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Square integrable eigenfunctions of the Schrodinger equation decay ex­
ponentially. More precisely, let 

i — 1 ' i <j 

be the Schrodinger Hamiltonian for N particles interacting with real pairwise 
potentials Vij{xi — xy), where ViJ(xi — Xj) -> 0 (in some sense) as xt — Xj -* oo 
in R". Separating out the center of mass (H itself has only continuous 
spectrum) one obtains the operator 

H = -A + £ V^x, - xj), 
i<j 

where A denotes the Laplacian on L2(X\ X = {x = (xv... ,xN): Ejii/w,-*,- = 
0}. If <j> is an L2 solution of H<j> = E<j>, and if E lies below the essential 
spectrum of if, then <f> decays exponentially in the sense that there exist 
positive constants A and B for which |</>(x)| < Ae~B^xK The phenomenon of 
exponential decay has long been recognized and was apparent already in 
Schrödinger's solution of the hydrogen atom, but is is only recently that a 
satisfactory mathematical theory for the problem has been developed. 

There is a considerable chemical, physical, and mathematical literature on 
the subject, and we refer the reader to [9,7], and also the notes to Chapter XIII 
of [14], for extensive historical and bibliographic information. Four general 
techniques have emerged. 

(1) Comparison methods (see for example [4,5 and 3]). These methods are 
based on the maximum principle for second order elliptic operators and are 
modelled, to a greater or lesser extent, on the standard proofs of such classical 
theorems of complex analysis as the Hadamard three-line theorem, the Phrag-
men-Lindelöf theorem, and so on. 
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(2) Analytic group methods (see [8,9]: the work in [8] was inspired by earlier 
work in [13]). Here the idea is to combine the invariance properties of the 
Laplacian under certain analytic group actions with the results of regular 
perturbation theory. The argument has charm and surprise, and, fortunately, is 
easy to describe. For example, under the action of translations p -> p - b in 
Fourier space, the Schrödinger operator H = -A + Fis mapped unitarily to 

Hb = elb X(-A + V)e'lb'x = (\v - b) + V(x), whereZ>eRw. 

If <j> G L2 is an eigenfunction for H, //</> = E<j>, then ^ = e '* '^ 6 L2 is an 
eigenfunction for Hb9 Hb<j>b = E<j>b; but if E is isolated, by regular perturbation 
theory, Hb has an eigenvalue Eb near E9 even if b is (small and) complex. By 
analytic continuation the associated L2 eigenfunction must be <j>b = eih'x<j>. 
Said differently, this means that if \b\ is small enough, e|Zj| w|<£(.x;)| e L2\ 

(3) Operator positivity methods [1,2]. In this approach exponential decay 
follows directly from the positivity of the Schrödinger operator on certain 
subspaces and an elementary, but nonetheless remarkable, identity for second 
order elliptic operators. Again the ideas are easy to describe. Suppose <t>(x) is a 
real, L2(Rn) solution of the equation H<j> - (-A + V)<j> = £<j>, where E < 0 
and V(x) -> 0 as \x\ -> oo. Let ƒ be an arbitrary real, bounded C1 function 
with a bounded derivative. Then the interesting, and easily verified, observa­
tion is that after multiplying by ef and integrating by parts, the equation 
becomes 

(i) ƒ | V * | 2 + ( K - | V / | 2 - £ ) * 2 - O , 

where \p = ef4> e L2. On the other hand, as V(x) -> 0 as |JC| -» oo, for any 
e > 0, we may choose R such that V(x) - E > (1 - e)(-E) for |x| > R. Thus 
the Schrödinger operator satisfies the positivity condition 

(2) ƒ | V X | 2 + ( F - £ ) X 2 > ( 1 - « ) ( - £ ) ƒ X2 

J\x\>R J\x\>R 
y1 

J\x\>R J\x\* 

for all real x- Splitting equation (1) into {|x| < R) and {|JC| > R}, one obtains 

(3) ƒ ( ( l - e ) ( -£) - |v / | 2 )* 2 </ \(v-\vf\2-E)U\ 
J\x\>R V ; J\x\<R |V n 

Now let / )GR" satisfy \b\2 < (1 — e)(-E) and choose a sequence of real 
bounded C1 functions fn satisfying |V/n |2 < (1 - e)(-E) and which converge 
to ƒ = b - x (£ L°°). The point is that as n -» oo, the right side of (2) remains 
bounded, by C say, and this in turn implies the a priori exponential bound 

J\*\>* ((l-e)(-E)-\b\) 

In particular, </> decays (in the L2 sense) like e ,fe,w, as long as \b\ < {(-E) 
= y/0 — E = ^inf(ess spec H ) - E. 

(4) Probabilistic methods [6,7]. Here the eigenfunction <J> is expressed in terms 
of the semigroup <j> = e^~v+E)t<j>, which is in turn reexpressed as a 
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Feynman-Kac integral. Exponential decay then follows by carefully singling 
out and estimating the important contributions to the integral. 

