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1. The canonical imbedding of a compact Riemann surface in its associated 
Jacobi variety, an algebraic complex torus, has long been of fundamental 
importance in the study of Riemann surfaces, and the basic holomorphic 
functions that arise in the study of algebraic tori, the theta functions, naturally 
play an essential role in this part of the theory. The central role and essential 
properties of the simple theta function in the study of Riemann surfaces were 
established by Riemann and lie at the core of the subject. Some of the basic 
properties of higher-order theta functions on general algebraic tori, principally 
those properties involved in the projective imbedding of these tori, were 
established by Kummer for two-dimensional tori and extended by Wirtinger to 
higher-dimensional tori, and investigations in this direction have been pursued 
fairly steadily ever since. Some quite deep and subtile properties of the 
higher-order theta functions of Jacobi varieties, as distinct from general 
algebraic tori, were established by Frobenius and Schottky, and investigations 
in this direction have also been pursued ever since, perhaps somewhat fitfully 
and implicitly at the beginning (since the higher-order theta functions can be 
expressed as various products of translates of simple theta functions and 
thereby disguised, sometimes conveniently and sometimes confusingly) but 
with increasing vigor, particularly in the last decade. Part of this current 
activity, particularly among algebraic geometers, derives from Fay's stimulat­
ing book on theta functions and Riemann surfaces, while another part no 
doubt derives from the role that theta functions of Jacobi varieties have been 
discovered to play in providing explicit solutions of some important nonlinear 
partial differential equations. Both of these inspirations have led to fascinating 
new approaches to and results about Schottky's problem of characterizing 
Jacobi varieties among more general algebraic tori; there has thus been a 
surprising revival of interest in this once obscure but always intriguing topic. 

The aim of the present paper is to provide a survey of some of this recent 
activity that most directly involves the study of Riemann surfaces itself, 
together with a discussion of a few new results in the directions surveyed. The 
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motif is the role of theta functions in describing various subvarieties of Jacobi 
varieties that are of fundamental importance in the study of Riemann surfaces. 
Many of these subvarieties can be described quite simply and explicitly in 
terms of the image of the Jacobi variety under the mapping into projective 
space given by a basis of the second-order theta functions; the image variety is 
the Wirtinger variety of the title, a natural generalization of the Kummer 
surface. The hope is that this will at least in part provide an introduction to 
this topic, indicating why the questions considered are of interest and how the 
current investigations follow naturally in the direction of Riemann's earlier 
work. Present knowledge of the finer properties of the higher-order theta 
functions of Jacobi varieties is still quite limited, many results clearly having a 
rather preliminary nature. A further hope is that this will also indicate one 
point of view of the current state of affairs in this area and a number of very 
promising questions for further investigation. It should be emphasized that this 
is a rather limited survey, and is not intended to cover the many other 
approaches to the Schottky problem or the extensive recent work on theta 
functions and partial differential equations. 

2. Let M be a compact connected Riemann surface of genus g > 0 and 
choose a fixed base point p0 e M and a set of canonical generators 
al9...9ag9 /?!,...,)8g of the fundamental group ^(M, p0)\ topologically the 
surface M is just a sphere with g handles, and aj9 fy can be considered as a pair 
of paths around theyth handle. The 2 g cycles carried by these paths are free 
generators of the homology group HX(M9 Z), and will also be denoted by aj9 )8y. 
Also choose a basis o)l9...9o)g for the complex vector space of holomorphic 
differential one-forms or Abelian differentials on M; these are all closed 
differential forms, and the g X 2 g matrix consisting of the integrals or periods 
of the differentials co, along the cycles aj9 fy is called the period matrix for the 
surface M in terms of the choices made for the paths aj9 /?. and for the basis w,. 
To be more explicit let co denote the column vector of length g formed of the 
differentials coi9 so that its transpose is the row vector Vo = (wl9... ,<og), and 
define the period matrix to be 

(1) A = f f <o,...,( u, ƒ <o,...,f J . 

It is always possible to choose the basis <o, so that the period matrix has the 
form A = ( ƒ, £2), where I is the g X g identity matrix and B is an element of 
the Siegel upper half-space $g9 the cone of g X g complex symmetric matrices 
having positive definite imaginary parts; such a choice will henceforth always 
be supposed made. 

