 6]) which was so central to the odd order and 
N-group theorems, will underlie any proposed proof of the classification 
theorem, as is certainly the case with the present proof. 

However, this observation does not preclude the possibility that some deep 
structural properties of simple groups can be established noninductively—i.e., 
without recourse to any A'-group assumptions on proper subgroups. Represen­
tation theory, character theory, and transfer are examples of noninductive 
techniques, but, unfortunately, by themselves they provide only superficial 
structural information. 

Brauer and Fowler [36] a long time ago obtained the following lovely, 
noninductive qualitative result about simple groups G by elementary counting 
arguments on the number of involutions of G. 

THEOREM. There are at most a finite number of simple groups in which the 
centralizer of some involution has a specified order. 

However, this result, too, yields no specific structural information. 
I have often been asked at what point in the present proof can we assert that 

there exists at most a finite number of sporadic groups. Since our proof is 
inductive, the unfortunate answer is the following: only as a corollary of the 
complete classification theorem. Clearly an independent proof that all simple 
groups of sufficiently high order have a " regular" internal structure would have 
profound import. The proof of such a result would of necessity be noninduc­
tive. 

An attempt, so far unsuccessful, has been made to prove the Sims conjecture 
independently of the classification theorem. Likewise such a result would have 
deep impact on the study of simple groups. 

Because of the dominant position that the internally distinguishing simplic­
ity process has in my way of thinking about simple groups, I have considerable 
doubts that such deep noninductive structural results can ever be established. 
Only the future will determine the soundness of this judgment. However, in the 
meantime we have no choice but to live with the fact that induction is the 
single effective general method we have for studying simple groups, allowing us 
to dissect their internal structures on the basis of AT-group properties of their 
subgroups. 

CHAPTER IV. OUTLINE OF A UNITARY PROOF 

In this final chapter, I shall describe in some detail the outline of the 
proposed unitary proof of the classification theorem which Lyons, Solomon, 
and I have been developing, the general shape of which grew out of an attempt 
to respond to the various criticisms of the existing proof discussed in Chapter 
III. 

However, determination of its more exact form has required a considerable 
number of preliminary investigations of the major components of our program. 
Our objective has been to devise a comprehensive organizational plan leading 
to as simplified a proof as possible. The difficulty in obtaining such a 
formulation has been twofold: first, there has been the question of determining 
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the most effective approach to a particular phase of the classification; second, 
there has been the problem of deciding where one phase, whose proofs are to 
utilize one set of group-theoretic techniques, is to end and the next phase, 
dependent on a different set of methods, is to begin. The various preliminary 
analyses were undertaken to enable us to make the required decisions. 

We must first define several of the key terms which underlie our proposed 
unitary proof. Only then will we be able to present the outline itself. 

As I have said, work on certain portions of the global plan has been 
completed, on some portions work is in progress, while other portions remain 
to be systematically investigated. The extent of success so far makes us 
optimistic about the final outcome. 

1. The over-all plan. The GLS unitary outline involves a rather complex 
division into a number of cases, each requiring its own special analysis. It will 
be easier to follow the technical details if I first describe its general features 
schematically. 

The first step is to internally distinguish the even characteristic groups. This 
will form the basis of our definition of a group of even type (a weaker notion 
than that of a group of characteristic 2 type). In the groups of noneven type, 
we primarily study centraHzers of involutions, while in groups of even type 
primarily centraHzers of elements of odd prime order. 

Both types of simple groups will be divided into nongeneric and generic 
subclasses. These subclasses in turn require some further divisions, determined 
by the set of techniques on which the analysis of a particular subcase is to be 
based. Moreover, these various subcases are to be sequentially ordered in such 
a way that each simple K-group arises as a solution of one and only one case. 

The analysis of each case in turn splits into three stages. The aim of stage 1 
is to reach Brauer form, which we shall later define precisely. The obstruction 
to achieving this objective will be the existence of large subgroups, which will 
form the basis of our definition of a uniqueness subgroup—one variety in 
groups of noneven type and a second in groups of even type. 

The aim of stage 2 is to reach what we shall call strong Brauer form. When 
this stage is reached, the simple group G under investigation has an internal 
structure very closely approximating that of some simple i^-group G* (in a few 
instances only that of an almost simple ^-group G*). 

Finally, the goal of stage 3 is to show that the multiplication table of G is 
uniquely determined. Since G* satisfies the same internal conditions as G, it 
will then follow that G = G*. [Since G is assumed simple, this will also rule 
out the nonsimple possibilities for G*.] 

Unfortunately, just as was true in Aschbacher's classical involution proof, by 
far the greater portion of the analysis will be concerned with the determination 
of the nongeneric simple groups (which include all twenty-six sporadic groups). 

2. Groups of even type. The fundamental division in the existing classifica­
tion proof is between groups of non-characteristic 2 type (noneven type), 
which are studied by analyzing centraHzers of involutions, and groups of 
characteristic 2 type (even type), which are studied by analyzing centraHzers of 
elements of odd prime order. 
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However, as we have described in Chapter III, the final step in proving that 
a minimal counterexample G to the classification is of characteristic 2 type was 
an extremely elaborate undertaking, requiring validation of the Brauer princi­
ple for all possible Brauer components K. Moreover, the case K of Lie type of 
characteristic 2 was especially difficult and the process of carrying it out 
produced one of the four distinct characterizations of the groups of Lie type in 
the course of the proof of the full classification theorem. 

It is therefore natural to ask whether it might be possible to avoid these very 
difficult Brauer component cases by slightly shifting the point at which one 
drops the centralizer-of-involution perspective and begins instead to focus on 
odd primes. In other words, does there exist a slightly weaker notion of a 
group of even type than a group of characteristic 2 type, to which the present 
odd prime analysis can be extended without great difficulty? 

We have taken an affirmative position regarding this question and have been 
led to a new definition of a group of even type, which plays a central role in 
our unitary outline. The idea is to broaden the notion of a group of even type 
sufficiently that not only will it include the groups of Lie type of characteristic 
2 (and other simple groups of characteristic 2 type), but also all sporadic 
groups of Gir(2)-type. 

If one examines each of the simple G of the latter type, one finds that the 
following two general conditions are satisfied: 

(1) 0(CX) = 1 for every involution x of G; and 
(*) (2) If K is a component of Cx for some involution x of G, 

then K/Z(K) is either of characteristic 2 type or of Gi7(2)-type. 

In particular, (*) holds if G is of characteristic 2 type (in which case Cx has 
no components for any involution x of G). The conditions of (*) thus provide 
a generalization of a group of characteristic 2 type, sufficiently broad to 
include all the groups of Gir(2)-type. In our actual analysis, we replace the 
condition on K/Z(K) in (2) by a more intrinsic definition that leads to a 
slightly larger family of groups. The reason for doing this is that the latter 
definition, when extended to odd primes p9 yields a family of groups which 
arises in a natural way in the course of the analysis of groups of even type. 

However, to keep this outline as simple as possible, we shall not present the 
general definition, but instead shall limit ourselves to a list of the simple 
groups that arise for the prime 2. Here then is the key definition we shall use. 

DEFINITION. A simple K-group K is said to be of weak characteristic 2 type 
—for brevity, a W2-group—provided K is of one of the following isomorphism 
types: 

(1) A group of Lie type of characteristic 2; 
(2) PSL2(q)9 q a Fermât or Mersenne prime or 9 (for brevity, q e FM9); 
(3) PSL3(3)( = G2(2)'), PSU3(3), PSL4(3\ PSU4(3)9 PSp4(3)( = PSU4(2))9 

G2(3), or PSO+(3); 
(4) A5 (= PSL2(5) = PSL2(4))9 A6 (= PSL2(9))9 As ( s PSL4(2))9 A9, or 

A109 or 
(5) M n , M12, M229 M23, M24, J29 J39 J49 HS9 He9 Suz9 Ru9 .2, .1, M(22), 

M(24)'9 F59F39F29 or Fv 
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More generally, a quasisimple group K with O(K) = 1 is called a W2-group 
if K/Z(K) is a W2-group. 

Schur multipliers of all the simple groups have been determined (see [76, 
Table 4.1]), so a complete Hst of W2-gvo\xps is easily obtained. 

Now we define a group of even type. A simple group G (of even order) is 
said to be of even type provided: 

(1) 0(CX) = 1 for every involution x of G; and 
(2) If AT is a component of Cx for some involution i of G, then AT is a 

W2-group. 
Henceforth the term even type (and its complement noneuen type) will refer 

to a group satisfying the above conditions. 
The implication of this change is that, to prove that a minimal counterexam­

ple G to the classification of the simple groups is of even type, one will no 
longer need to validate the Brauer principle for Brauer components K with K a 
W2-group except in certain special cases. [These exceptions include the cases (a) 
K = L2(q) or SL2{q\ q G FM9, and (b) K = L2(2

n), L3(2
M), or PSp4(2

n), 
n > 2, and \G:NK\ odd.] 

If this definition of a group of even type provides an effective replacement 
for a group of characteristic 2 type, as appears to be the case, it will by itself 
yield a major simplification in the classification proof, for the most difficult 
cases in validating the Brauer principle arise in connection with W2-type 
Brauer components. 

3. Small groups. We now give the precise definition of a small simple group 
G. There will be four kinds of smallness, two for the prime 2 and two for 
groups of even type. 

As before, G is 2-small if m2{G) < 2. These are divided into two kinds 
according as G has even or odd order. 

Now let G be of even type. We denote by Jt{ G ) the set of 2-local subgroups 
of odd index in G. There will likewise be two kinds of "odd-small" simple 
groups, one in which Jt(G) has only one conjugacy class of maximal elements 
containing a Sylow 2-normalizer and another in which the elements of Jt{G) 
have low /7-rank for all odd p. 

We say that G is of small parabolic type if Jt{G} possesses a unique 
conjugacy class of maximal elements containing the normalizer in G of a Sylow 
2-subgroup of G. 

[The determination of the small parabolic simple groups of even type 
requires an extension to groups of even type of the present C(G;S) theorem 
concerning groups of characteristic 2 type.] 

Next, define the set a(G) of odd primes p by the following condition: 

p G a (G) provided either 

p > 5 and mp(M) > 3 for some M e ^ ( G ) , or 

p = 3 and m3(M) ^ 4 for some M e ^ ( G ) . 

We say that G is of small odd rank if a(G) is empty and G is not of small 
parabolic type. 



66 DANIEL GORENSTEIN 

The definition differs in two ways from the existing notion of a "quasithin" 
group: first, the rank condition is restricted to 2-locals of odd index rather 
than being imposed on all 2-locals; and second, the case m3(M) = 3 for some 
M ^Jt{G) is included among the small odd rank groups, whereas it was 
excluded from the earlier definition. 

