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Conclusion. It is fitting that the first major book on percolation theory be 
authored by Harry Kesten, the major contributor to the field in recent years. 
The expert in the field will find this book indispensable, while it supplies a 
good introduction for the nonexpert. It is not intended to be a reference 
volume covering the entirety of percolation theory, but is limited to rigorous 
results for the classical models. In fact, so much has happened in recent years 
that it would be difficult to produce a single volume which is both rigorous and 
comprehensive. The monograph will help consolidate and unify the theory of 
the classical percolation models, although a tidy systematic understanding still 
lies in the distant future, considering the major unsolved problems and many 
loose ends that remain. Certainly the volume deserves the title of the series: 
"Progress in Probability and Statistics". 
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Geometric aspects of convex sets with the Radon-Nikodym property, by Richard 
D. Bourgin, Lecture Notes in Math., vol. 993, Springer-Verlag, Berlin, 1983, 
xii + 474 pp., $22.00. ISBN 3-5401-2296-6 

In the Spring of 1973, Jerry Uhl and I were putting the finishing touches on 
a manuscript entitled, Vector measures. With his usual wisdom, Jerry suggested 
we put the manuscript aside for six months or so. His reasoning went more or 
less like this: we're happy with what we've done now, so, if it still looks good to 
us in six months—all the better; besides, maybe something beautiful will 
happen in the meantime that really ought to be included. Jerry and I are 
unabashed optimists and so Jerry's suggestions offered extremely appeahng 
alternatives. 
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Lefty Gomez once said, "I'd rather be lucky than good" and, with little 
choice available, this reviewer agrees with such sentiments. During the Summer 
of 1973, the main themes of the subject of vector measures attained a clarity 
far exceeding that which even Jerry and I could have hoped for. As a result, 
there followed a period of three years of continued analysis, synthesis and 
expansion before the revised manuscript was finally submitted. Still, the fact 
that the book was not already obsolete depended largely on our decision (again 
on Jerry's sage advice) to include only those results that seemed to be in final, 
definitive form. 

No doubt the advances experienced over the Summer of 1973 that most 
affected our manuscript concerned Banach spaces having the "Radon-Niko-
dym property". Recall, if you will, that a Banach space X has the Radon-
Nikodym property if, given a probabiHty space (Î2, 2, /x) and an additive 
measure F: 2 -» X for which ||JF(2£)|| < 1*>{E) holds for each event E, then 
there exists a Bochner integrable F: £2 -> X such that F(E) = jEfd\i holds for 
each and every event E. 

Separable duals have the Radon-Nikodym property, a fact whose discovery 
can be blamed equally on I. M. Gelfand, N. Dunford and B. J. Pettis. Also, 
reflexive spaces have the Radon-Nikodym property; this was shown to be so 
by Dunford, Pettis and R. S. Phillips. 

One (among many) equivalent formulation: X has the Radon-Nikodym 
property if and only if for every finite measure space (Q,_2, JU) every operator 
T: LY(\i) -» X is representable, i.e., of the form Tg = ffgdfx for some essen­
tially bounded measurable function ƒ : £2 -> X. Now, the representability of 
such operators plays a central role in the development of the topological theory 
of tensor products; this was understood and exploited by A. Grothendieck. 
Indeed, one of the highlights of the earliest version of Vector measures was an 
exposition of one of Grothendieck's many surprises: If X* has the Radon-
Nikodym property and the approximation property, then X* has the metric 
approximation property. At the heart of the proof of this result is the fact that 
a dual X* has the Radon-Nikodym property if and only if integral operators 
into X* are nuclear. 

Aside from similar external characterizations of the Radon-Nikodym prop­
erty (and their applications), little of substance was known about this rather 
formal notion. Well, there was one fascinating exception, a theorem of 
H. Maynard, which complemented earlier work of M. A. Rieffel but, as of 
Spring 1973, the Maynard theorem stood alone as an internal characterization 
of the Radon-Nikodym property; Maynard's theorem: a Banach space X has 
the Radon-Nikodym property if and only if each closed bounded convex 
subset K of X is s-dentable, i.e., each such K admits, for each e > 0, a point xe 

which cannot be represented in the form LnXnxn of an infinite convex 
combination of points xn of K separated from xe by at least e. 

To be sure, it was the hope for, and anxious anticipation of, essential 
refinements of Maynard's theorem that made the temporary shelving of our 
manuscript palatable to Jerry and me. Our patience was to be richly rewarded. 

In the Summer of 1973, Maynard's s-dentability theorem was improved by 
W. J. Davis, R. E. Huff and R. R. Phelps, resulting in what is now known as 
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the dentability theorem: a Banach space Xhas the Radon-Nikodym property if 
and only if every closed bounded convex set K in X admits, for each e > 0, a 
point xE which is not in the closed convex hull of points in K at least e away 
from x£. Within weeks of this discovery, J. Lindenstrauss established that in 
spaces with the Radon-Nikodym property every nonempty closed bounded 
convex set has an extreme point (and is, indeed, the closed convex hull of its 
extreme points); the validity of the converse remains unknown. Soon after, 
R. R. Phelps showed that precisely in spaces with the Radon-Nikodym 
property do nonempty closed bounded convex sets find themselves the closed 
convex hull of their strongly exposed points. C. Stegall told why the dual of a 
separable Banach space has to be separable to enjoy the Radon-Nikodym 
property, and R. E. Huff and P. D. Morris took Stegall's lead to show that a 
dual space has the Radon-Nikodym property whenever each of its nonempty 
closed bounded convex sets has extreme points. Huff and Morris went on to 
find extreme points in nonconvex sets provided they live in spaces with the 
Radon-Nikodym property, and G. A. Edgar gave a stunning version of 
Choquet's representation theorem for noncompact convex sets as long as they 
sit in separable spaces with the Radon-Nikodym property. 