The 2 g columns of the matrix A are always linearly independent over the 
real numbers; thus when Cg is viewed as the real vector space R2g the columns 
of A can be taken as a basis for U2g

9 so the subgroup «£?= AZ2* c Cg 

generated by these column vectors can be identified with the lattice subgroup 
Z2g c U2g. Topologically the quotient group Cyifis thus just the 2g-dimen-
sional torus R2 g/Z2 g = (R/Z)2g, a compact manifold homeomorphic to the 
Cartesian product of 2 g circles. On the other hand the quotient group 
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Cy^also has the structure of a complex manifold, hence of a complex Lie 
group, the coordinates in C8 providing local coordinates on C8/J?. This 
complex Lie group is called the Jacobi variety of M and is denoted by J(M); 
the zero element is the image in C8/J? of the origin O e C g . For the special 
case g = 1 this construction is quite familiar from the classical theory of 
elliptic functions. It should be mentioned that although the construction was 
based on special choices of the paths aJ9 fy and the basis wi9 the resulting 
complex Lie group is really independent of these choices; however the choice 
of the basis coz so that the period matrix has the special form A = ( ƒ, S2), with 
S2 e § g , really amounts to a somewhat finer structure than just that of a 
complex Lie group. Nothing further will be made of that point here though, 
since the effects of changes in the choices of aJ9 fy, co, will not be considered at 
all. 

For any point/? e M the vector ^ o w G C g depends on the path of integra­
tion from p0 to /?; but a change in the choice of this path has the effect of 
adding a vector fyu for some closed cycle y on M, and the set of all these 
vectors is precisely the lattice subgroup <&= K7?8 c Cg. It is thus possible to 
introduce a well-defined holomorphic mapping w: M -> J(M) by setting 

(2) HP)= r<° H ^ ) -
JPo 

The base point p0 e M is mapped to the zero element of the group /(M), and 
the effect of choosing a different base point p$ e M is just to replace the 
mapping w by the translate w* given by w*(p) = w(p) - w(p$). Since J(M) 
is a group, this mapping w: M -* J(M) has a natural extension to a homomor-
phism from the free Abeüan group generated by the points of M, called the 
group of divisors on M, to J(M); a divisor is really just a formal sum 
b = "Lp^Mvpp for some integers ^ G Z , only finitely many of which are 
nonzero, and the extension of the mapping w is that given by setting w(b) = 
HP^M vpw{p). To any meromorphic function ƒ not identically equal to zero on 
M there corresponds its divisor b( f ) = HpGM vp(f)p, where vp{ ƒ ) is the order 
of the function ƒ at the point p: vp{f) = n if ƒ has a zero of order n at /?, 
?/>( / ) = ~~n if ƒ has a pole of order n at/?, and vp( ƒ ) = 0 otherwise. It is rather 
easy to see that if b = E^e f̂ ^/? is the divisor of a meromorphic function on 
M then degree b = Lp&Mvp = 0 and w(t>) = E/7eM^>v(/?) = 0; Abel's theo­
rem asserts that, conversely, any divisor b for which degree b = 0 and w(5) = 0 
is the divisor of a meromorphic function on M. This is a very useful result, one 
of the basic tools in the study of Riemann surfaces, and the impetus behind the 
introduction of the Jacobi variety; it indicates that the torus J(M) must 
contain a great deal of information about the Riemann surface M, and thus 
raises the problem of how to get at that information, a very appealing problem 
analytically since there is a quite well-developed function theory on complex 
tori generalizing the classical theory of elliptic functions. 

There is a special family of holomorphic subvarieties of a Jacobi variety 
J(M ), the subvarieties of special positive divisors, that reflect in their structure 
and interrelations many of the finer properties of the Riemann surface M. The 
simplest is just the image of the Riemann surface M in its Jacobi variety, the 
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subvariety Wx = w(M). It follows quite easily from Abel's theorem that the 
holomorphic mapping w: M -» Wx is one-one. Indeed if that were not the case 
there would be two distinct points/?!, p2 of M such that w(px) = w(p2); then 
w(Pi ~ Pi) ^ 0, so by Abel's theorem there would be a meromorphic function 
f on M with divisor b( ƒ ) = px - p2. As is quite familiar, any such function 
can be viewed as a holomorphic mapping/: M -> P1 from M to the Riemann 
sphere. Now for any complex constant c the meromorphic function f-c 
would also have a simple pole at p2, hence would have a divisor of the form 
b(ƒ — c) = /?f — /72 f°r some point p{ e M, which point would of course then 
be the unique point of M at which the function ƒ took the value c; but that 
means that/: M -> P1 would be a one-one mapping, hence a homeomorphism, 
contradicting the initial assumption that M has genus g > 0. Thus H>: Af -> W\ 
is one-one, so can be viewed as a holomorphic injection of M into its Jacobi 
variety /(Af ). Using another of the basic tools in the study of Riemann 
surfaces, the Riemann-Roch theorem, it is relatively easy to show that the 
mapping w: M -» Wx is nonsingular at each point, hence is biholomorphic; 
thus w: M -> Wx is actually an imbedding of M as a nonsingular curve in its 
Jacobi variety J(M). In a sense, of course, knowing Wx amounts to knowing 
all about the Riemann surface Af, since Wx and M are biholomorphic; but the 
problem is how to determine Wx directly from the torus /(Af ) or its period 
matrix A. It is worth noting that the curve Wx ç /(Af) depends on a choice of 
base point /?0, and that the choice of a different base point p$ has the effect of 
replacing Wx by the translate Wx — w(p$); thus what is independent of the 
choice of base point is the collection of curves {W1 — wx: wx e Wx} or their 
union W1 — Wx = {w1 — w2: wy e W^. The latter subvariety is a very inter­
esting intrinsically defined two-dimensional subvariety of J(M ) and plays a 
prominent role in the subsequent discussion. 

