
BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 12, Number 1, January 1985 

SOME RECENT DEVELOPMENTS IN FOURIER ANALYSIS 
AND iP-THEORY ON PRODUCT DOMAINS1 

BY SUN-YUNG A. CHANG AND ROBERT FEFFERMAN 

Introduction. In this article we wish to discuss a theory which is still 
developing very rapidly. It is only quite recently that many of the aspects 
of Fourier analysis of several parameters have been discovered, even though 
much of the corresponding one-parameter theory has been well known for 
some time. The topics to be covered include differentiation theory, singular 
integrals, Littlewood-Paley theory, weighted norm inequalities, Hardy spaces, 
and functions of bounded mean oscillation, as well as many other related 
topics. We shall begin in Part I by attempting to give a broad overview of 
some of the one-parameter results about these topics. The discussion here is, 
however, anything but encyclopedic. (For more detailed treatments of these 
matters in the one-parameter setting, the reader can consult such excellent 
treatments as E. M. Stein, Singular integrals and differentiability properties of 
functions [75], R. R. Coifman and G. Weiss, Extensions of Hardy spaces and 
their use in analysis [30], and, in the classical domain of the disc, D. Sarason, 
Function theory on the unit circle [72], and J. Garnett, Bounded analytic 
functions [46].) In Part II we take up these same areas in the two-parameter 
setting. Since this theory is less well known than the material of Part I, we 
go into greater detail and devote separate sections to each of several of the 
above topics. 

PART I. T H E ONE-PARAMETER THEORY 

To begin with the one-parameter theory, perhaps the most basic part is the 
differentiation of integrals and the maximal function of Hardy-Littlewood. If 
ƒ is a function on Rn which is Lebesgue integrable, and if 

Ar(f)(x) = m(1}(T)) f f(y)dy 
m{Br[x)) JBr(x) 

denotes the average value of ƒ over the ball with center x and radius r, then 

lim Ar(f){x) = f{x) for a.e. xeRn. 
r—+0 

This fundamental result of Lebesgue, proved in the earlier years of the century, 
was applied immediately in a number of contexts. For example, Lebesgue saw 
that it could be used to show that for integrable functions of one variable, the 
arithmetic means of the partial sums of the Fourier series converge pointwise 
almost everywhere. 
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For the development of Fourier analysis, the most far reaching result con­
nected with Lebesgue's theorem was that of Hardy-Littlewood in the early 
thirties-the Hardy-Littlewood Maximal Theorem. It said that if we consider 
the operator 

Mf(x) = mpA(\f\)(x), 
r>0 

then 
\\Mf\\p < Cp\\f\\p f o r p > l , 

and for L1 -functions, 

m{Mf >a}< (C/<*)||/||i for all a > 0 

(where || ƒ ||p denotes the Lp-norm for p > 1). This maximal theorem is easily 
seen to imply Lebesgue's theorem, and the maximal function and its variants 
have played a leading role in many areas of analysis, including singular integral 
operators and Hardy spaces. 

The deepest part of the maximal theorem is the estimate 

m{Mf>a}<(C/a)\\f\\l, 

and this, in turn, depends on a geometric covering lemma. The covering 
lemma says, roughly, that from an arbitrary collection of balls in Rn we may 
select a disjoint subcollection whose total volume is at least a fixed fraction 
of the volume in the whole collection. It is interesting to note that if, in jRn, 
we denote by Ari)r2>...,rn(/)"(x) the average of ƒ over the rectangle centered at 
x with sides parallel to the axes of lengths r\, r2,..., rn , and if ƒ G Ll{Rn), 
then for every x G Rn 

lim Ariira,...,rw(/)(aO 
ri,r2,.-.^n-^0 

may not exist when n > 1! On the other hand, if a i ( r ) ,^( r ) , . . . ,ot n {r) are 
increasing functions of r > 0, and if Ar(f)(x) denotes the average over the rect­
angle centered at x with sides parallel to the axes of lengths ai(r) , ^ ( r ) , . . . , 
an(r), then, if ƒ G L1(i?n), \imr->o Ar{f)(x) again exists a.e. [85]. 