In our proposed unitary approach, the small odd rank simple groups of even 
type are to be analyzed by the Goldschmidt amalgam and parabolic system 
methods, which focus on 2-locals of odd index, so conditions on the elements 
of Jt{G) would seem to be sufficient. Concerning the second modification, 
Aschbacher's existing treatment of simple groups G of characteristic 2 type 
with e(G) = 3 and m2p(G) < 2 for all p > 5 [14] is extremely difficult, and 
there is good reason to believe that the parabolic approach to this additional 
case will yield a shorter proof. 

A slight variation of these last conditions arises in connection with elimina­
tion of " uniqueness" 2-local subgroups in simple groups of even type, which is 
the basis of the following definition. 

We include among the groups of small odd rank those groups G with 
02(G) = 1 (but not necessarily simple) such that G = (Pl9 P2) for proper 
subgroups Pl9 P2 of G satisfying the following conditions: 

(1) Px n P2 contains a Sylow 2-subgroup of G; 

(*) (2) Q> (02(P,)) < 02(Pi)9 i = 1, 2; and 

(3) rnp{Pt) < 2 for all p > 5 and m3(Pt) < 3, i = 1, 2. 

[We have Pt < NG(02(Pj))'9 however, we do not require Pi itself to be a 
2-local subgroup, / = 1, 2.] 

The parabolic methods use only the fact that 02(G) = 1, rather than 
simplicity itself, and also do not require the generating parabolic subgroups to 
be local subgroups, so the conditions here, "localized" at Px and P2, are 
essentially the same as those for simple groups G of even type with o(G) 
empty. 

The justification for the definition is that the thrust of the analysis of a 
simple group G of even type having a "large" 2-local subgroup is to produce a 
subgroup Gx of G satisfying all the conditions of (*), with the corresponding 
subgroup Px contained in an element M of Jt(G), with M a uniqueness 
subgroup (see §4 for the definition). The goal of the amalgam and parabolic 
system methods is to force the possible isomorphism types of the parabolic Px 

(as well as of the corresponding parabolic P2). If this can be achieved, the final 
step of the analysis will then be to show that the structure of PY is incompati­
ble with that of the uniqueness 2-local M in which it is contained (by 
assumption, Px contains a Sylow 2-subgroup of M), thus eliminating the 
possibility of large 2-subgroups in simple groups of even type. 

4. Uniqueness subgroups. The large subgroup problem arises in several 
distinct portions of the classification: in internally eliminating (a) the odd part 
of Rad(G) in groups of noneven type and (b) the 2-part of Rad(G) in groups 
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of even type, and also in internally constructing Soc(G) in both groups of 
noneven type and of even type. As usual, we shall consider the cases p = 2 and 
p odd, G of even type separately. 

In the course of classifying groups with a proper 2-generated core, Asch-
bacher [4] established a basic sufficient condition for a subgroup M of a group 
G to be strongly embedded, which is often easier to verify than the fact that M 
contains the 2-generated core of G. This result forms the basis for the first type 
of uniqueness subgroup. To state it, we need the following preliminary 
definition. 

If M is a subgroup of a group G and x an involution of M, we say that M 
controls the G-fusion of x in G provided whenever x8 e M for some g ^ G, 
there i s / i e M such that xg = xh. 

THEOREM. Let G be a simple group, M a proper subgroup of G, and x an 
involution of M, and assume the following conditions hold: 

(i) M controls the G-fusion of x in M\ 
(ii) Cx < M; and 

(iii) If for g G G, xg e CM(x) with xg * x, then Cxxg < M. 
Under these conditions, M is strongly embedded in G. 

[Conditions (1) and (2) together imply that M contains a Sylow 2-subgroup 
of G.] 

For brevity, we call a subgroup M of G satisfying the conditions of the 
theorem pre-strongly embedded in G. 

In this terminology, a proper subgroup M of G will be called a 2-uniqueness 
subgroup provided M is either pre-strongly embedded in G or M contains the 
2-generated core of G. 

In practice, we construct such 2-uniqueness subgroups M of three different 
types: (a) as an O-local subgroup, (b) as a 2-local subgroup, and (c) as the 
normalizer of a quasisimple subgroup of G. The first two types arise in 
connection with the internal elimination of Rad(G) and the third with the 
internal construction of Soc(G). 

The notion of a uniqueness subgroup for odd primes arises only in simple 
groups G of even type in connection with internally eliminating the 2-part of 
Rad(G). 

We need the following additional terminology. For M &J?(G), O(M) will 
denote the set of odd primes p such that either mp(M)> 3, p > 5, or 
m3(M) > 4, p = 3. Thus a(M) ç o(G). 

Furthermore, for any odd prime />, and Sylow /7-subgroup P of G, the 
subgroup 

(NQ\Q^P,m{Q)>2) 

is called the 2-generated p-core of G. This is the direct analogue of the 
2-generated core for p = 2, and, as in that case, it is determined only up to 
conjugacy by the choice of P. 
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Now we can define the desired term. We call an element M ^Jiï(G) a 
a(G)-uniqueness subgroup provided the following conditions hold: 

(1) o{M) is nonempty; 
(2) M contains the 2-generated /?-core of G for each p e o(M); and 
(3) If H is any 2-local subgroup of G such that mp(H n M) > 2 for 

p e o(M), then H < M. 
Thus M is large in the sense that it contains many /?-local subgroups of G 

for p e o (M) and also many 2-local subgroups of G. 

5. The sets «£^(G). Our analysis of AMocal simple groups G that are not 
small focuses almost exclusively on the sets J?(x) of components of Cx/0 ,(x) 
as x ranges over the elements of G of prime order p for suitable p. We 
therefore introduce the fundamental sets of quasisimple groups 

<^p(G) = {J?(x)\x ranging over the elements of G of order p } . 

There exist important criteria for <&p(G) to be nonempty, both when G is 
not 2-small and p = 2 and when G is of even type and p e o (G) (in which 
case G is not odd-small). These criteria turn out to be directly related to the 
question of the existence of local uniqueness subgroups. 

Thus, the results to be stated in this and the next section are proved under 
the appropriate one of the following assumptions: 

(1) p = 2, m2(G) > 3, and G does not contain an O-local uniqueness 
subgroup; or 

(2) G is of even type with o(G) nonempty, p e o(G), and no element of 
~#(G) is a uniqueness subgroup. 

The so-called "balance" theorem [76, Theorem 4.54] asserts: 

THEOREM. If G is not of characteristic 2 type, then ^(G) *s nonempty. 

The theorem thus shows that J^2(G) is nonempty in any simple group G of 
noneven type that is not of small 2-rank. This is a basic distinction between the 
2-rank < 2 and 2-rank ^ 3 cases and provides a further reason why the 
groups of small 2-rank require separate treatment. 

For groups of even type, we have the following similar result whose proof 
involves a slight modification of a theorem of Klinger and G. Mason concern­
ing groups of characteristic 2 type [80]: 

THEOREM. If G is of even type, then <&p(G) is nonempty for eachp e o (G). 

The Klinger-Mason argument gives a somewhat sharper conclusion, which 
we shall need for our subsequent outline of the analysis of groups of even type. 
To state it, we denote by @*(p) for any p e a (G) the set of elementary 
abelian /^-subgroups of G of maximal rank subject to lying in a 2-local 
subgroup of G. In view of the definition of a(G), for any 5 G ^*(/?), we have 
m(B) > 3 if p > 5 and m(B) > 4 if p = 3. 

THEOREM. If G is a simple group of even type, then for each p G o (G), there 
is B e <%*(p) and b e B* such that J?(b) contains an element K with K not of 
Lie type of characteristic p. 
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Their analysis focuses on elements B e 3#*{p) and 2-groups T of maximal 
order invariant under B. Under the assumption that the theorem is false, their 
argument first forces T to be of symplectic type for any such B and T. Then, 
applying the result with B and T chosen so that T/T' is of maximal order, it 
yields a contradiction. 

6. Generic and nongeneric groups. The key to our reorganization of the 
classification proof is a division of the elements of &*p(G) into those that are 
p-generic and those that are not (here again G is a X-local simple group which 
is not small and either p = 2 or G is of even type and p e o(G)). When 
<&P{G) contains such a ^-generic component, there exists a rather uniform 
method for studying the centralizers of elements of order p in G, valid for 
arbitrary primes, while in the contrary case, as with the small simple groups, 
special methods are again required. 

Essentially, the /^-generic groups are the groups of Lie type of characteristic 
relatively prime to /?, apart from those of low Lie rank, the alternating groups 
of suitably high degree, and for small values of /?, certain sporadic groups. 
However, unfortunately, the known simple groups seem to be too perverse to 
permit a simple conceptual definition that produces a perfect split between 
those types of components that are to be treated by the general method and 
those requiring special methods. The following definition, expressed by a single 
easily formulated condition, comes very close—only a few groups fall on the 
wrong side of the "divide." 

First we call an element x of order p in a group X half-p-central provided a 
Sylow 2-subgroup of Cx(x) is of index < p in a Sylow /^-subgroup of X 
(p-centrai if Cx(x) contains a Sylow /^-subgroup of X). 

We now define a simple A^group K to be p-generic provided CK(x) has a 
component for some half-/?-central element x of K. Furthermore, a quasisim-
ple AT-group K with Op(K) = 1 is called p-generic if K/Z(K) is /^-generic. 

Here are the quasisimple groups that end up on the wrong side of the 
definition of 2-generic. First, the groups 

Sp4(3) and SU4(3) 

are non-2-generic, but are to be treated by the 2-generic methods when they 
occur as elements of &2(G). [The groups PSp4(3), PSU4(3)9 and 2PSU4(3) are 
also non-2-generic, but they will be treated by the special non-2-generic 
methods.] 

In the other direction, the groups 

2A9,2A1Q,2An,md M(23) 

are 2-generic, but the first three can be handled in the same way as the group 
2A8 when they arise as elements of <&2{G), and it is more efficient to include 
Af (23) within the non-2-generic analysis. 

It will therefore be convenient to call the groups Sp4(3) and SU4(3) 
ambiguous non-2-generic groups and the groups 2A9, 2A10, 2An, and M(23) 
ambiguous 2-generic groups. 
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It is to be understood that the term 2-generic will henceforth include the 
ambiguous non-2-generic groups, but not the ambiguous 2-generic groups, with 
an analogous meaning for the term non-2-generic. 

Similar imperfections occur for p = 3, but none arise for p > 5. 
We also note the overlap between simple W2~SrouPs an(^ simple 2-generic 

groups: namely, the groups 

L4(3), PSOs
+(3),A9, Al09mdHe. 