The subvariety Wx is sometimes called the subvariety of positive divisors of 
degree 1, a divisor b = T,pGM vpp being considered positive if vp > 0 for all/? so 
that a positive divisor of degree 1 is really one of the form b = 1 • /?, and 
Wx = {w(l •/?): / ? e M } . There is correspondingly a subvariety Wr = 
{w(l •/?! + • • • + 1 • pr): Pj € M}, the subvariety of positive divisors of 
degree r, for any integer r > 0, and it is sometimes convenient to set W0 = 0, 
the zero element of the group /(Af). These are all irreducible holomorphic 
subvarieties of /(Af) with W0 ç Wx ç W2 ç • • •, and dim Ĥ . = r whenever 
1 < T < g> while Wg = P^+1 = • • • = /(Af). It is quite clear that all of these 
subvarieties can be constructed directly from Wv since 

Wr=Wx+ ••• + Wx= {wx+ ••• + wr:wj<= Wj; 

more generally they nicely reflect the group structure of /(M) in the sense that 

Wr+s=Wr+Ws={wl-^w2:w1^Wr,w2^Ws) 

for any indices 0 < r, s. These subvarieties too depend on the choice of base 
point/?0, and the choice of a different base point p% has the effect of replacing 
Wr by the translate Wr - rw(p$). 
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Much more interesting though is the subvariety Wr
v of positive divisors of 

degree r and dimension v, defined by 

**7 = {w( b ) : b = 1 • px + -— + 1 - pr and the vector space 
of all meromorphic functions ƒ on M with 

b ( ƒ ) + b positive has dimension > v}. 

If b = 1 • px + • • • + 1 • pr the condition that &(ƒ ) + b be positive is just that 
the meromorphic function ƒ have as singularities at most simple poles at the 
points pj if they are all distinct or multiple poles corresponding to coincidences 
among them. For any such divisor there is always at least the one-dimensional 
vector space of constant functions ƒ for which b ( ƒ ) + b is positive, so Wr° = Wr\ 
of course, Wr° D Wr

l D Wr
2 2 • • •. These are all holomorphic subvarieties of 

J(M)9 but of rather varying dimensions and structures reflecting various 
properties of the Riemann surface M; that is easily illustrated, and the possible 
interest of these subvarieties indicated, by an examination of some of the 
simplest cases. First, if w(l • p) e W\ there are at least two linearly indepen­
dent meromorphic functions having as singularities at most a simple pole at/?; 
one of these functions must be nonconstant, but, as already noted, is then a 
homeomorphism ƒ : M -> P1, contradicting the assumption that g > 0. Thus 
W\ = 0 . Next if w(l • px + 1 - p2) s W2 there are at least two linearly 
independent meromorphic functions having as singularities at most simple 
poles at the points pv p2 if they are distinct or a double pole at the point 
px = p2 if they coincide; one of these functions must be nonconstant and 
cannot have just a single simple pole since W\ = 0, so it must be of order two 
and, consequently, when viewed as a holomorphic mapping ƒ : M -> P1, 
exhibits M as a two-sheeted branched covering of the Riemann sphere. The 
points qv q2 of M having the same image f(qx) = f(q2) = c are those for 
which b(ƒ — c) = 1 • qx + 1 • q2 — 1 • px - 1 • p2> so by Abel's theorem are 
precisely the points for which w(l • qx + 1 • q2) = w(l • px + 1 • p2); thus the 
distinct points of W2 correspond to distinct representations of M as a 
two-sheeted branched covering of P1. There are Riemann surfaces of arbitrary 
genus that can be so represented, namely the Riemann surfaces of the 
functions P(z)1/2 for any polynomials P(z); but f or g > 2 not all Riemann 
surfaces can be so represented, only the special subclass called the hyperelliptic 
surfaces, and it is known that each of these surfaces has a unique such 
representation. Thus W2 ¥= 0 only when M is a hyperelliptic surface and then 
W2 consists of a single point of J(M). Similarly W^ *h 0 only when M is 
either hyperelliptic or can be represented as a three-sheeted branched covering 
of the Riemann sphere, and the points of W^ correspond to the number of 
representations of M as a two- or three-sheeted cover; it is known that W$ is a 
translate of Wx if M is hyperelliptic, but otherwise is either a finite point set or 
the empty set. 