What these results tell us is that if we are interested in differentiating the 
integral of an integrable function in i?n, then, very roughly speaking, it is 
not the number of dimensions n that is important, but rather the number 
of parameters indexing the sets we are averaging over: only one-parameter 
families of sets can be expected to differentiate the integrals of Lebesgue 
integrable functions in Rn. 

The next topic we discuss in the classical theory is interpolation. This 
notion is already used in proving the Maximal Theorem. We said above that 
the basic estimate for the Hardy-Littlewood operator is 

(1) m{Mf >a}< (C/o) | | / | | i . 

Since, naturally, any average of a bounded function does not exceed the bound 
of that function, we also have 

(2) l|M/||oo < ll/ll 



FOURIER ANALYSIS AND Hp-THEORY ON PRODUCT DOMAINS 3 

It turns out, according to a celebrated theorem of Marcinkiewicz, that any 
linear, or even sublinear, operator T satisfying the L1-estimate (1) and L°°-
estimate (2) is bounded on Lp(Rn) for all 1 < p < oo. There are a great 
many theorems these days of this same form-namely, if a linear operator T is 
bounded between spaces Xo and lo and also bounded between another pair 
of spaces X\ and Yi, then T is automatically bounded as an operator from 
X to Y for some appropriate intermediate pair of spaces. To give just one 
other example, if a linear operator T is bounded on the Hardy space H1^1) 
and also bounded on L2(i?1), then it must be bounded on Lv{Rl) for all p 
between 1 and 2 [44]. There are many, many more examples of this general 
technique of interpolation. 

In this setting of the maximal function and interpolation, another area of 
real variables and Fourier analysis developed-singular integrals of Calderón-
Zygmund. These singular integral operators are generalizations, to the setting 
of .Rn, of the Hilbert transform H on R1. if is defined by the nonabsolutely 
convergent integral 

/

°° fit 

-oo z 

It turns out that this operator is enormously important for several reasons. 
Here we shall content ourselves with two of them. 

First, there is the connection with complex analytic functions. Suppose 
ƒ (x) is real valued and U(x, y) is the harmonic extension (Poisson integral) of 
ƒ (x) to the upper half-plane R\. Let V(x, y) be the unique harmonic function 
vanishing as y —• oo so that U + iV is analytic in R\. Then the boundary 
values of V are none other than Hf(x). Thus, if we identify functions on R1 

with their harmonic extensions to R\, then H is the map which sends the 
real part of a complex analytic function to its imaginary part. 

The other important reason for considering H is the connection with 
Fourier analysis of functions on R1. If ƒ is a "nice" function on R1 and 

/ (0= f f{x)e-**dx 
JR1 

is the Fourier transform of ƒ, we wish to know in what sense the Fourier 
integral 

f Ht)***^ 
JRI 

represents f(x). It turns out that for ƒ € /^(i?1), 1 < p < oo, the integrals 

/
+« 

-R 

converge to f(x) in the Lp-norm, and it is easy to see that this is equivalent 
to H being a bounded operator on LP(RX) for 1 < p < oo. Originally, the 
proof of Marcel Riesz that H preserves LP used Cauchy's theorem in complex 
analysis. Somewhat later, real-variable proofs were developed, culminating in 
the Calderón-Zygmund work of the 1950s [14]. 
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In their investigation Calderón and Zygmund considered convolution oper­
ators 

Tf{x)= f f(y)K(x-y)dy, 

where the kernel K(x) defined on Rn "looks like" 1/x does on R1. They 
assumed that 

\K(x)\ < C/\x\n, \VK(x)\ < C/\x\n+\ 

K(x) is C1 away from the origin, and 

/ K(x) dx = 0 for all 0 < a < /?. 
Ja<\x\<l3 

Under these assumptions they proved that, for 1 < p < oo, a > 0 , 

P V I I P < Cpll/Hp and m{\Tf\>a}<(C/a)\\f\\1. 

The techniques they developed in their argument set the tone for real-variable 
theory for many years. 