Finally, we shall say that G is of p-generic type provided some element of 
^p(G) is p-generic. Otherwise G will be called of non-p-generic type. [It is the 
groups of non-2-generic type that we referred to as of "intermediate" type at 
the end of Chapter I.] 

7. The major case division. Using all the above terminology, Diagram 4 gives 
the basic case decomposition of our proposed unitary proof of the classifica­
tion theorem. The arrows indicate the order in which the p = 2 and even type 
cases are to be considered, while the broken arrow indicates the place in the 
p = 2 analysis in which the even type alternative emerges. 

G a K - l o c a l s imp le group 

p = 2 

2-smal 1 
type 

* f 

non-
2 - g e n e r i c 

t ype 

even t y p e , p €. a (G ) 

/ 

/ 

odd-smal1 
type 

non-
p -gener i c 

type 

p -gene r i c 
type 

p = 2 or p ê c ( G ) 

DIAGRAM 4. Major case decomposition of the classification. 
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However, we first emphasize that many of these cases must themselves be 
divided into subcases corresponding to the specific method of analysis to be 
used. For example, the 2-small groups divide into those of odd order and those 
of even order, since in the first case we must study all maximal subgroups of 
G, while in the second only those containing a Sylow 2-subgroup of G. 
Likewise the odd-small groups separate into those of small parabolic type, 
whose analysis involves Aschbacher's theory of so-called "x~bl°cks" and an 
extension of the C(G; T) theorem to groups of even type, and those of small 
odd rank, whose analysis is based upon the Goldschmidt amalgam method. 

As a further illustration, the case in which G is of non-2-generic type divides 
into two subcases according as some element of &2{G} is isomorphic to one of 
the groups 

SL2(q)9 q odd, 2An, 7 < /i < 11, or (X)L3(4), X = 4, 4 X 2, or 4 X 4, 

or no element of S^2{G) is of this form. In the first case, core obstruction is 
handled by the Bender method, whereas in the second the key tool for 
eliminating core obstruction is the signalizer functor method. 

G a K - l o c a l s imple group, p = 2 

Case S o l u t i o n s 

2 - s m a l l type 
PSL (q ) ,PSL (q) ,PSU ( q ) , 

2 3 3 
q odd, PSU ( 4 ) , A , M 

3 7 11 

n o n - 2 - g e n e r i c 
type 

Even ty p e 
or 

G ( q ) , P S L ( q ) , P S U ( q ) , P S p (q)_ 
2 4 4 4 ' 

2G ( q ) , q odd, q > 3 , D (q) , 
2 4 

q odd, Ar t,A ,A ,J ,Mc ,0N,Ly , .3 ,M(23 ) 
9 10 11 1 

2 - g e n e r i c 
type 

L i e t y p e , odd c h a r , 
not a l r e a d y l i s t e d 
and A , n > 13 

n 

TABLE 3 
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G a K-local simple group of even type, p € o(G) 

Case Solutions 

odd-small type 

PSL (q),PSU (q ) ,Sz (q) ,q = 2 ,n > 3; 

PSL ( q ) , PSp ( q ) , 
2 n 

G ( q ) , F (q),q=2 ,n > 2 ; PSU ( q ) , 
3 n 4 

D (q),q=2 ,n > 2; PSL (2) (sA. ) , 
4 4 8 

PSL (2),PSL (2),PSp ( 2 ) , F ( 2 ) ' , 
5 6 6 4 

PSU (4),PSU (8),PSL (4),PSL (2),PSU ( 2 ) , 
5 5 4 7 5 

PSU (2) ,PSp(2) ,PSp (4),PS0 ( 2 ) , 
o o 6 8 

F (2),G (3),PSL (3),PSU (3),A ,A ,M , 
4 2 4 4 10' 12 12 

M ,M ,M ,J ,J ,J ,HS,He,Ru,.2,M(22) 
22 23 24 2 3 4 

S U 2 ' F 5 ' F 3 

non-p-generic M ( 2 4 ) ' , . 1 , F 2 , F 1 

p-generic type Lie type, char. 2 
not already l is ted 

TABLE 4 

Also, the subcase of the non-/?-generic type case, p e o(G\ that leads to the 
four sporadic groups M(24)', .1, F2, Fx is very interesting. It is here that we 
need the notion of a group of weak characteristic /?-type—for brevity a 
^,-group (a concept we have not defined here). Under the assumption that G 
is of even type, 3 e o (G), and every element of <^3(G) is a W3-group, we use 
the Klinger-Mason methods to argue that the centralizer of a 2-central involu­
tion of G is isomorphic to that in one of the above four sporadic groups. 

Finally, in the case G of /?-generic type, p = 2 or p G a(G), it is only the 
subcases in which some element of <&p(G) is a /^-generic group of Lie type of 
characteristic prime to p or an alternating group that are treated for all primes 
simultaneously. Even in these subcases, however, certain parts of the analysis 
require us to distinguish further subcases for separate treatment. 

Although the reader should be cognizant of the existence of this important 
finer subdivision of the proof throughout the ensuing discussion, Diagram 4 
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entirely suffices to give a picture of the global strategy of the proposed GLS 
classification proof. 

To establish the classification theorem, it will be necessary (and sufficient) to 
determine the simple groups satisfying the assumptions of each case of the 
above decomposition. Tables 3 and 4 list the expected case-by-case solutions 
(including the even type solution in the non-2-generic case). 

However, the tables require a word of explanation. First, there is some slight 
overlap among the separate cases. For example, the groups PSL2(q), q e FM 9, 
^5X3(3), PSU3(3% PSU3(4\ and Mn are both 2-small and of even type. We 
prefer to include these solutions within the 2-small analysis. Similarly, the 
groups A9, Al0, Al2, J^ 2̂» Mc, Ly, ON, and M(23) are both non-2-generic 
and of even type. The way the analysis is organized, it is preferable to treat all 
but the cases leading to An and J2 within the non-2-generic case. On the other 
hand, Al2 and J2 emerge most naturally from the small odd rank even type 
case. 

One should also keep in mind that the term 2-generic includes the ambigu­
ous non-2-generic groups, while the term non-2-generic includes the ambiguous 
2-generic groups. 

Finally, in the 2-generic type case, when we say " the groups of Lie type not 
already listed," we mean to exclude as well the groups G2(3), PSL4(3), 
PSU4(3), and PSp4(3), which are of odd-small even type and which will 
emerge as solutions from the Goldschmidt amalgam method. 

8. The working hypothesis. In the remainder of Part IV we make a number of 
comments about various aspects of our proposed unitary project; in particular, 
we describe the steps involved in validating the Brauer principle. We begin 
with the general "ground rules" under which we plan to operate. 

A. An efficient proof. The overriding aim of our global strategy is to produce 
as self-contained, elementary, and efficient a proof of the classification as 
presently available methods will allow. This principle requires amplification, 
for our present intention is to utilize results from a number of basic chapters of 
simple group theory. More specifically, we plan to operate under the assump­
tion that the following results are available to us: 

1. General techniques of finite group theory 
2. Existence and uniqueness of the simple groups 
3. Construction of the sporadic groups from the centralizers of their involu­

tions 
4. Solvability of groups of odd order 
5. The classification of the groups of Lie type and Lie rank 1 as doubly 

transitive groups, and the Suzuki-Bender-Aschbacher theory of groups with a 
strongly embedded subgroup. 

Each of these five fundamental topics would appear to be an essential 
component of any attempted classification of the simple groups. Perhaps, if 
our proposed unitary program is completed, we shall then consider the 
feasibility of developing a simplified treatment of one or more of them (if that 
has not already been done), but at present that prospect seems far off. 
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Most of the needed material for the first topic appears in the following 
books: Gorenstein [74] and a recent text of Aschbacher [18] for the founda­
tions of local group theory; Isaacs [90] and Goldschmidt [72] for basic 
character theory (the latter book includes a proof of Glauberman's Z*-
theorem, which depends on some of Brauer's block theory results). 

The algebraic group perspective, as developed by Steinberg [104, 105] 
provides a very satisfactory treatment of existence of the groups of Lie type 
and uniqueness for those of Lie rank > 2. However, uniqueness for those of 
Lie rank 1 requires a (difficult) separate verification. 

On the other hand, existence and uniqueness of the sporadic groups and 
their construction from the centralizers of their involutions is spread across a 
very large number of papers. A systematic treatment of this major chapter of 
simple group theory would be a very valuable contribution to the subject. 

The solutions of certain centralizer-of-involution problems in simple groups 
of low 2-rank involve the same kind of character-theoretic analysis as the 
construction of some of the small sporadic groups. We shall therefore include 
these among our assumed results. 

In other words, for the present our intent is to limit reorganization of the 
classification theorem to that portion of the internal structure of the simple group 
G under investigation which can be achieved by local group-theoretic analysis 
(and general techniques of finite group theory). In simple groups G of 
/^-generic type, these methods suffice for the internal construction of Soc(G). 
However, in many remaining cases they yield only centralizer-of-involution 
information. 

Thus, as we have indicated, the present status of these five major areas of 
simple group theory can be described as follows: many parts are in definitive 
form, in others revision is in progress, and others remain to be restudied. 

But our point here is this: by a self-contained proof, it is to be understood 
that we mean subject to the assumption that the principal results in each of these 
five areas of simple group theory are valid. It also means that no other major 
result about simple groups can be used in the unitary development without 
including its proof. 

Thus it is likewise to be understood that the terms efficient and elementary 
are to be construed as relative to the above constraints. 

B. The theory of K-groups. A significant problem facing any contemplated 
revision of the classification theorem is how to handle the vast variety of 
properties of AT-groups that will be needed for the proof. Some of these express 
very general properties of arbitrary AT-groups or simple AT-groups (often the 
precise result includes certain exceptional cases), while others give detailed 
information about a single group or family of groups (usually small ^-groups). 

For simple ^-groups, they range from properties of their automorphism 
groups, central covering groups, tables of centralizers of elements of prime 
order, generation by such centralizers, conjugacy classes of elements of prime 
order, and /?-rank, Sylow /^-subgroup, and /?-local structure for various primes 
/?, as well as certain results concerning /^-modular representations for ap­
propriate primes p. 

A prerequisite for achieving a satisfactory internal classification of the 
simple groups will be the development of a coherent general theory and special 
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theory of AT-groups, bringing together in a systematic manner results which are 
presently rather chaotically scattered through the literature. Moreover, a major 
objective for an efficient proof should be to minimize the number of AT-group 
properties required in the analysis. 

For the groups of Lie type, the desired properties are established either using 
the theory of rational points of endomorphisms of algebraic groups or, in the 
case of the classical groups, from the geometry associated with their natural 
representations. For the alternating groups, they are usually proved by direct 
calculation. On the other hand, each sporadic group must be treated individu­
ally; in fact, many of the needed properties are established in the course of 
constructing the sporadic groups as solutions of appropriate centralizer-of-
involution problems. 