The various subvarieties Wr
v are interrelated in a variety of ways involving 

the group structure of /(M), so although there is a rather wide range of 
possibilities for the configuration of all of them there are also quite definite 
restrictions. The detailed study of these interrelations has been very effectively 
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used by H. H. Martens among others [30], and the investigation of these 
subvarieties and their properties is still being quite actively pursued, as is 
evident upon looking at [3 or 36] for example. Just to illustrate some of the 
interrelations, it may be of interest to see how these various subvarieties can all 
be described in terms of Wl and the group structure of J{M). It was already 
noted that Wr= Wx+ • • • + Wv and it is natural to set -Wr= {-w: 
w e Wr}9 so these subvarieties are determined quite directly by Wv and from 
these in turn 

(3) JF/= ( W G / ( M ) : W - WVQ Wr_v}\ 

alternatively it is possible to describe the subvarieties Wr
p inductively on v by 

using the subvariety Wx — Wx mentioned earlier, since 

(4) w;= { w e / ( M ) : w + W1-W1Q W;'1}. 

3. For any matrix B G §g the extended matrix A = (/, B) can be used to 
generate a lattice subgroup i?= AZ2g c C*, to which there is associated the 
compact complex torus /(B) = C8/J?. In studying such tori the Jacobian theta 
functions have long been basic tools, providing quite explicit representations 
for the meromorphic functions on /(B) and descriptions of some of the 
holomorphic subvarieties of /(B). That suggests attempting to describe the 
subvarieties of special positive divisors Wr

p in the Jacobi varieties of Riemann 
surfaces in terms of these theta functions, but in such an endeavor two 
problems must be kept in mind. The first is that whereas the theta functions 
provide quite simple and explicit descriptions of the subvarieties of codimen-
sion one, they generally only provide rather cumbersome and complicated 
descriptions for subvarieties of lower dimensions; ideally a theory of vector-
valued theta functions should be a more tractable tool for handling lower-
dimensional subvarieties of complex tori, but none has as yet been sufficiently 
explicitly developed. The second is that whereas the theta functions can be 
introduced for any period matrix S ! e ^ , only a special subset of the matrices 
B G §g are the normalized period matrices of compact Riemann surfaces; thus 
any general expression in terms of the theta functions can only be expected to 
describe subvarieties of the dimensions and other properties desired for special 
values of B, an observation that has underlaid several approaches to the 
problem of characterizing those matrices 8 e ^ that are the normalized 
period matrices of compact Riemann surfaces. 

The basic theta series associated to a matrix B G $g is 

(5) 0[v\r]{w\ 0) = £ exp27Ti[i \n + v)ü(n + v) + '(w + p)(w + T) 

where the summation is extended over all column vectors of integers « e Z g ; 
this is to be viewed as a series of terms in the variables w G C*, with additional 
parameters v, T G C ? called the characteristics. Since B G $g the imaginary 
part of B is positive definite, so if y > 0 is its smallest eigenvalue then the 
absolute value of the nth term of the series (5) is bounded from above by 
exp(-7rytw • n + ln|>v| + xna + /?) for some constants a, /?, therefore the 
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series clearly converges locally absolutely uniformly, hence represents an entire 
function of the g complex variables w e Cg. The parameters v, T really just 
describe a translation of the coordinates in the elementary theta function 

(6) 0(w) = 0[O|O](w;G), 

as is evident from the identity 
1 

(7) 0[P|T](H>; ti) = 0(w + Qv + T)exp277/ - xvQv + xv(w + T) 

but are convenient and traditional; the notation adopted here is a shght variant 
of one of the customary ones, to simplify life for the printer. 