Calderón and Zygmund begin by observing that the assumptions on K(x) 
imply that K(£) is bounded. Hence, by the Plancherel theorem, 

HT/1|3 = \\f~f h = \\K • f h < \\K\\oo II/||2 < C|| ƒ ||2, 

so T is bounded on L2. Next they prove the estimate 

(*) m{\Tf\>a}<(C/a)\\f\\i 

as follows: Let ƒ G L1(i?n) and a > 0. Calderón and Zygmund show how 
to replace ƒ by an L2-function g by averaging ƒ over certain disjoint cubes 
Qk where the average of ƒ is < 2na. Of course, Tg is easy to handle, since 
g G L2 and in the previous step the boundedness of T on L2 was proven. 
What remains in the proof of (*) is an argument to handle the error b = ƒ — g 
in order to show that 

m{\T{b)\>a}<(C/a)\\f\\1. 

b has mean value zero over each of the Qk and lives on \Jk Qk- It turns out to 
be not difficult to show that Tb is negligible outside \JQk- All that remains 
is to show that m(\JQk) is small enough, i.e., < (C/a) | | / | | i . 

Now we come to an important feature of the argument: the set (J Qk is 
precisely {Mf > a}\ In other words, the Hardy-Littlewood maximal function 
has been introduced to produce the desired L2-function g, which, as far as T is 
concerned, is about the same as ƒ itself. Notice that now the desired estimate 
of m((JQk) is now just the main part of the Hardy-Littlewood Maximal 
Theorem. Once the L^estimate is obtained, interpolation shows that T is 
bounded on Lp for 1 < p < 2. If we notice that the adjoint operator to T is 
again a singular integral of the same form, we see that T is also bounded on 
Lp when 2 < p < oo. 

There have been a great many applications of the Calderón-Zygmund the­
orem, and we shall present one of them here. Let f (9) be a function on 

file:////f~f
file:///JQk-
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[0,2TT) with Fourier series E ^ - o o f(n)eine. Let {\n}t=-oo b e a S i v e n se­
quence of complex numbers. It is an important question in Fourier analysis 
to ask whether, if ƒ G Lp(0, 2TT), the same will be true of En^-oo *nf{n)eine. 
There are many interesting examples of {An} where the answer is "yes" when 
1 < p < oo. For instance, when An = —isgn(n), then EAn/ (^ )e m ö is the 
Hilbert transform of ƒ. Another fundamental example is the class of sequences 
0n such that A/c = en for all k with 2n < \k\ < 2 n + 1 and where en is either 
+1 or —1. Then we consider 

A„(/)(0) = x) fay™ 
2"<|/c|<2"+1 

and, finally, the so-called square function, 

1/2 / oo \ l ' z 

(£>fc(/)|2j =S(f). 

Of course, the function E ^kf{k)e%ke for the sequence Â  under consideration 
has exactly the same square function as ƒ. Therefore, the question at hand is 
answered by the following theorem of Littlewood and Paley: 

If 1 < p < oo then | |S(/) | |P « || ƒ ||p (a ~ b means a/b is bounded above and 
below by a quantity depending only on p). In order to better understand this, 
let us consider a similar operator acting on functions on R1. To do this, notice 
that the operators Afc(/) are convolutions of ƒ with functions of integral zero 
whose Fourier transforms are dilates of each other. We consider 

a°° r1t\ 1/2 

\f*M*)\2j) , 
where >ip G C^iR1), </> is odd, and ^t(x) = t'^x/t) (so 4 ( £ ) = </>(*£))• 
Then g^ is roughly the same kind of operator as S, and the point now is that 
g^ is a singular operator of Calderón-Zygmund (see [2]). 

The kernel is Hilbert-space-valued, but the Calderón-Zygmund proof goes 
over without change to such kernels. To be specific, if 

is given by K(x){t) = ^ ( x ) , then \K(x)\ < C/|x|, \VK{x)\ < C/|x|2, and 
L<\x\<p K{x) d* = 0 V0< a < /3, while ^ ( ƒ)(*) = 1/ * K{x)\. 