In implementing our proposed unitary proof, we have settled on the follow­
ing procedure: In each chapter we shall list without proof those AT-group 
properties needed for the results to be proved there. Then, after all the chapters 
have been written, we shall systematically verify the total resulting list of 
A'-group properties. This "deferred" approach, although unsatisfactory in that 
it postpones completion of the principal results of the various chapters, has the 
advantage of avoiding duplication and will enable us to treat the theory of 
AT-groups systematically as separate chapters of simple group theory. 

9. A-balance and signalizer functors. The signalizer functors used in the 
classification proof are all defined in terms of "/c-balance" for suitable k. We 
describe these briefly. 

Let G be a simple group, p a prime, and A an elementary abelian 
/7-subgroup of G. For each subgroup D of A, set 

AC(Z>)= f l 0,(Cd). 
d<ED* 

For any positive integer k, if m(A) > k, we say that G is k-balanced with 
respect to A provided for each D < A with m(D) > k and each a e / , 

Ac(D)nca<<v(cj, 
and we say that G is weakly k-balanced with respect to A provided 

[àc(D)nCa,A]^Op,(Ca). 

Furthermore, i f m ( ^ 4 ) > / c + l , we say that G is (k + ^-balanced with 
respect to A provided G is both (k 4- l)-balanced and weakly ^-balanced with 
respect tOv4. 

Assume now that m (A) > k 4- 2 and that G is either ^-balanced or 
(k 4- ^-balanced with respect to A; for each a ^ A*, correspondingly set 

6(a) = <AC(Z)) nCa\D^A, m(D) > k)\ or 

« ( f l )
s ( A c ( i ) ) n c f l , [ A c ( £ ) n c f l , D ] | ) 

( £ < D ^A, m(D) > k+1, m(E) > k). 
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Under these conditions, one has the following basic result. 

THEOREM. If 0(a) is a K-group for each a e A#, then 0 is an A-signalizer 
functor on G. 

If each 0(a) is solvable, the result follows from the solvable signalizer 
functor theorem [17, 63, 67, 68]. In the general case it is a consequence of 
McBride's nonsolvable signalizer functor theorem [108], which extends the 
solvable theorem precisely to the case in which each 0(a) is a AT-group. The 
signalizer functor theorem itself asserts: 

THEOREM. Under the same assumptions, the closure 0(G;A) = 
(0(a) | a e A*) is ap'-group. 

Corresponding to the two cases, we call 0 the k-balanced or (k + ^-balanced 
,4-signalizer functor on G. 

Walter and I introduced the notion of ^-balance for integral values of k 
and, in particular, worked out the general theory of 1-balanced groups [83, 84]. 
Furthermore, 2-balanced functors (for p = 2) were used in many classification 
theorems. Subsequently, Goldschmidt [70] and Aschbacher [7] defined signal­
izer functors involving commutator conditions, which included the 3/2-bal-
anced case. In particular, Aschbacher's proof of the classical involution theo­
rem utilizes 3/2-balanced functors. After that, Lyons and I, adapting Asch­
bacher's construction of 3/2-balanced functors, defined 5/2-balanced func­
tors, which we used in our analysis of centralizers of elements of odd prime 
order p in groups G of characteristic 2 type for p e O(G) and mp(G) > 4 [71]. 
In the case p = 2, Walter [149] has used yet another type of signalizer functor 
that had been earlier suggested by Goldschmidt, in which the subgroups 
Or(Cd) = 0(Cd) are replaced by the subgroups Or(Cd) for a suitable fixed odd 
prime r. 

A key feature of the proposed unitary strategy is to use 3/2-balanced 
signalizer functors with respect to suitable elementary abelian /^-subgroups in 
studying centralizers of elements of order p in AT-local simple groups G of 
/^-generic type for both p = 2 and p e a (G). Our work to date indicates that 
this will yield a short, uniform treatment of the signalizer functor portions of 
the analysis of such simple groups. On the other hand, when G is of non-p-
generic type, the analysis appears to require A>balanced functors for k = 1, 2, 
5/2, and 3, again for suitable elementary abelian /^-subgroups of G. 

Because it was available, McBride's theorem was used in the existing 
classification proof f or p e a (G) in studying simple groups G of characteristic 
2 type. However, by considering an inductive ordering on the primes in o(G) 
in terms of the rank of elements of &*(p), it may be possible with some 
additional argument to avoid the use of nonsolvable signalizer functors in 
analyzing groups of even type; but the matter has not yet been resolved. 

Finally, as we have observed earlier, it is the triviality of an appropriate 
signalizer functor that yields the internal ehmination of Rad(G). On the other 
hand, its nontriviality represents the first step in the construction of a unique­
ness subgroup of G. Indeed, if G is k or (k + ^-balanced with respect to the 
elementary abelian /^-subgroup A of G of rank > k + 2, k a positive integer, 
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and 0(G;A) is a nontrivial //-group, then as G is simple, Ne(G;A) is a proper 
subgroup of G. 

Moreover, if B is any subgroup of A of rank k + 1, an elementary 
argument, using the specified balance assumption on A, implies that 

9(G;B) = (0(b) \b G £*> = 0(G\A). 

But elements of NB clearly permute the 0(B) among each other, because 
è £ 5 * by definition of 0 and consequently 0(G;B) = 6(G;A) is invariant 
under NB. Hence we have 

PROPOSITION. IfB is any subgroup of A of rank k + 1, then NB < NB{G.Ay 

Thus the signalizer functor theorem enables one to produce a proper 
subgroup M = N$(G;A) °f G which contains the normalizer in G of certain 
subgroups of A. This is the first step in the process of showing that M is, in 
fact, strongly (or pre-strongly) /^-embedded in G, which asserts that M 
contains the normalizers in G of all (or most) nontrivial /^-subgroups of M. 

10. Internally eliminating Rad(G:). Internal elimination of Rad(G) in those 
cases that depend upon the Bender and/or signalizer functor methods gets to 
the heart of the study of the centralizers of prime order in simple groups. Table 
5 lists the various such cases and the corresponding methods that are used to 
construct uniqueness subgroups under the assumption that the odd part or the 
2-part of Rad(G) is nontrivial. 

G a K-local simple group 

Case Methods 

2-smal1, |G| even Bender method + 
2-fusi on 

G of non-p-generic type 
Bender method, 
k-balanced s i g n a l i z e r functors , 
k = 1 , 3 / 2 , 2 , 5 / 2 , 3 + 
2 - fus ion in the case p = 2 

G of p-generic type 3 /2 -ba lanced s i g n a l i z e r 
functors 

TABLE 5. Internal elimination of Rad(G) in cases involving 
Bender or signalizer functor methods. 

I would like to discuss two subcases to highlight some of the important 
features of the analysis. 

A. The 2-generic Lie type case. I shall outline the argument in the /^-generic 
case in some detail. The subcase in which p = 2 and 3?2(G) has a 2-generic 
component K of Lie type (of suitably high Lie rank) has some simplifying 
features not present in the other /7-generic cases, so I shall limit the discussion 
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to this subcase. As we shall see, the argument involves a closely linked 
interplay between 3/2-balanced signalizer functors, L-balance, and particular 
properties of simple ^-groups, including the B-property. 

By definition of ££2(G), there is an involution I G G such that AT is a 
component of Cx = Cx/0(Cx). Let K0 be the preimage_of K in Cx and let K 
be a minimal normal subgroup of K0 that maps on K. [K is said to be a 
2-component of Cx. K is clearly perfect, and is, in fact, uniquely determined.] 

By definition of K0 and K, we have K0 = KO(Cx) and one easily proves the 
following result: 

LEMMA 1. K is quasisimple if and only if K centralizes 0(CX). 

One of the main assertions of the internal elimination of Rad(G) is that K 
is, in fact, quasisimple; and it is a proof of this result we intend to outline. 
Assuming false, it follows from Lemma 1 that 

(1) [K,0(Cx)] * 1. 
We use (1) to construct a 2-uniqueness subgroup in G (in fact, a strongly 

embedded O-local subgroup), in which case the Aschbacher-Bender-Suzuki 
theorem will yield the desired contradiction. 

Since K is of Lie type of_odd characteristic of sufficiently high degree, K 
contains an £8-subgroup A (i.e., A = Z2 X Z2 X Z2) with the following 
properties :_ 

(1) Cj((A) contains a product 7 of components, each of which is nonsimple 
of Lie type of odd characteristic; and 

(2) X < / (whence Z < Z(7)). 
Note that as the Schur multiplier of any simple A'-group has 2-rank < 2, 

A£ Z(K\ s o / < K. _ 
Since K maps on K, K contains an L8-subgroup A mapping on A. We 

argue first that G is 3/2-balanced with respect to A and then that the 
3/2-balanced A -signalizer functor 6 is nontrivial. It is here that the special 
choice of A enters. Indeed, let I0 be the preimage of / in CK(A) (note that 
CK(A) maps onto C^(A)) and let ƒ be a minimal normal subgroup of 70 

which maps on 7, so that / is a product of 2-components of CK{A) and 

(2) A < Z(I). 

We use (2), L-balance, and properties of the groups of Lie type of odd 
characteristic to prove 

LEMMA 2. G is 3/2-balanced with respect to A. 

PROOF. Here is the gist of the argument. Fix any a Œ A* and set C = 
Ca/0(Ca). Then / < Ca as A < Z( / ) , and it follows by L-balance that I is 
contained in a product / of components of C. We choose J with the minimal 
number of components, in which case clearly / centralizes no component of J. 

Let H be a component of J and set JV* = Nç(H)/Cç(H\ so that N* is 
isomorphic to a subgroup of the automorphism group of the simple group 
H* s H/Z(H). Since A < 7, A induces inner automorphisms on H. Also a 
clearly centralizes H. Hence the image A* of Â in H* is isomorphic to 
Z2 X Z2, Z2, or 1. 
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There exists a completely formal argument which reduces verification of 
3/2-balance with respect to A to the following assertion: 

For each a ^ A* and each such component H of C for which A* = Z2 X Z2, 
H* is locally 3/2-balanced with respect to A*—that is, 

( a ) n f l . e ( > l ^ O ( C ^ ( f l * ) ) = l ; a n d 
(b) [0(CN.(a*)), A*] = 1 for each a* e (A*)*. 
But we can determine the possible isomorphism types of H*. Indeed, the 

image I* of / in N* is a product of components of CH*(A*), each nonsimple 
of Lie type of odd characteristic with A* < Z(/*). Moreover, H* is a 
ÀT-group, as G is a #-local simple group. One checks now from the known 
structure of the centralizers of involutions of simple AT-groups that H* must be 
of Lie type of odd characteristic and Lie rank ^ 2. 