The basic property of the theta function is that for any lattice vector X e 3? 
there is a nowhere-vanishing entire function TJ(A, W) of the g complex variables 
w e C8 such that 

(8) 0(w + \) = ii(\9w)0(w). 

The zero locus of the function 0 is thus a holomorphic subvariety of pure 
dimension g - 1 in Cg and is invariant under the lattice subgroup «£?, so it 
determines a holomorphic subvariety of pure dimension g - 1 in the torus 
J(Q) = C*/&\ this latter subvariety is called the theta locus and will be 
denoted by 0. It is thus a canonically constructed subvariety of the torus /(fl), 
described quite simply and explicitly in terms of the period matrix Q alone as 
the zero locus of the elementary theta series 0{w). 

The significance of the theta locus 0 for Riemann surfaces was recognized 
by Riemann in one of the most glorious theorems of the subject. The first part 
of Riemann's theorem is the assertion that if B is the period matrix of a 
compact Riemann surface M, so that the torus J(Q) can be identified with the 
Jacobi variety J( M ), then 

(9) Ws.x = @ + R 

for some point R e /(Af); thus the subvariety Wg_x of positive divisors of 
degree g - 1 is determined quite simply and explicitly by the period matrix Q 
alone, at least up to a translation. The point R is uniquely determined by (9) 
and can be written down rather explicitly in terms of the Riemann surface M, 
although not in terms just of the torus J{M)\ it and Wg_x do depend on the 
choice of the base point of M. There is even more to Riemann's theorem, 
though, involving the locus points of order v of the elementary theta function 
0(w), the holomorphic subvariety 0 " c 0 defined as 

0" = { w e J(Q) : 0 and all partial derivatives of 0 
of orders < v vanish at w }/<&. 

The second part of the theorem asserts that 

(10) WgU = 0" + R; 

thus all the subvarieties Wg
v_l of special positive divisors of dimensions 

v = 0,1,2,... are also determined quite simply and explicitly by the period 
matrix fl alone, up to translation. In particular, the theta function 0 vanishes to 
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the first order at ©, hence generates the proper ideal of that subvariety at each 
of its points, and W^_x is precisely the singular locus of Wg_v Riemann's work 
can be found in [37], and modern proofs in [28, 31, and 33], among other 
places. As a consequence of Riemann's theorem any results derived only from 
a knowledge of the subvarieties W*_x up to translation are really determined 
by the period matrix S2 alone. This observation is the basis for most current 
proofs of Torelli's theorem that any two Riemann surfaces having the same 
normalized period matrix Î2 are biholomorphic [1, 29, 32, 39]. Although this 
does mean that the Riemann surface M itself and hence all of the subvarieties 
Wr

v are to some extent determined by the period matrix S alone, the actual 
way in which they are determined is rather indirect and too ineffective for 
some purposes. 

4. There is thus some point to examining further the use of theta functions to 
describe various subvarieties of complex tori, and in this examination the 
second-order theta functions play a prominent role; they are defined by 

(11) *2MTKw; ö ) =
 0[V\2T]{2W\2Ü), 

so are really just a simple variant of the standard theta functions. The basic 
property of the second-order theta functions is that whenever v is a half-in­
tegral vector, so that 2^ e Zg, then, for any lattice vector X e if, 

(12) e2[p\0](w + X; Q) « TKX,H;)202MO](M;; 0), 

where TJ(\, W) is the nowhere-vanishing entire function of w that had earher 
appeared in (8). As long as none of the vectors v differ by an integral vector, 
the corresponding second-order theta functions are linearly independent, as is 
evident from the Fourier expansion (5), while 02[v + m\ 0](H>; fl) = 
02[P|O](H>; ö) for any integral vector m, as is also evident from (5); thus as v 
varies over the group (Z/2Z)g, or equivalently as v varies over the set of 
rational vectors with entries either 0 or 1/2, the corresponding second-order 
theta functions range over 2g linearly independent entire functions of w 
satisfying the functional equation (12)—indeed they form a basis for the 
complex vector space of entire functions satisfying (12). For notational con­
venience set 

(13) ^(w) - {02[P\O](W; 0): v e (Z/2Z)*}, 

viewed as a column of length 28 consisting of entire functions of w or, 
alternatively, as a holomorphic mapping 82: C8 -* CG where G = 2g. The 
square of the elementary theta function 0(w) satisfies (12), so it can be written 
0(w)2 =lc • 82(H>) for some vector c e C g ; both more general and more precise 
is the relation between the elementary and second-order theta functions given 
by Weierstrass's formula 