The rush was on. A geometric lode had been struck and its mathematical 
miners were quick to react. Convexity was seen in duality with smoothness, 
and the strong differentiability spaces of E. Asplund were established as 
precisely the preduals of (dual) spaces with the Radon-Nikodym property 
(I. Namioka, R. R. Phelps, C. Stegall). The noncompact Choquet theorem of 
Edgar was extended, generalized and scrutinized (G. A. Edgar, R. D. Bourgin). 
Rosenthal's dichotomy and all its attendant wonders were exploited 
(H. P. Rosenthal, T. Odell, R. Haydon); a remarkably fine line between the 
Radon-Nikodym theory for the Bochner and Pettis integrals soon emerged. 
The special character of the Radon-Nikodym property in Banach lattices was 
exposed (M. Talagrand, N. Ghoussoub, J. Bourgain). New examples of spaces 
with the Radon-Nikodym property were discovered, spaces equipped with 
sufficient pathology to redirect worthwhile research efforts (J. Bourgain and 
F. Delbaen, P. McCartney and R. O'Brien, J. Bourgain and H. P. Rosenthal). 
These advances were either too new or too poorly understood by Jerry and me 
to be included in the final manuscript of Vector measures. 

Now, a clear exposition of these topics (and much, much more) is to be 
found in Bourgin's monograph. Bourgin presents the theory from the begin­
ning, concentrating on detailing the geometric aspects of convex sets with the 
Radon-Nikodym property, avoiding natural pitfalls encountered in a some­
what technically complicated situation, and successfully conveying the essential 
methods a student of the subject needs to master. I hasten to add that the 
material covered is quite up to date with fresh informative treatments afforded 
results that actually appeared after the publication of Bourgin's monograph. 

There are, of course, omissions and exclusions. After careful exposition of 
the Bourgain-Stegall cycle of ideas concerning the Bishop-Phelps theorem, it 
would have been enlightening for some if the author had mentioned the 
beguiling mystery of the validity of the Bishop-Phelps theorem for complex 
Banach spaces, especially since a consequence of the theorem of Bourgain is 
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that the Bishop-Phelps theorem holds in complex Banach spaces with the (real) 
Radon-Nikodym property. Similarly, a striking application of the Huff-Morris 
theorem (concerning the existence of extreme points in any nonempty closed 
bounded subset of a Banach space with the Radon-Nikodym property) is 
P. Mankiewicz's proof that complex Banach spaces with the Radon-Nikodym 
property have unique complex structure; the omission of this result is unfor­
tunate, again because the question of uniqueness of complex structures on 
complex Banach spaces (the complex Mazur-Ulam problem) is open in general. 
Almost nothing is said about the role of the Radon-Nikodym property in the 
study of operator ideals, a subject arguably central to the study of the 
geometry of Banach spaces. Again, nothing is said about the part played by the 
Radon-Nikodym property in abstract harmonic analysis, both commutative 
and noncommutative. All this is nitpicking though since the objective of the 
monograph is not to tell everything there is about the Radon-Nikodym 
property, but rather to tell about a substantial amount of certain geometric 
aspects of the Radon-Nikodym property. In this regard, Dick Bourgin has 
done an admirable job. 
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Differential geometry of foliations, by Bruce L. Reinhart, Ergebnisse der 
Mathematik und ihrer Grenzgebiete, vol. 99, Springer-Verlag, Berlin, 1983, 
ix + 194 pp., $42.00. ISBN 3-5401-2269-9 

A structure on a differentiable manifold of dimension m can be defined by 
requiring that there exist an atlas whose coordinate transformations satisfy a 
special condition. In the case of a foliated structure of dimension /?, the 
transformations must map the points in their domains lying in a j?-plane 
parallel to some fixed subspace Rp ç Rm into a /?-plane of the same type. 
Thinking of the layers of an onion or the pages of a magazine suggests the 
right mental picture when p = 2 and m = 3. A structure defined by an atlas 
determines a reduction of the structure group of the tangent bundle to the 
group consisting of the tangent maps to coordinate transformations. (A similar 
game can also be played with higher order jet bundles.) IntegrabiHty problems 
in differential geometry are concerned with reversing this process, that is, with 
determining if a given reduction can be realized in the way described, at least 
up to some kind of equivalence. For instance, Reeb's "Problème Fondamental" 
in the first monograph on foliations [2] was to determine whether a manifold 
that admits a continuous field of/?-planes can also be given a foliated structure 
of dimension/?. 

Reinhart, with the pardonable exaggeration of an enthusiast, subtitles his 
book The fundamental integrability problem. I would have been more comforta­
ble with the indefinite article, but he probably wanted to show both his 
intention of including much more within foliations than the minimal structure 
described above and that the field is of fundamental importance as a rich 