Finally, it is a fact that every simple group of Lie type of odd characteristic 
and Lie rank > 2 is locally 3/2-balanced with respect to each of its four-
subgroups, so the lemma follows. 

The non triviality of the 3/2-balanced ^4-signalizer functor 6 depends, in 
particular, on properties of the action of A on 0(CX). It will be convenient to 
describe these in general terms, as they will be critical at later stages of the 
argument as well. 

A group X "acted on" by an £8-group B will be said to be well-generated 
for B provided: 

X = (CX(D)\D ranging over all four-subgroups of B). 

We need the following result: 

LEMMA 3. If X is a group with X/0{X) a product of m > 0 quasisimple 
components, each of Lie type of odd characteristic and Lie rank ^ 2, {excluding 
a few groups over GF{3)), then X is well generated for every E%-group acting on 
X. In particular, this is the case if X is of odd order {in which case m = 0). 

Another elementary fact about solvable groups of odd order acted on by a 
2-group B is the following: 

(3) [X,B]= [[X,B],B]. 

With this information we can prove 

LEMMA 4. 0 is nontrivial. 

PROOF. Again we present only the main points of the argument. Since K is 
quasisimple with A < K and A ^ Z{K), it follows from (1) that A does not 
centralize 0(CX). But 0{CX) is well generated for A, so there is a G Â * such 
that 

y= [C 0 ( C A >M] * i. 

We need only show that Y < 0(Ca), for then Y < [0{Ca\ A] < 0{a) by 
definition of 0, in which case 0 is nontrivial. Furthermore, again putting 
C = Ca/0{Ca), the desired conclusion will follow provided 

(4) A centralizes Y. 
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Let 7, H, N*, and H* be as in Lemma 2. By (3), 7 = [Y,Â]\ and as 
A < / < J, it follows that 7 < J. But 7 < <9(CX), so 7 < 0(Cj(x)). Again, an 
entirely formal argument reduces the verification of (4) to the following 
assertion for each x-invariant component H of J (whence x* e JV*): 

(5) A* centralizes 0(CH.(x*)). 

On the other hand, by definition of /, /* is a product of components of 
Cff*(A*(x*))9 whence by L-balance I* is contained in a product L* of 
components of CH*(x*). But H* is a AT-group and the ^-property holds in all 
simple AT-groups. In particular, it implies that L* centralizes 0(CH*(x*)). 
However, A* < /* ^ L*, so^l* centralizes 0(CH*(x*)\ as required. 

Thus the closure 6(G;A) of 0 is nontrivial and is of odd order by the 
solvable signalizer functor theorem. We let M be a maximal 0-local subgroup 
of G containing Ne(G. A). Since G is 3/2-balanced with respect to A and 
NQ(G-A) ^ ^» w e conclude that 

(6) ND < M for each four-subgroup D of A. 

But K = K/0(K) is of Lie type of odd characteristic and not one of the 
exceptions of Lemma 3, so K is well generated for A. It follows therefore from 
(6) that 

LEMMA 5. We have K(x) < M. 

Setting M* = M/0(M), K* is thus a component of CM*(x*), and we can 
identify its pump-up /* in M* as the product of one or two components of 
M* of Lie type of odd characteristic (and Lie rank > 2). We let L* be the 
product of all such components of M*, so that L* is normal in M*, and we let 
L be the corresponding product of 2-components of M, so that likewise L is 
normal in M. 

Furthermore, as 0(CX) is well generated for A, 0(CX) < M, whence 
[K*90(Cx)*]^L*. But by the ^-property in L*, [K*,0(Cx)*] = 1. Since 
[K, 0(CX)] * 1, we thus conclude 

LEMMA 6. We have 0(L)± 1. 

We are now almost in a position to show that M is strongly embedded in G. 
It will be convenient to say that an is8-subgroup B of M is M-closed provided 

CE < M for every four-subgroup E of B. 

In particular, >1 is M-closed by (6). 
The following result will be critical. 

LEMMA 7. Let B be an M-closed Es-subgroup of M and let g e G. If B8 < M 
and B < M8, then g G M. 

PROOF. Indeed, given the structure of L, L is well generated for B8. But # g 

is Mg-closed, so L < Mg. Similarly L8 ^ M. Using L-balance and the defini­
tion of L*, one concludes now that, in fact, L = L8. Hence O(L) = 0(L8) = 
(O(L))8, whence g e N0(L). But O(L) is normal in M, as L is normal in 
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M and O(L) is characteristic in L. Thus M < N0(L). Since O(L) =t 1 by 
Lemma 6, and M is a maximal 0-local subgroup, it follows that M = N0(L), 
whence g e M, as asserted. 

Lemma 7 has the following key consequence. 

LEMMA 8. If B is an M-closed E ̂ -subgroup of M and B < Y < M, then 
AV< M. 

PROOF. Indeed, if g e JVy, then Y = Yg < Mg, s o 5 < Mg. Likewise £ g < 
Y8 = Y < M, so g e M by the previous lemma. Since g was arbitrary, we 
conclude that NY < M. 

As a first application, we have 

LEMMA 9. M contains a Sylow 2-subgroup S of G. 

PROOF. Expand A to a Sylow 2-subgroup T of M and T to a Sylow 
2-subgroup S of G. Since A is Af-closed, iVr < M by Lemma 8. In particular, 
A^(7) < M. But as T is Sylow in M, this forces T = NS(T). Since S is 
nilpotent, it follows that T = S, proving the lemma. 

We describe the remaining steps without proofs; the arguments are similar 
in spirit to the preceding. First, Lemmas 8 and 9 imply that Ns < M. Hence to 
establish the strong embedding of M, it suffices to prove 

(7) Ct < M for every involution t of S. 

To establish (7) for a given involution /, it is probably necessary only to 
show that Ct contains an M-closed ^-subgroup B with B < L. However, 
there are then a few delicate configurations to analyze, which can be entirely 
avoided by imposing the following stronger conditions: 

LEMMA 10. Let t be an involution of S such that Ct contains an M-closed 
E%-subgroup B of L and an involution u with the following properties'. 

(i) Cu < M; and 
(ii) w* e J* for some component J* of CL*(t*) with J* of Lie type of odd 
characteristic other than PSL2(q). 

Under these conditions Ct < M. 

The exclusion of PSL2(q), q odd, avoids certain unpleasant potential 
pump-ups (when q = 5, 7, or 9). The point of conditions (i) and (ii) is that they 
enable one to prove that M contains the normal closure Y of B in Ct (i.e., the 
smallest normal subgroup of Ct containing B). Since B is M-closed, it follows 
then from Lemma 8 that Ct < NY < M. 

This immediately yields 

LEMMA 11. We have Ca < M f or every a G A*'. 

[A little extra work is required if K is defined over GF(3), as SX2(3) is a 
solvable group.] 

For brevity, call an £8-subgroup B of M strongly M-closed if Cb < M for 
every b e B* (in which case clearly B is M-ciosed). Thus A itself is strongly 
M-closed. 
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The idea now is, beginning with A, to produce other strongly M-closed 
^-subgroups B of M. For example, suppose B centralizes A and for each 
b e £ # , there exists an involution « of M (depending on b) such that 
condition (ii) of Lemma 10 holds with b,A in place of t,B. Then since A < Ch 

and Cu ^ M, it follows from Lemma 11 that each Ch < M, whence B is 
strongly M-closed. 

Using the structure of L, and repeating this argument successively, one can 
establish the following result: 

LEMMA 12. Every E'^subgroup of L is strongly M-closed. In particular, 
Ct < M f or every involution t of L. 

The second assertion is a consequence of the first and the fact that 
m1(Cl (/)) > 3 for every involution t of L. 

Finally, if / is an arbitrary involution of S, then likewise m2(CL(t)) ^ 3, so 
Ct contains a strongly M-closed isg-subgroup B of L. Furthermore, CL*(t*) 
contains a component /* of Lie type of odd characteristic other than PSL2(q), 
and so CL(t) contains an involution u with w* e J*, and by the previous 
lemma, Cu < M. Hence Ct < M by Lemma 10 and so M is strongly embedded 
in G, as required. _ 

REMARK. The /^-generic cases in which K is an alternating group (with 
p = 2) or in which p is odd follow a similar pattern of proof. There is again an 
appropriate fs^-subgroup A of K. However, in these cases there does not exist 
a product /of components of C^(A) satisfying the critical inclusion A < Z(7). 
As a consequence, verification of 3/2-balance as well as certain other steps in 
the proof require additional argument. 

B. Elimination of uniqueness elements of Jt(G). Our second subcase will 
explain how the amalgam-parabolic system method enters into the elimination 
of uniqueness elements of Jt(G) when G is of even type with o(G) =t 0. 

The definition of such uniqueness subgroups is given in §4 of this chapter. 
To describe the situation we wish to consider, we need a preliminary definition. 

Let N ^ J?(G) and let S be a Sylow 2-subgroup of N, so that S is a Sylow 
2-subgroup of G by definition of Jt(G). Set 

&>{N\S) = {K\S ^K^NsindCK(02(K)) < 02(K)}. 

[If CN(02(N)) < 02(N), then, of course, # G &(N;S).] 
We assume the following conditions are satisfied: 
(1) If M is any maximal element of J((G), and S a Sylow 2-subgroup of M, 

then M = (K | K G S?(M\S))\ 
(2) If o(M) ¥= 0 and M is as in (1), then M is a uniqueness subgroup and 

for each p e o(M\ mp(K) > 2 for some K e &>(M\S)\ and 
(3) G is not of small parabolic type. 
In particular, conditions (1) and (2) automatically hold if CM(02(M)) < 

02(M) for every maximal element M of Jt(G). 
Since o(G) # 0 , there exists some M ^Jf(G) with a(M) ¥= 0 , and without 

loss we can assume that M is a maximal 2-local subgroup. Since M e ^ ( G ) , 
M contains a Sylow 2-subgroup S of G. Furthermore, as G is not of small 
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parabolic type, it follows by Sylow's theorem that M is not the unique 
maximal 2-local subgroup of G containing S. Thus there is a maximal element 
TV e J((G) with S < TV and TV # M. 

We consider subgroups Mv Nx of M, TV, respectively, defined as follows: 
(1) Choose Mx e y(M;S) minimal subject to m (Mx) > 2 for some p e 

o{M)\ 
(2) Case 1. If o(N) # 0 (in which case also TV is a uniqueness subgroup), 

choose Nx e 5f{N\S) minimal subject to m (N{) ̂  2 for some q e a(TV); 
Case 2. If a(TV) = 0 , choose TVX minimal subject to Nx ^ M. 
Since TV = (K\K eS?(N;S)) and TV # M with TV, M maximal 2-local 

subgroups of G, clearly such a subgroup TVX of TV exists in Case 2. 
We then have the following key fact. 