(14) 9(w + a)$(w + fi) = t f t 2 ( £ ^ ) • l(» + - 1 ) , 

or the dual form corresponding to the special case /? = - a, 

(14') %(a)-92(w) = 6(w + <x)0(w-a). 
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There is now a very natural way in which the second-order theta functions 
can be used to describe sub varieties of the complex tori J(Q). The vector 82(w) 
is never the zero vector; indeed if 82(a) = 0 for some point a then it follows 
from (14') that $(w + a)$(w - a) = 0 for all w, an evident impossibility. Thus 
this vector can be viewed as describing a point [82(w)] in the projective space 
P G _ 1 of dimension G - 1 = 28 - 1. The functional equation (12) shows that 
82(H>) and 62(w + X) describe the same point in PG~l for arty lattice vector 
X e J?9 so there results a well-defined holomorphic mapping 

(15) [92]:J(Q)-+PG-\ 

Then for any subvariety [S] ç PG~l the subset {w e J(Q); [82(w)] e [S]} is a 
well-defined subvariety of /(Î2). The problem of course is that of determining 
subvarieties [S] ç pG~l for which the corresponding sub varieties of J(Q) are 
of an intrinsic interest, such as being related to the subvarieties Wr

v of special 
positive divisors when Q is the period matrix of a Riemann surface. 

Before turning to a discussion of that problem though, a few further remarks 
about the mapping (15) and its geometrical properties should be added here. 
The image of this mapping is an algebraic subvariety K(Q) ç PG~l canoni-
cally associated to the period matrix K, called the Wirtinger variety for Q; in 
the special case g = 2 it is just Kummer's quartic surface [24], a much studied 
algebraic surface in P 3 of which the Wirtinger varieties are thus natural 
generalizations. If the theta locus 0 is assumed to be irreducible, a rather 
reasonable nondegeneracy condition that by (9) is automatically satisfied 
whenever Ö is the normalized period matrix of a Riemann surface, then, as 
Wirtinger demonstrated in [44], the mapping [62]: / (B) -> K(Q) is a two-
sheeted branched covering with double points at the 22g half-periods in /(ÏÏ), 
but otherwise nonsingular; that is the best that could be expected, since the 
s e c o n d - o r d e r t h e t a f u n c t i o n s 8 2 [ p | 0 ] ( w ; Q) f ° r half-
integral vectors v are all even functions of w and hence 62(-w) = 82(w). The 
Wirtinger variety K(Q) can thus be identified with the quotient J(ü)/E of the 
torus J(Q) under the holomorphic involution E: J(Q) -> /(Q) induced by the 
mapping w -* —w; the half-periods in /(Ö) are precisely the fixed points of E. 
The subvarieties of /(Ö) to be considered next are just the inverse images 
under (15) of the intersections K{ü) n [S] ç PG~X; it should be noted that all 
such subvarieties are invariant under the involution E. 

For some purposes it is also of interest to consider the mapping 8^: 
C g -* CG defined by 8£(w) = 82(w/2); the functional equation for the map­
ping 8 | under translation by a period vector reflects the transformational 
properties of the second-order theta functions under translation by a half-period 
and is a bit more complicated than (12), but well established [23, 34]. For any 
lattice vector X G «£?there is a nonsingular G X G matrix x(^)> with entries 
either 0, + 1 , or — 1, such that 

(16) 82*(w + X) - r,(A, >v)1/2x(A)82*(>v); 

then x(^i + ^2) = ±X(^i)x(^2) f° r anY lattice vectors Xv X2 ̂ &, while 
branches of the square roots can be so chosen that x(2A) = / for any lattice 
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vector X e &. If x*(^)« PG~l -» P G _ 1 is the projective transformation repre­
sented by the matrix x(A) then the mapping X -» x*(^) *s a homomorphism 
from o f̂into the grQup of projective transformations on PG~X with a kernel 
including 2&, and (16) implies that [82*(w + \)] = X*(*)[8?(H0]; the image 
^ = (x*(^): A ^ «^} is therefore a finite group of projective transformations 
mapping the Wirtinger variety K(Q) ç P G _ 1 to itself, and with the nondegen-
eracy condition that 0 be irreducible, as before, the induced mapping [82*]: 
J(Q)/E -> K(Q)/&is a one-to-one holomorphic mapping. 