Now again, we wish to make an important point. If C denotes the class of 
Calderón-Zygmund singular integral kernels on Rn, and if 

K6{x) = 6-nK{x/6), 

then we have the following invariance: 

If K e C and S > 0 then K6 G C. 

That is, the class C is invariant with respect to the one-parameter class of 
dilations x —> Sx on Rn. Again, just as was the case for differentiation of 
integrals, the theory seems to be more or less the same independent of the 
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dimension n. What is important is that the operators involved are invari­
ant under a one-parameter class of dilations. So, for instance, whatever the 
dimension n, we always have for a Calderón-Zygmund operator T, 

(X) m{x € Rn | |27(s) | > a} < {C/a)\\ fh. 

Later, we consider classes of kernels invariant with respect to several-parameter 
classes of dilations, and for these (X) will be false! 

The next feature of one-parameter theory which we take up is that of 
inequalities with respect to measures other than Lebesgue. In fact, there is a 
single, very simple, necessary and sufficient condition on a locally integrable 
function w(x) > 0 on Rn so that 

f Mf{x)pw{x) dx<Cp f fp{x)w{x) dx for ƒ 6 Ly{w) 

(here 1 < p < oo). This is the Muckenhoupt Ap condition [66]: (Ap) 

(mƒ«•*"*) {mL(*))"""" * ) " s c vcutoQin *"• 
According to a theorem of Hunt-Muckenhoupt-Wheeden [51], we also have 
w e AP iff 

f\Hf\pwdx<Cpf\f\
pojdx. 

In fact, Coifman and C. Fefferman [28] extended this to the class of all 
Calderón-Zygmund operators in Rn. These so called weighted norm inequal­
ities have proven to be of very great value in recent years. 

As the reader has no doubt noticed, it seems that the operators T we have 
considered are bounded on Lp(Rn) for 1 < p < oo, are unbounded on ^(R71), 
and satisfy only the weaker estimate 

m{m € Rn | \Tf(x)\ > a} < {CMW/WL 

Something must be done in order to have a satisfactory "Lp-theory" of maxi­
mal functions and singular integrals when 0 < p < 1. It is for this reason that 
one considers the Hardy spaces i7p(i2!£+1). First, let us consider n = 1. 

According to Hardy, for p > 0, an üfp-function is a complex analytic 
function F(z) in the upper half-plane R\ such that the Lp-norms 

a+oo \ 1/P 

\F(x + iy)\pdx) 
are bounded independent of y > 0. It turned out that when p > 1, the Hp 

theory was very similar to the Lp-theory. So, for example, one of the main 
theorems of the subject is that #p-functions, p > 0, have boundary values, 
i.e., when F(z) G HV(R\) then l i m ^ o F(x -f iy) exists for a.e. x £ R1. This 
can be reduced to the theorem on differentiation of integrals of functions in 
LP(RX) when p > 1 (see [77, 85, 71]). The ideas that were originally used 
to study the Hardy spaces when p < 1 are much less along the lines of real 
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variables and are rather a part of the theory of analytic functions. One studied 
the zeros of these Hp-functions and showed that any function F(z) G Hp could 
be factored as F = JBG, where B{z) is bounded and analytic in R\, and where 
G G HV(R\) and never vanishes. Then since G(z) is never 0, one can form 
G(z)p/2-an analytic function easily seen to be in H2{R\). Since üP-functions 
are known to have boundary values when p > 1, G(z)p/2 and B(z) will have 
boundary values, and, hence, so will F(z). 

Next, we wish to mention an extension of the theory of Hardy spaces due 
to E. M. Stein and Guido Weiss. Suppose we denote by R7^1 the upper 
half-space in Rn+1, that is, {(#,y)\x G # n , y > 0}. Whereas Hardy spaces 
in R\ are just analytic functions, or pairs of conjugate harmonic functions, 
Stein and Weiss [77] considered ffp(i2™+1) functions as systems of n + 1 
harmonic functions, F{x,y) = {ui(x,y)}, i = 0,1, . . . ,n , defined on #+ + 1 , 
which are conjugate in the sense that they satisfy the generalized Cauchy-
Riemann equations 

dui _ duj Y ^ dui 
dxj ~ dxi f^ dx, 

and such that 

and Yl ~d^r. = ° (y= x°) 
i=0 l 

s l i p / V \F(x,y)\pdx) 
y>0 \jRn J 

< 00. 