LEMMA. IfGl = (Ml9 TVX>, then 02(Gl) = 1. 

PROOF. Suppose false and let H be a 2-local subgroup of G containing 
No2{Gxy

 T h e n (Mi> Ni) ^ ^- B u t m
P(H n M)> MpiMi) > 2, so by condi­

tion (3) in the definition of a a(G)-uniqueness subgroup, H < M and conse­
quently Nx < M. In particular, Case 2 does not hold, so a (TV) # 0 and 
m

g(Ni) > 2 for some g e a(TV). Thus mq(N n M) > ra^TVj) > 2, so again 
by condition (3) (with TV, M, # in the roles of M, //, /?, respectively), we 
conclude that M < TV, whence M = N (again as each is a maximal 2-local), 
contrary to the choice of TV. This completes the proof. 

Since 02(GX) = 1, and CMi(02(Mx)) < 02(Ml), CNi(02(Nx)) < 02(Nx) (by 
definition of 6f(M\S), Sf(N;S)), the amalgam-parabolic system method is 
applicable to Gv Moreover, because of our minimal choice of Mv Nl9 there is 
considerable constraint on the /7-structure of Mv and in Case 1 on the 
^-structure of Nl9 while in Case 2 MXC\ Nx is necessarily the unique maximal 
subgroup of TVX containing S. In addition, condition (3) in the definition of a 
a(G)-uniqueness subgroup is very effective in the analysis. 

As we have noted earlier, the aim of the analysis is to reduce the problem to 
showing that Gx is of small odd rank (i.e. to proving that wi^A^) < 2, 
mr(Ni) < 2 for all primes r > 5 and that m3(Mx) < 3, w3(TV1) ^ 3) and then 
to determine the possibilities for the "parabolics" Mx and Nv thereby forcing 
the structure of S. Finally it is shown that the uniqueness subgroup M cannot 
possess a Sylow 2-subgroup of the shape of S. [Stroth has carried this out in 
the case that Mv TVX are solvable [106] and is presently at work on the general 
case.] 

11. Brauer form. As we have observed earlier, internal elimination of 
Rad(G) yields a first approximation of the centralizer of some element of order 
p in G with that of a corresponding centralizer in some known simple group 
G* and represents the first of three stages in the internal construction of 
Soc(G). 

We shall describe the results obtained at the first stage, which we have 
referred to as Brauer form, in the /7-generic case and shall add some brief 
comments about the shape of Brauer form in the remaining cases. The exact 
definition of Brauer form in the /7-generic case involves the notion of the 
"neighbor" of a component of a suitable element of order p. 
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However, to define this notion, we need some preliminary general terminol­
ogy. First, if x e G is of order p and K is a component of Cx of order 
divisible by p (whence the image of K in Cx/Op,(Cx) is an element of J^(G)), 
then K is said to be terminal in G (for the prime p) provided AT is a 
component of CY for every element y of order p mCK. 

By Sylow's theorem, it suffices to impose the condition on a Sylow p-
subgroup P of CK with x e P. Moreover, if mp{CK) = 1, then x is the unique 
element of order p in P and, as K is a component of Cx, K is automatically 
terminal in this case, which will explain why the concept of terminality was not 
needed in our earlier examples of Brauer form (Part II, §3). 

For p = 2, terminality is very close to Aschbacher's notion of a standard 
component, which is defined by the conditions: 

(1) If H = CK9 then \H n H*\ is odd for all g e G - NK\ 
(2) AT commutes elementwise with none of its G-conjugates; and 
(3) NK = NH. 
The following result of Gilman [60], which formalizes a portion of Asch­

bacher's argument in [6], gives the connection between terminal and standard 
components. 

THEOREM. If x is an involution of G and K is a component of Cx with K 
terminal in G andm2(K) > 2, then K is standard in G. 

The case m2{K) = 1 is exceptional. In that case K has quaternion Sylow 
2-subgroups and K/0{K) = SL2(q), q odd, q > 5, or 2A7, the double cover 
of A7. 

In view of conditions (1) and (3), Aschbacher defines a subgroup X of even 
order in an arbitrary group G to be tightly embedded if \X C\ X8\\s odd for all 
g <= G - Nx (\H\ is even in (1), a s x e H). 

Tightly embedded subgroups play a central role in the existing classification 
proof. For example, the general form of the classical involution theorem 
includes a determination of all simple groups containing a tightly embedded 
subgroup with quaternion Sylow 2-subgroups. Moreover, properties of tightly 
embedded subgroups of both arbitrary groups and of almost simple AT-groups 
are critical for validation of the Brauer principle for centralizers of involutions 
in Brauer form. 

Terminality is the basic notion in our proposed unitary approach. Indeed, 
our investigations to date indicate that very few properties of tightly embedded 
subgroups are needed for the internal construction of Soc(G) by the "neigh­
bor" method. _ 

Next, consider an arbitrary quasisimple AT-group L and set L = L/Z(L). 
We say that a quasisimple subgroup / of L is subterminal in L for the prime p 
if ƒ is a component of CL(u) for some element u of order p in L and I is 
terminal in L. 

If L is simple, then, of course, a subterminal component is terminal in L. 
We have the following fact. 

PROPOSITION. If L is p-generic, then L contains a subterminal component for 
the prime p. 
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Now let A' be a terminal component in G for the prime p with A/^-generic, 
so that by the proposition K contains a sub terminal component for p. If I is 
any such subterminal component of K and y is any element of Cr of order p 
that induces a nontrivial inner automorphism on K, then the pump-up J of I 
in Cy (see Chapter II, §5) is called a neighbor of K in G. 

Since y induces a nontrivial inner automorphism on K and / is subtermi-
nal, it follows that ƒ is a component of CK{y) and that y centralizes some 
element z of order p in CK. Also, as K is terminal, AT is a component of Cz. 
But now as y centralizes z, we see from the definition that / does, in fact, have 
a pump-up in Cy. 

Furthermore, by the exact assertion of L-balance, / is z-invariant, J = 
J/Op,(J) is either quasisimple or the product of p components cycled by z, 
and in either case ƒ is a component of Cj(y). 

If J itself is a product of (one or p) quasisimple components, we say that J 
is semisimple. 

We are at last in a position to give the exact definition of Brauer form in the 
/^-generic case. Let x be an element of prime order p in G, where either p = 2 
or G is of even type with p e a(G). We say that Cx is in Brauer form with 
Brauer component K provided the following hold: 

(1) K is /^-generic; 
(2) K is terminal in G; and 
(3) Every neighbor of K is semisimple. 
The significance of the neighbor is that for a suitable choice of x and K it is 

ultimately shown that Soc(G) = (K,J), where J is an appropriate neighbor of 
K. Indeed, the second stage in its construction proves the existence of a 
quasisimple neighbor J of K which contains / properly, so that K is a proper 
subgroup of (K, J). Finally, it is argued that G = (K,J). 

On the other hand, in the non-/?-generic case the notion of neighbor does not 
enter into the definition of Brauer form. Instead, it is defined by the condition 
that for x e G of order /?, Cx contains a component K with K terminal in G 
and non-/?-generic; but some constraint is usually placed on the element x. In 
particular, when G is of even type with p e a (G), JC is restricted to be in an 
element B e B*(G). [It is shown that B, x, and K satisfying these conditions 
always exist in this case.] However, when G is 2-small and the centralizer of 
some involution x of G has a component K, K is necessarily terminal in G; in 
this case any such x, K define Brauer form. 

Not all simple groups, however, possess elements of order p whose central­
izes have components. In particular, since components are nonsolvable, this is 
the case if the centralizer of every element of order p is solvable. Hence such 
groups (for example, AT-groups) do not possess Brauer components. Likewise it 
is true for all 2-small simple groups other than PSL3(q), PSU3(q), q > 5 (for 
p = 2). 

In such cases Brauer form must therefore be defined in terms of conditions 
on the solvable group Cx, x an involution of G. However, as these are rather 
technical, we omit the precise definition. The point is that Brauer form in these 
cases expresses the conclusions concerning the structure of Cx implied by 
successful application of the Bender method. 
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On the other hand, when G is odd-small of even type, elimination of the 
2-part of Rad(G) involves an analysis of the 2-local subgroups of G containing 
a Sylow 2-subgroup (i.e., the elements of Jt{G^) by the Aschbacher block 
method in the small parabolic case and by the Goldschmidt amalgam-
parabolic subgroup method in the small odd rank case. In these cases, Brauer 
form expresses the conclusions which these respective analyses yield. In 
particular, it involves assertions about the structure of 2-local subgroups rather 
than of centralizers of elements of odd prime order. Again we omit the precise 
definitions. 

It should also be emphasized that many of the possible Brauer components, 
in fact, correspond to no simple A'-group. Such components are eliminated 
during later stages of validation of the Brauer principle. 

12. Strong Brauer form. In the second stage of the internal construction of 
Soc(G), which we refer to as strong Brauer form, the critical subgroups of G 
are shown to have a much tighter structure than that expressed by Brauer form 
itself, one which more closely approximates that of the corresponding config­
urations in simple AT-group G*, and we denote the resemblance by the symbol 
G « G*. We note also that most of the configurations for which there exists no 
such G* are eliminated during this stage. 

In the preceding section, we have already intimated the definition of G « G* 
in the /^-generic case, but we formalize it now. Note that the possibilities for 
G* in this case consist of (a) the general groups of Lie type of odd characteris­
tic plus the alternating groups of sufficiently high degree when p = 2, and (b) 
the general groups of Lie type over GF(2n) (with either p dividing the order of 
a Cartan subgroup of G* or p = 3 and n = 1) when p e o(G). 

First of all, there may exist more than one element x of order p in G for 
which Cx is in Brauer form with Brauer component K. We begin by ordering 
the set of all such JC, K, choosing them so that 

(1) | AT | is maximal; and 
(2) Subject to (1), mp(CK) is maximal. 

Moreover, it is only for such a maximal x, K in Brauer form that we establish 
strong Brauer form. 

In this case, let J be a neighbor of K in G, so that J is the pump-up in Cu of 
a subterminal component I oî K for a suitable element u of order p in K. We 
call J proper if J is quasisimple and I < J. 

With this terminology, we say that G is in strong Brauer form G* and write 
G « G*, G* one of the simple AT-groups described above, provided Cx* is in 
Brauer form with Brauer component K* for a suitable element JC* of G* of 
order p and the following conditions hold: 

(1) K=K*; and 
(*) (2) K, K* possess proper neighbors / , /* in G, G*, 

respectively, with / = J*. 