The first result for general Af-body systems (N > 3) was obtained by 
O'Connor [13], who proved the L2 exponential bound for <J>, H<j> = £<J>, 

(4) f dx\<t>(x)fe2B"x"<oo, 
Jx 

as long as 

(5) B < v/2 - £ , 

where 2 = inf(ess spec H) and ||x||2 = 2 TJ?=imlxl • xt is the natural norm on 
X. Using analytic group methods as in (2), Combes and Thomas substantially 
simplified O'Connor's proof and also proved an extension of the result to 
eigenvalues embedded in the continuum. In [15] Simon showed that the L2 

bound (4) implies the pointwise bound 

(6) \*(x)\<Ae-***V 

for the same range of B. Bounds such as (4) and (6), which depend only on ||JC||, 

are called isotropic. However, as first remarked by Morgan [12], in regions of 
configuration space where all the particles are separated, the eigenfunction <f> 
automatically satisfies -A<|> = E<f>, so that one expects falloff likeexp(£fL1&I.x;J), 
with ^2bf/2mi = -E, which may be considerably more rapid than (6). This 
observation then led the authors in [9] to discover nonisotropic bounds of the 
form |<H*)I < Aeh'x, which were sensitive to the decay of the potentials 
V (xt — Xj) in different directions of configuration space. The authors ob­
tained their bounds through an extension of the analytic group method and 
stated their results in the form of a series of inequalities, similar to (5), but now 
containing directional information that b should satisfy in order that eb'x be a 
bound for <l>(x). Simultaneously and independently, Alrichs and M. and T. 
Hoffmann-Ostenhof [4,5] used comparison methods to study the atomic case 
(with fixed nucleus) and obtained similar results. 

The methods (l)-(4) described above specifically for the eigenvalue prob­
lem, can in fact be used in a wide variety of analytical situations. We mention 
two. For E < spec(-A + V) and for fixed y, the Green's function G(x, y), 
(-Ax + V(x) - E) G(x, y) = 8(x - y\ is an L2(dx) solution of the Schrö-
dinger equation away from x = y, and so the methods (l)-(4) immediately 
provide exponential decay rates for G as |JC| -» oo. In a less obvious develop­
ment, for the parametric Hamiltonian -A + X2F, not only do the methods 
provide information about the decay of eigenfunctions of -A + X2V for fixed X 
as \x\ -* oo, but also for fixed x as X -* oo. This then can be used to study 
eigenvalue splittings in tunnelling situations, where one learns that the gap 
between the first and second eigenvalues of -A + X2V decays exponentially in 
X at a rate given by the distance between two wells in the potential V, as 
measured in the Agmon metric (see [16,17 and 18]). 

The authors in [9] obtained improvements on the isotropic bounds (6) by 
constructing partial solutions of the above inequalities in a rather hit and miss 
fashion. It was Agmon [1,2], however, who realized that the inequalities could 
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be regarded as inducing a metric on X and that the best bound of the form 
|<>(x)| < yle"(1~e)p(x), e > 0, could be obtained by choosing p(x) to be geo­
desic distance in this metric. Agmon's beautiful and, at this stage, definitive 
result for L2 eigenfunctions <j> of JV-body Hamiltonians H9 H<j> = £<£, is as 
follows. For each partition DofN particles into disjoint clusters, set 

HD = -A + £ VtJ(xt - xj), 

where ^ ( J C , — Xj) is set to zero in the sum £ W unless i and y belong to the 
same cluster. Define the threshold energy by 2 ^ = inf(spec(i//>)). By a well-
known result (see e.g. [14]), 2 = min^E^ is the infimum of the essential 
spectrum of H. For each x = (xl9...9xn) e X, let D(x) be the partition 
obtained by lumping together those i and y with xt = Xj. Mostly, D(x) is the N 
cluster partition, but along directions where xt - Xj = 0, D(x) has fewer 
clusters, etc. The result is that if p(x) is the geodesic distance (from the origin, 
say) to x in the metric 

ds2=C2D(x)-E)Zl2mi\dxi\
2, 

1 - 1 

then for all e > 0, 

(7) \<t>(x)\^A^-^x\ 

provided that E < 2. Agmon proved his results using operator positivity 
methods as in (3). Precursors of the method can be found, for example, in (a 
subsection) of [11]. 

In the case of the ground state, where E lies at the bottom of the spectrum of 
H and the eigenfünction <J> is strictly positive, it is possible to show that the 
bound (7) is the best possible by proving a lower bound of the same form: 

(8) \<t>(x)\>A'ee-«+'^x\ 

Taking limits one obtains 

IWI-oo P{X) 

The lower bound (7) for the general iV-body problem is due to Carmona and 
Simon [7] (a special case was obtained by T. Hoffman-Ostenhof in [10]), who 
used probabilistic techniques as in method (4). It turns out that probabilistic 
methods are particularly well suited to describing lower bounds for the ground 
state. This is because <j> is positive, and one can simply neglect the contribution 
to the Feynman-Kac integral from all except those paths in a neighborhood of 
a certain distinguished path. This distinguished path is chosen to minimize the 
classical Lagrangian action, and in an elegant circle of ideas connected with 
Jacobi's geometrization of mechanics, the minimum value of the action turns 
out to be precisely the geodesic length in Agmon's metric. 
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The monograph under review is a description, with full details (and some 
additional material), of Agmon's results on the decay of eigenfunctions an­
nounced in [1 and 2]. The book is beautifully written, completely self-con­
tained, and truly accessible to the proverbial sophisticated reader who knows 
only the calculus. Schrödinger operators are treated within the broader frame­
work of second order elliptic equations with general coefficients. Included is an 
interesting somewhat nonstandard discussion of the selfajointness problem for 
second order operators that is well worth reading. The book also contains the 
proof of a very general Harnack-type inequality for operators with complex 
coefficients which is needed to convert L2 exponential bounds to pointwise 
bounds. To the best of my knowledge this is the only book devoted exclusively 
to the decay of eigenfunctions. It is useful both to the reader who wants to 
learn the subject and to the specialist who wants to know more about the 
general problem of the decay of solutions to second order differential equa­
tions. 
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