(Here 
1/2 

^ = 0 

We should point out that these spaces have an interpretation in terms of 
singular integrals which was alluded to above. Suppose we have a system of 
harmonic functions no ,u i , . . . , un defined in R++1 which are suitably smooth 
up to the boundary and vanish rapidly at infinity. Then it is not hard to show 
that the Ui satisfy the generalized Cauchy-Riemann equations if and only if 
their restrictions on the boundary are related by singular integrals known as 
Riesz transforms. 

More specifically, if fi(x) = Ui(x,0) then U{ are a conjugate system iff 

fi = fo*cnXi/\x\n+1. 

The convolution operator 

Ri{f) = f*Xi/\x\n+\ » = l ,2 , . . . , n , 

the Riesz transforms, plays in Rn very much the same role as the Hilbert 
transform plays in R1. Identifying a function f(x) on Rn with the harmonic 
function u(x,y) on R++1 having boundary values equal to /(x), we see that 
i^1(i?++1) can be identified with the space of all real valued L1(i?n )-functions 
all of whose Riesz transforms are also in Ll{Rn). It can also be shown that 
for any such function whose Riesz transforms are in ^(R71), any reasonable 
singular integral T(f) will belong to Ll{Rn). So it really is the case that 
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#p(jRri+1) s e r v e s to alleviate the problem of the bad behavior of singular 
integrals on Lp when p < 1. 

In order to prove theorems about these ifp-functions analogous to those 
which had been proven for the classical one, Stein and Weiss introduced a 
number of new ideas. To illustrate some of these, let us consider their theorem 
on boundary values of H ^ ( ^ + ^-functions: If F(x,y) E # P ( # J + 1 ) and p > 
(n — l)/n% then lim^^o F(x, y) exists for a.e. x E Rn. Again, for p > 1 
the theorem had been well known for a long time since it again boils down 
to Lebesgue's theorem on differentiation of integrals of functions in Lp(Rn). 
Now, in trying to pass from the case p > 1 to p < 1 we quickly see that the 
classical approach is not possible. A study of the zeros of F analogous to the 
classical case is obstructed by the fact that the zero set is no longer discrete, 
but may be higher dimensional. Also, factorization has no meaning since Hp 

functions cannot be multiplied meaningfully. 
How do we get around these difficulties? Let us sketch the method of Stein 

and Weiss to do this, pointing out the key features of their argument: 
(1) The equivalence of nontangential boundedness and nontangential con­

vergence almost everywhere for harmonic functions: Suppose Th(x) denotes 
the cone {(t,y) E J R J + 1 | 0 < y < h, \x-t\ < y}. Then we say that a function 
F(t, y) on R7^1 is nontangentially bounded at a: E Rn provided that for some 
h > 0, F is bounded on Th(x). We call F nontangentially convergent at x pro­
vided liHi(t}3/)_^(Xjo);(t,3/)er(a;) F{tiV) exists. Then there is the following basic 
fact: For a harmonic function u on i?™+1 which is nontangentially bounded 
at each point x of a set E Ç Rn, u has nontangential limits at a.e. x E E. 
This is due to Privalov [68] in R\ and to Calderón [10] in R\+1 for n > 1. 

(2) The subharmonicity of powers of\F\: By an ingenious calculation Stein 
and Weiss showed that if a > ( n - l ) / n a n d \F(x,y)\ > 0, then A(|F|a)(x,y) > 
0. This means that | F | a is subharmonic and allows us to pass from iP-theory 
when p < 1 to #P-theory when p > 1, as follows. Take F E i J p ( i ^ + 1 ) and 
assume that p > (n — l ) /n (the case p = (n — l) /n works with only slight 
modifications). Then let (n - l ) /n < a < p and consider G = \F\a. This 
function is subharmonic and has 

sap ƒ Gr{x,y) dx < oo where r = — > 1. 
y>ojRn a 

For such a function G it is not hard to show that there is a function g E L r(Rn) 
such that G at any point of R1]^1 is dominated by the appropriate weighted 
average of the values of g (the weighting depends, of course, on the point of 