We refer to the group G* as the approximate of G. 
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Thus strong Brauer form in the /^-generic case is expressed by a precise 
resemblance of the centralizers of two elements x, u of order p in G with those 
of suitable corresponding elements JC*, U* of its approximate group G*. We 
refer to it as strong neighbor Brauer form. 

We note that the cases in which no approximate G* of G exists—such as 
when K = 2An, n > 12 (for p = 2), or when the pair K and proper neighbor 
/ of K do not occur in any known simple group (for p = 2 or for 
p G o (G))—are eliminated primarily by an analysis of /^-fusion. 

However, there is an important such case that is not removed until the next 
stage of the analysis. Indeed, the case K = An has two potential solutions: 
first, the expected solution G* = An+4, in which CK = Z2 X Z2, I = An_4, 
and the proper neighbor / = An\ and second, one which leads to the nonsimple 
solution G* = 2 n + 2 , in which Cx = Z2 X 2„ (and CK = Z2), and we take 
u e Cx to act as a transposition on K (whence u £ K in this one case). This 
time I = An_2 and the pump-up / of / in Cu is likewise isomorphic to An. We 
shall write G « 2„ + 2 in this case and shall call 2 n + 2 the approximate of G. 

When G is of non-2-generic type or of 2-rank 2 and Cx is in Brauer form 
with Brauer component K, the definition of strong Brauer form differs from 
that in the 2-generic case: in place of the existence of a proper neighbor are the 
following conditions: 

A Sylow 2-subgroup S of G is isomorphic to a Sylow 
2-subgroup S* of its approximate G* ; 
Two involutions tl9 t2^ S are conjugate in G if and 
only if the corresponding involutions /*, t* of S* are 

conjugate in G* (i.e., G and G* have identical 
involution fusion patterns ) ; and 
If / is any involution of S, Ct closely resembles 
C,*, where t* is the corresponding involution of 5*. 

Here the set of approximates G* consists of the groups of Lie type of odd 
characteristic and Lie rank < 2 (apart from the groups PSL2(q) and most of 
those defined over GF(3)); An9 n = 9,10,11; / l 5 Mc, Ly, ON, .3, and M(23). 

The meaning of "closely resembles" in (3) varies according as G* is or is not 
of Lie type of odd characteristic. Indeed, in the latter cases we, in fact, require 
Ct to be isomorphic to C,*; while in the former cases, if L* is a component of 
Ct* (whence L* = L2(r*) or SL2(r*) for suitable odd r*), we require only that 
Ct have a component L = L2(r) or SL2(r), respectively, with L and L* 
having isomorphic Sylow 2-subgroups. It is only at the next stage of the 
analysis that the equality r = r* is achieved. 

Likewise we must carry along two further possibilities related to the cases 
G* = Mc or Ly (in which cases Ct* = 2AS or 2An, respectively, for every 
involution ƒ* of G*). Indeed, the possibilities Ct = 2A9 or 2Al0 for each 
involution / of S (whence correspondingly S is isomorphic to a Sylow 
2-subgroup of Mc or Ly, respectively) are not eliminated until later in the 
analysis. 

a) 
(2) 

(**) 

(3) 
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We refer to the conditions of (**) as strong centralizer-of-involution Brauer 
form. 

For p = 2, it remains to describe strong Brauer form when G is small and 
the approximate G* of G is isomorphic to PSL2(q), q odd; U3(4), A7, or Mu, 
in which cases Ct+ is solvable for every involution /* of S*. Apart from the 
U3(4) case, the definition is again expressed by (**) with Ct = C,* when 
G* = A-j or M n . However, when G* = PSL2{q), q odd, (whence S and S* are 
dihedral), we require only the following: 

(1) 0(Ct) is abelian and inverted by every involution of Ct — ( /) ; and 
(2) NY < Ct for every nontrivial subgroup 7of 0(Ct). 
[In PSL2(q), 0{Ct*) itself is cyclic of prescribed order depending on q, but 

these conditions are not verified for 0{Ct) until the subsequent analysis.] 
On the other hand, it is preferable to define the term G « PSU3(4) as part of 

the case that G* is any group of Lie type over GF(q), q = 2", of Lie rank 1: 
namely, the families PSL2(q), PSU3(q% and Sz(q). Moreover, we note that 
these are precisely the possible solutions for G when G is of small parabolic 
even type. 

We shall write G « G* for one of the groups G* in these three families 
provided the following condition holds: 

Ns is the unique maximal 2-local subgroup 
of G containing the Sylow 2-subgroup S of G. 

In this case, we say G is of strong rank 1 parabolic Brauer form. Again the 
exact structure of S is not determined until the next stage. 

We are left to define strong Brauer form when G is of even type and either 
odd-small or of non-/?-generic type for p e a (G). In the first case, the table of 
solutions for G is very extensive, including the groups of Lie type of character­
istic 2 and Lie rank 2; a large number of individual groups of Lie type defined 
over GF(q), q = 2, 3, 4, or 8, of Lie rank 3 or 4; and no less than fifteen 
sporadic groups. 

When G* is one of the above groups of Lie type of characteristic 2 and Lie 
rank 2, we write G « G* provided the maximal 2-local subgroups of G 
containing S closely approximate those containing S*: more precisely, pro­
vided there exist two maximal elements Mv M2 of Jt(G) containing S and 
two maximal elements Mf, MJ of Jt{G*) containing S* such that 

, , (1) 02(Mi) = 02'(M*),i = 1,2; and 
I $ Sfc $ % I 

(2) 02\MX O M2) = 0T(M* n M*). 

In this case, we say that G is of strong rank 2 parabolic Brauer form. 
We note that this case includes the nonsimple possibility G* = 2F4(2); it, too, 

is not removed until the next stage. 
On the other hand, when G* is of Lie type above of Lie rank 3 or 4, or 

sporadic, or 2F4 (2)', strong Brauer form for G differs dramatically from Brauer 
form. Indeed, in the first case the 2-local information provided by the 
conclusions of the Goldschmidt amalgam method are used to determine the 
structure of the centralizers of suitable elements of order 3 in G and to show 
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that, in fact, G satisfies the conditions of strong neighbor Brauer form for 
p = 3 with respect to its approximate G*. Similarly, in the sporadic and 2F4(2)' 
cases the given information is used to determine the involution fusion pattern 
of G and the structure of the centralizers of involutions of G, so that in these 
cases it is strong centralizer-of-involution Brauer form that defines the relation­
ship G « G*. 

Hence, in these cases, 2-local information is used to determine, on the one 
hand, centralizers of elements of order 3 and, on the other, centralizers of 
involutions. 

Strong Brauer form in the remaining non-p-generic type case with p e a (G) 
likewise involves a shift of primes. Here the possibilities for G* are the four 
sporadic groups M(24)', .1, F2, and Fv 

Recall that in this case Brauer form requires x e B for some B e &*(p). 
The analysis depends on a further elaboration of the Klinger-Mason method 
[96], involving an interesting interplay between centralizers of elements of 
order p and centralizers of involutions. All cases with p > 3 and all but four 
cases with p = 3 lead to contradictions. In the latter four cases the analysis 
forces the exact structure of the centralizers of involutions, including de­
termination of a Sylow 2-subgroup S of G as well as the involution fusion 
pattern, identical to those in any one of the groups G* = M (24)', .1, F2, Fv 

Hence in these cases the term G « G* is again expressed in terms of strong 
centralizer-of-involution Brauer form. 

We have presented this amount of detail about strong Brauer form because 
it is at this stage of the analysis that the internal structure of our abstract 
AT-local simple group G is first shown to closely approximate that of some 
known simple group G*. Moreover, as we have seen, this approximation is 
expressed by one of four sets of conditions, which define the respective terms: 

(*) Strong neighbor Brauer form. 
(**) Strong centralizer-of-involution Brauer form. 
(***) Strong rank 1 parabolic Brauer form. 
(****) Strong rank 2 parabolic Brauer form. 

13. Internal definition of Soc(G). The next major step is to describe Soc(G) 
internally and to verify that G = Soc(G). It turns out that there are two 
essentially distinct types of such descriptions of Soc(G), corresponding to the 
cases in which (A) G is of strong neighbor or rank 2 parabolic Brauer form, or 
(B) G is of strong centralizer-of-involution or rank 1 parabolic Brauer form. 

(A) Strong neighbor or rank 2 parabolic Brauer form. In the first case, let x, 
K, w, / express strong neighbor Brauer form, and in the second, let Ml9 M2 be 
the two maximal 2-local subgroups of G containing the Sylow 2-subgroup S of 
G and expressing strong rank 2 parabolic Brauer form. Correspondingly set 

Soc(G) = (K,J) or 02'((Ml9M2)). 

Our task now is to prove that the group G0 = Soc(G), as just defined, is 
equal to G. In the next section, we shall explain the uniqueness of the 
multiplication table of G0, a result which is valid whether or not G0 = G, and 
which will imply that G0 = G*, where G* is the approximate of G. However, 
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for expository purposes, it is preferable to assume, when G0 < G, that G0 is a 
AT-group (even though G0 is not a local subgroup), in which case the conclusion 
G0 = G* can be checked directly. 

Since G is simple and G0 < G, G1 = NG is likewise a proper subgroup of G. 
The goal is to verify that Gx is pre-strongly embedded in G (for the prime 2), 
in which case G will be determined by the Aschbacher-Bender-Suzuki theorem, 
yielding an immediate contradiction, and thus forcing the desired conclusion 
G0 = Soc(G) = G. The argument is entirely local group-theoretic. Because we 
know the isomorphism type of G0, it is not difficult to establish sufficient 
information about the 2-structure of G in either case to establish the required 
properties of Gv 

(B) Strong centralizer-of-involution or rank 1 parabolic Brauer form. In 
contrast to the previous cases, the goal of the analysis here is to prove that G 
has the same order as its approximate G*. Once this is achieved, we define 

G = Soc(G). 
When G has more than one conjugacy class of involutions, \G\ is computed 

from the so-called "Thompson order formula," which is an expression for \G\ 
involving only the structure of centralizers of involutions and the involution 
fusion pattern of G (see [76, Theorem 2.43]). The formula itself is established 
by elementary Brauer-Fowler type arguments. 

The determination of \G\ is considerably more complicated when G has only 
one class of involutions, requiring a combination of local analysis, involution 
counts, and in many cases character theory as well as a theorem of Frobenius 
which gives a congruence for |G|. In a few cases, to turn this congruence into 
an equality, one needs certain deep character-theoretic results of Brauer 
concerning groups whose orders are divisible by primes r to the first power 
only, which depend on an analysis of the r-blocks of characters of G. 