5. To consider now some explicit examples of this method of describing 
sub varieties of /(Œ), to any fixed set of indices 1 < j l 9 . . . Jx < g associate the 
vector 

ji j \ * ^ f 9 w . • • • dw, 

this vector is of course zero if X is odd, since the second-order theta functions 
involved are even functions, and is symmetric in the induces j v . . . Jx. In terms 
of these vectors let 

(17) sv = span{e2(o),a7iy.e2(o),...,3A..72e2(o)} c cG
9 

where by this is meant the linear subspace of CG spanned by all the vectors 
listed for all choices of indices y,, and let [S„] denote the image of this linear 
subspace in the projective space PG~l. Dually let 

(18) Sv
x = { ^ e C V r ^ O for all/ e £„}, 

where ls • t = Hsjtj is the standard inner product in CG, and let [Sf] denote 
the image of this linear subspace in the projective space PG _ 1 . The first 
example is a very simple consequence of Weierstrass's formula (14'); the 
special case v = 0 is indeed both familiar and trivial, the special case v = 1 was 
used in [2], and there must have been many other earlier occurrences. 

THEOREM 1. \%y\K($L) n [Sf]) = 0". 

PROOF. Setting 

<F= {we/ ( i2) :^ -e 2 (w) = 0 forallj e S,}, 

the assertion of the theorem is just that $p = 0", the locus of points of order v 
of the elementary theta function. This result will be demonstrated by induction 
on v. For the initial case v = 0 note from (14') that 

$ ° = { w e J(Q): 0 =^(0) • 62(w) = 0(w)2}, 

hence that $° = 0 as desired. Assuming then that the result holds for 
v - 1 > 0, it follows that 

= \...h 82(0) • 82(w) for all indices^}. 
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Setting J = (ji • • • j2v)> note that by applying the product rule for differentia­
tion to (14') it follows that 

0 = l3A(0) • 6,(H0 - E dr0(w)drO(w), 
J^J'UJ" 

where the summation is extended over all ways of writing / a s a union of 
subsets of indices ƒ', /"; the induction hypothesis shows that the only 
nontrivial terms in this summation arise when both J' and / " consist of v of 
the indices in / . It is a fairly straightforward algebraic observation, possibly 
most readily seen by another induction on *>, that this identity implies that 
\..jO(w) = 0 for all indices^, thereby concluding the proof. 

The preceding result shows that for any fixed v the sub variety 0" c J(ü) 
can be described as the set of common zeros of a particular set of second-order 
theta functions, namely the functions xs • 82(w), where s ranges either over all 
of Sv or just over a basis of Sv. In particular, 

e = { w Ê z(n): ^(o) • e2(w) = o}, 
while the singular locus of 0 is 

0i = {w e 0 : ^ £ ( 0 ) • 82(H>) = 0 fori <j\ <;2 < g}; 

since there are (g
2

x) > g of the latter equations, it would be expected that 
01 = 0 in general, that is, that the locus 0 is nonsingular, as in the case. 

This immediately suggests other explicit examples of this method of describ­
ing subvarieties of /(B); while the descriptions are quite easy, it is generally 
rather difficult to say much of anything at all about the subvarieties so 
described. Only two families of such subvarieties will be considered here. 
Firstly, and most obviously, for any integer v > 0 introduce the subvariety 

(19) x,Me2rWû)n[sj)ç/(a), 
which can also be described as the set of common zeros of a particular set of 
second-order theta functions in the form 

Xv= {>ve/(î2):t5-e2(>v) = 0 for alls e Sf). 

Secondly, and somewhat more subtly, in Theorem 1 it is quite conceivable that 
the intersection K(Q) n [Sf] only spans a proper subspace of [Sf], or, 
equivalently, that the intersection subvariety can also be described as JRT(O) Pi 
[T] for a proper linear subspace T c S J* ; therefore let 

TJ- = smallest linear subspace T c Sf c C G 

(20) 
for which K(Q) n[T] - K(Q) n[Sv

x], 
or, equivalently, let Tf be the linear subspace of CG spanned by all representa­
tives of all points in K(Q) n [Sp

x] ç PG _ 1 , and dually set 

(21) r„= { r e C G : V • s = Oforallj n Tf). 

In view of Theorem 1 the latter subspace can also be described as 

(22) Tv = {/ e CG: V • ̂ (w) = 0 for all w e 0"}. 
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Then introduce the subvariety 

(23) Y,= [Çl](K(Q)n[T,]), 

which is again the set of common zeros of the appropriate set of second-order 
theta functions. 