(3) The introduction of the nontangential maximal function: If ƒ is any 
function on i2J+1 we set f*{x) = s u p ^ ^ r ^ ) \f(t,y)\ for every x E Rn. f* 
is called the nontangential maximal function of ƒ. In the case of the present 
theorem it will suffice, in view of (1), to show that F*(x) < oo for a.e. x E Rn. 
This is seen as follows: Since G is dominated by averages of the function g as 
in (2), it turns out that G*(x) < M(g)(x), where M is the Hardy-Littlewood 
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maximal function of g. But then 

f F*{x)pdx= [ G*(xf/adx< [M(g){x)r 

JR." JR™ J 

<C [ \g{x)\r dx < oo. 
JRn 

This shows that F*(x) < oo a.e. on Rn and finishes the proof. 
The last step in the above proof, that is, the introduction of the non-

tangential maximal function, is one of crucial importance, and we should 
mention another result related to it. Recall our mentioning the Littlewood-
Paley g function. This is defined on Rn by starting with a function I/J(X) 
which is sufficiently smooth, decays sufficiently rapidly at infinity, and has 
fRn i/)(x) dx = 0. Then letting 

xjjy{x) = y~nil>(x/y) for y > 0, 

we set, for ƒ a function on i2 n , 

gAf){*) = (f~\f*^*)\2j) 
and 

W ) ( * ) - ( / / w l / * ^ ( * ) l 3 ^ 
Classically, the most basic example occurs when -0 is the gradient of the 
Poisson kernel for JR™+1 and then 

S2(f)(x)= [ f IVufit^y^dtdy, 

where u is the Poisson integral of ƒ, that is, the function, harmonic in i2++ 1 , 
which has ƒ as its boundary values. For a harmonic function u on #™+1 we 
may also define 

S2(u)(x)= [ [ \Vu\2(t,y)y1-ndtdy. 
J Jr(x) 

Now comes the main point. According to a theorem of A. P. Calderón 
[11] and E. M. Stein [74], if u(x,y) is a harmonic function on i2++ 1 , then, 
except for a set of points x G Rn of measure zero, S(u)(x) < oo if and only 
if u*(x) < oo. What is the meaning of this result? In the case of n = 1 
in R\ [85] part of its meaning is given in the following corollary: If u and 
v are conjugate harmonic functions, then the set of x for which u and v 
approach nontangential limits at x differs only by a set of measure 0. This 
remarkable result is a consequence of the Calderón-Stein theorem and the fact 
that , by the Cauchy-Riemann equations, |Vu| = |Vv|, so S(u) = S(v). (In 
higher dimensions a similar result holds for Stein-Weiss systems of conjugate 
harmonic functions, and the proof is along similar lines; see [7].) 

There is another meaning of this similar behavior of S(u) and u*, and 
this was revealed in a result about harmonic functions in R\ (n — 1) due 
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to Burkholder, Gundy, and Silverstein [7]. Their theorem says that for a 
harmonic u in R\, and for all p > 0, 

cP<| |5(u) | |Lp/ | |n* | |Lp<C p , 

where the positive constants cp and Cp are independent of u. This is the 
global variant of the Calderón-Stein result on finiteness of S(u)(x) and u*(x), 
and it has the following interpretation: 

If F{z) G HP{R\) we saw above that F* G Lp(Rl). Clearly, if F* G 
Lp{Rl) and F(z) is holomorphic in R\, then F G #p(#J_). Now according to 
Burkholder, Gundy, and Silverstein, if F(z) is holomorphic and F — u + iv, 
then F G # p iff u* € Lp(Rl). (This is because S(u) = S(v).) In other words, 
one can tell just by looking at u* whether or not F G Hp. We need not worry 
about v. This is a major step in the direction of freeing the theory of Hp from 
a dependence on the theory of holomorphic functions. (Incidently the proof 
of this theorem is by arguments involving Brownian motion, so it is important 
for its method as well as for the end result.) 