When G* (under (B)) is of Lie type over GF(2), alternating, or sporadic, the 
analysis yields directly that \G\ = |G*|. However, in the remaining Lie type 
cases, it yields only that G has the same order as some subgroup of Aut(G*) 
containing G* as a subgroup of odd index, and it requires additional transfer 
arguments to force \G\ = |G*|. 

Furthermore, we note that it is in this portion of the analysis that the cases 
in which G has no approximate G* are eliminated (in particular, the cases 
Cx = 2An, n = 9 or 10). 

Hence, at this stage of the classification proof, we have reached an almost 
complete description of the internal structure of G = Soc(G), very closely 
approximating that of a suitable (almost) simple AT-group G*. It remains only 
to prove that G is, in fact, isomorphic to G*. 

14. The identification of G. At this point, we have the following internal data 
concerning G: 

G = Soc(G); 
and one of the following holds: 

A. G = (K, J) or 02'((Ml9 M 2 » (with G* of Lie type of Lie rank > 2 or 
an alternating group of degree > 12); or 

B. \G\ is completely specified. 
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The final step in the internal analysis is to show that the multiplication table 
of G is uniquely determined by the above conditions. Since the approximate 
G* of G satisfies these conditions, it will then follow that G = G*. This will be 
achieved by forcing G to have either a uniquely determined presentation by 
generators and relations, primitive permutation representation, or matrix rep­
resentation over a suitable field, or to be a transitive automorphism group of a 
suitable graph. 

It is the case G = (K, J) which, of course, yields the /^-generic simple 
groups. The arguments are completely local group-theoretic. We separate the 
Lie type and alternating component cases. 

Case Av G* of Lie type of Lie rank ^ 3. Here the goal is to show that G 
satisfies the same so-called Curtis-Phan relations as G* [45, 111] (see also [77, 
pp. 218-220]). We describe these, but omit technicalities. 

Let A be the Dynkin diagram of G*. By definition, A is the set of vertices of 
a suitable connected graph. Let G* be defined over GF(q). The Curtis-Phan 
relations assert that G is generated by a collection of SL2(q) subgroups L,, 
indexed by A, with the following properties; 

(1) If /, j are not adjacent in A, then [L,, L.] = 1; and 
(2) If z, j are adjacent in A, then (Ly, Ly> is isomorphic to a covering group 

of PSL3(q) or PSU3(q) and [Z(Lt\ Z(Lj)] = 1. 
These conditions imply that G satisfies the conditions of the Steinberg 

presentation for G*. [More precisely, it is the "universal covering group" G* of 
G* that possesses the Steinberg presentation, and the Curtis-Phan theorem 
asserts that G is necessarily isomorphic to a homomorphic image of G*. Since 
G* is the unique (nonabelian) simple homomorphic image of G*, it will then 
follow that G = G*.] 

Case A2. G* = An or 2„, n > 12. Correspondingly K = An_4 or An_2, J is 
G-conjugate to K, and CK = Z2 X Z2 or Z2. In the An case, the G-conjugates 
of CK are called root four-subgroups of G. In this case one constructs a graph 
T whose vertices are the root four-subgroups of G with two vertices connected 
by an edge if and only if they commute elementwise. Clearly G acts by 
conjugation as a transitive automorphism group of T. In this case, the aim is to 
show that T is uniquely determined—equivalently, that T is graph-isomorphic 
to the root four-subgroup graph T* of G*. 

Aschbacher [11] has shown, for all n > 10, that Aut(T*) = 2„. Since G is 
simple with G < Aut(T), once the uniqueness of T is established, it will follow 
that G = G*. 

Now consider the 2„ case. Here the goal is to force G to satisfy the 
conditions of the classical presentation for 2M: namely, G is generated by 
involutions xi9 1 < / < w — 1, subject to the relations |jc,-jcy-| = 1, 2, or 3 
according as i =j, \j — i\ ^ 2, or \j — i\ = 1. It is, in fact, shown that the 
desired involutions xt can be chosen to lie in NK U Nj. The argument thus 
yields that G = G*. Since 2W is not simple, this case therefore leads to a 
contradiction and so is excluded. 

Now consider the remaining possibility under A: 
Case A3. G* of Lie type of characteristic 2 and Lie rank 2 (with G = 

0 2 ( (M 1 , M 2»). Again the argument is completely local group-theoretic. Here 
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the goal is to show that G is a (B, JV)-pair of the same shape as G*. Let U be a 
Sylow 2-subgroup of G, and set B = iV .̂ One must prove the existence of a 
subgroup N of G with the following properties: 

(1) H = B Pi N is normal in JV with i / of odd order and B = #£/; 
(2) N/U = W is a group generated by two reflections; 
(3) G = ZW2? and the multiplication table of double cosets ByB, By'B for 

y, y' G N is completely specified; and 
(4) The isomorphism types of B and N are completely determined, as is the 

action of N on U. 
Together, conditions (3) and (4) show that the multiplication table of G is 

uniquely determined. Thus it will follow that G = G*. But now if G* = 2F4(2), 
then G is not simple, so that possibility will be excluded. 

Now we briefly discuss the various possibilities for G* under B. Here the 
arguments are considerably more elaborate, some subcases requiring a com­
plete determination of the character table of G, including in a few instances 
information about r-blocks of characters for suitable primes r, others requiring 
considerable generator-relation computations. Most subcases also require con­
siderable local analysis. 

We separate our comments into seven subcases. 
Case Bv G* = PSL2(p

n), p an arbitrary prime. Again let B = Nv, U a 
Sylow /^-subgroup of G. Here the goal is to prove that G is a (B, N)-pair of 
rank 1 with a uniquely determined structure for B and N, in which case the 
multiplication table of G will be uniquely determined. 

Case B2. G* = PSU3(p
n), Sz(2n) or 2G2(3"). Setting p = 2 or 3 in the latter 

two cases, the goal is the same as that of the previous case, but is now vastly 
more complicated. One must first force an initial set of possibilities for the 
structure of B by local methods, and must then prove that only one of these 
can occur within G. The latter argument seems to be inherently extremely 
difficult, necessitating very delicate generator-relation calculations, rather rem­
iniscent of the final chapter of the odd order theorem. 

Case B3. G* is one of the groups under B of Lie type and Lie rank > 2. 
Again let p be the characteristic of G*, U a Sylow /^-subgroup of G, and 
B = Na. Once again the goal is to prove that G is a (B, 7V)-pair of Lie rank 2 
(except in the cases PSL5(2), PSU6(2), PSO%(2), which have respective Lie 
ranks 3, 3, 4) with B and N having a uniquely determined structure and 
unique action of N on (7, in which case it will follow that G = G*. 

Case B4. G* is the Tits group 2F4(2)'. This group is not a (B, N) pair, but as 
Tits has shown [119], it has a very nice presentation. The goal of the analysis is 
to force G to satisfy the conditions of his presentation. 

Case B5. G* = An, n = 7, 9, 10 or 11. Here the goal is to construct a 
subgroup G0 of index n in G, in which case the permutation representation of 
G on the cosets of G0 will yield a homomorphism of G into 2W. Since G is 
simple, this will force G = An. 

Case B6. G* sporadic with G* £ Jv /4 , F5, F3, or Fv Apart from the listed 
groups and the three Conway groups, the remaining eighteen sporadic groups 
were originally constructed as primitive permutation groups. Moreover, it can 
be shown that each of them is uniquely determined by their degrees n, the 
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structure of a one-point stabilizer X, and the various one-point stabilizers of X 
on the remaining n - 1 points. 

Although the Conway groups .3, .2, and .1 were constructed from the Leech 
lattice, they have also been shown to be uniquely determined as suitable 
primitive permutation groups. 

Thus the goal in these twenty-one cases is to force G to possess a primitive 
permutation representation of the same degree and with the same one-point 
and two-point stabilizers as G*, in which case it will follow that G must be 
isomorphic to G*. 

Case B7. G* = Jl9 J4, F5, F3, or Fv In these cases, the aim is to show that G 
has an irreducible representation 0 as a group of linear transformations of 
respective degrees 7, 112, 133, 248, or 196,883 over the respective fields 
G.F(11), GF{2\ C, GF(3), or C, and then that 0(G) is uniquely determined. 

In the case of F3, 0 maps G into the subgroup Es(3) of GL248(3), and the 
uniqueness of 0(G) is established as a subgroup of Es(3). On the other hand, 
in the case of Fl9 if x denotes the character of 0, x is self-dual (i.e., x is 
real-valued) and x occurs with multiplicity 1 in the decomposition of both its 
symmetric square and symmetric cube. These conditions imply that the vector 
space V afforded by x admits a 0(G)-invariant commutative, nonassociative 
algebra structure B, equipped with an associative form (B is the Griess-Norton 
algebra refered to in Chapter I, §1), and 0(G) is uniquely determined as a 
linear group acting on this algebra. 

15. Concluding comments. The preceding outline should give a picture of the 
general shape of the proposed GLS unitary classification proof. There is a 
single generic case, leading quite uniformly to the large Lie type or alternating 
groups, plus a variety of small and intermediate cases, leading to the sporadic 
groups and the remaining Lie type and alternating groups, each such case 
requiring its own special treatment. Moreover, it is the analyses of these 
nongeneric cases that unfortunately make the total length of the classification 
proof so great, and explains why we consider a 3,000-page proof to be about 
the minimum we could hope to achieve with the present methods. 

Finally, we ask the question: Is there a good conceptual way of interpreting 
the proof in the generic case? 

This case is defined in terms of the centralizer of an element x of suitable 
prime order p in quasisimple Brauer form with /^-generic Brauer component 
K. Consider first the case that K (and ultimately G ) is of Lie type and let Lv 

L 2 , . . . , Lm be the canonical SL2(q) subgroups of G satisfying the Curtis-Phan 
relations. Then it is easily checked that for a suitable choice of the Li9 the 
element x can be taken in Lx with p dividing q + 1. Since elements of order 
prime to q in a group of Lie type over GF(q) are semisimple in the Lie sense, 
it is reasonable, in keeping with our terminology, to refer to such an element x 
as a semisimple Brauer element. 

On the other hand, when K (and G) are alternating groups, it is shown in 
the course of the proof that the element x is a root involution of G—i.e., x is 
contained in a root four-subgroup of G. 

Hence, if we add root involutions in alternating groups to the definition of 
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semisimple Brauer elements, we see that we can view the classification of the 
generic simple groups in the following way: 

The classification proof for the generic simple group G consists of the following 
two steps'. 

(1) An internal search for a semisimple Brauer element x of G. 
(2) Construction of a presentation for G from the specified structure of the 

centralizer of x. 
The nongeneric cases arise precisely when either G does not contain such a 

semisimple Brauer element or when such an element exists, but its centralizer 
does not contain an appropriate generic Brauer component. 
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