The last set of results we wish to mention here, due to Charles Fefferman 
and E. M. Stein [38], showed that we may think of IP-spaces entirely in 
terms of real variables with no dependence whatever on harmonic or holo­
morphic functions. For C. Fefferman-Stein an Hp- "function" is defined by 
first considering a Schwartz function <f)(x) on Rn such that ƒ (j> / 0 and say­
ing that a distribution ƒ on Rn is in Hp provided that the maximal function 
f*{x) = supy>0 | ƒ *<t>y{x)\ belongs to Lp{Rn) (here, <t>y(x) = y~n<t>{x/y)). The 
class of distributions so defined is proven to be independent of 0. Also, if if) is 
a suitably nontrivial function in the Schwartz class such that fRn ij)(x) dx = 0, 
then 

fismHp iff S^{f)GLp{Rn), 

where 

and again the choice of ij) is irrelevant. If u is harmonic in i?™+1 and suitably 
nice (smooth at the boundary and small at infinity), then 

\ 1/2 

\Vu\2{t,y)y1-ndtdy) G Lp iff S+tf) G Lp, S(u)=([ f 
\J Jr(x) 

where 

*m*)=ff \f*w)\2ffi r(x) 
and f(x) = u(x,0). Similarly, if 

wj(x) = sup |/*<£y(t)|, 
(t,y)er(x) 

where 0 is Schwartz and fRn (j) = 1, and if u*(x) is the usual nontangential 
maximal function of w, then 

uleLp iff u*€Lp. 
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At least when p > (n — l)/n, this newer notion of Hp coincides with the 
Stein-Weiss notion. Fefferman and Stein also show that Calderón-Zygmund 
singular integrals preserve these #p-spaces, so we are justified once again in 
regarding Hp-spaces as being the right replacement for Lp such that maximal 
and singular integral operators map the spaces to Lp when p < 1. 

Thus, the class of H * -functions is a space near L1 which is invariant under 
singular integrals. There is also a class of functions near L°° invariant under 
the Calderón-Zygmund operators, namely, BMO(i?n). This is the space of 
functions, introduced by John and Nirenberg [56], satisfying 

where CJ>Q denotes the mean value of (j) over the cube Q, and C is independent 
of Q. These functions of bounded mean oscillation are a priori only assumed 
to be locally integrable, but in fact are locally in the exponential class, as 
expressed by the John-Nirenberg inequality 

\Q\JQ P H\\. - ' 
where 

II0H* = S U p T ? r T / \<j){x) - (j)Q\dx 
Q IVI JQ 

is the BMO norm of (j). 
There are a number of very useful characterizations of BMO, and in order 

to discuss the one we have in mind it will be helpful to first consider a basic 
result of Lennart Carleson [15]. A positive measure fi on #™+1 is called a 
Carleson measure provided that /i(5(Q)) < Cm(Q) for all cubes Q in Rn, 
where 

S(Q) = {(x,y)\x e Q, 0 < y < side length(Q)}. 
Carleson proved that these measures are exactly the ones for which 

/ / \u(x,y)\pd»<C f \f(x)\pdx, p > l , 
J JR^1 JR" 

if u is the Poisson integral of ƒ. 
Charles Fefferman [35] was able to prove that if u is the Poisson integral 

of a function c/)(x) on i?n , then 

(j>{x) e BMO(iT) iff \Vu\2{x,t)tdtdx is a Carleson measure in R^1. 

He showed, using this characterization, that the dual space of H1 was BMO. 
Somewhat later, R. R. Coifman [27] found a particularly striking proof of 
this duality by using his constructive proof of a decomposition theorem for 
the space H1. 

This decomposition provides an enormously powerful tool for attacking 
problems relating to H1. It says that any if1-function can be written as 
ƒ = X}Afcafc, where A& are scalars such that Xll^fcl ^ C | | / I | H ^ and where 
the ak are üT1-atoms, i.e., a^ is supported in a cube Qfc, has mean value 0 over 
<3/c, and satisfies ||afc||L<x> < l/|Qfc|. From this it is clear that a BMO function 