Since Tv
x c Sf by definition, it must be the case dually that Tv D SV and, 

consequently, 

(24) X, ç Yv 

for every index v\ as will eventually be demonstrated, this is sometimes, but 
not always, a strict inclusion. Although more complicated to define, the 
sub varieties Yv are rather easier to handle than the sub varieties Xv\ but on the 
other hand the subvarieties Xv are evidently of a more independent interest. To 
describe the subvarieties Yv in another manner, it is convenient to use a notion 
and notation introduced by H. H. Martens: for any subsets A, B of the torus 
/(fl) set 

(25) A 9 £ = { w e / ( B ) ; w + B Q A}. 

Note that itA9B are holomorphic subvarieties of the Abelian variety J(Q) then 
A e B = Clt(EB(A - t) is also a holomorphic subvariety. It is perhaps worth 
pointing out here that WreWs= Wr_s whenever r > s9 complementing the 
earlier observation that Wr+ Ws= Wr+S. Now setting 0* = Q[ U 0£ U 
where ©ƒ are the irreducible components of the holomorphic subvariety 
6 ' ç /(fi), the following holds. 

THEOREM 2. Yv = n,[(0 e 0/) u (0 e -0/)]. 

PROOF. Upon using (22) and (23) together with Weierstrass's formula (14') it 
follows readily that 

y y = { j G / ( a ) : 0 = %(y) ••z(w) = 0(w + y)6(w - y) for all w e 0^}, 

which can be rewritten geometrically as 

Yv= { j>e/(S2):0"ç (0 - y) u ( 0 +7 )} . 

Now 0" ç (0 - y) U (0 + y) precisely when either 0/ ç 0 - y or 0/ ç 0 
+ y for each irreducible component ©ƒ of 0", or, equivalently, precisely when 
y e (0 e ©ƒ) U (0 e -©ƒ) for each j since - 0 = 0, and that suffices to 
conclude the proof. 

Only for the special case v = 0 can much more very easily be said in general 
about these subvarieties. Firstly, since [S0] is just the single point [62(0)] it 
follows from the general results of Wirtinger discussed in §4 that X0 = 0, at 
least when the theta locus is assumed irreducible. Under the same assumption 
it follows from Theorem 2 that 70 = 0 9 0 = 0, hence that X0 = Y0. Actu­
ally, recalling (22), the space T0 consists of those vectors r e C G such that the 
second-order theta function H • 82(w) vanishes on 0, hence under the same 
assumption as before such that V • 82(w) = 0(w)h(w) for some entire function 
h(w); but this function h(w) must then satisfy the same functional equation as 
0(w), so it must be a constant multiple of 0(w), hence t must be unique up to 
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an arbitrary scalar multiple. That means TQ is one-dimensional, hence 50 = T0 

as well. 

6. If B is the normalized period matrix of a compact Riemann surface then 
something further can be said, and the situation becomes rather more interest­
ing. First the vectors 82(0) and fy^CO) for 1 ^jx <y2 < S a r e necessarily 
hnearly independent, a nondegeneracy condition that holds for a general 
matrix Q 6 $ r but not for all matrices Ö e ^ ; that was observed by 
Andreotti and Mayer [2], and a correct proof can be found in [9]. Thus 

dimi:(fl) + dim[5iL] - d i m P ^ - 1 = g - 1 ~ ( g * j < 0 for all g, 

so it would be expected that the sub varieties K(Q) and [Si]ofPG~l would be 
disjoint and, hence, by Theorem 1, that 01 = 0 . On the other hand, it is well 
known that dim©1 = g - 3 when M is a hyperelliptic Riemann surface, while 
dim©1 = g - 4 otherwise, so, in particular, 01 =£ 0 whenever g > 4. That 
means the sub varieties K(Q) and [S^] of PG~X must be situated in rather 
special positions with respect to one another whenever g > 4, since their 
intersection has a larger dimension than that of the intersection of two 
generically situated sub varieties of P0"1 of the given dimensions. When 
viewed as a condition on the matrix Q this goes quite far towards determining 
precisely which matrices Q e $ g are the normalized period matrices of com­
pact Riemann surfaces of genus g. Indeed, in their fundamental paper [2] 
Andreotti and Mayer showed that this condition describes a holomorphic 
subvariety in §g9 and that an irreducible component of this subvariety is the 
closure of the set of period matrices of compact Riemann surfaces of genus g; 
but it was demonstrated by Beauville in [5] that there are other components. 

There are similar, but rather more complicated, results for the space Sv In 
this case 

dimJfi:(Ö) + dim[51]-dimPG-1 = ( g * 2 ) - 2 * < 0 forg^4 , 

so it would be expected that the sub varieties K(Q) and [SJ of PG~* would be 
disjoint for g > 4, or, equivalently, in view of definition (19) that Xx = 0 for 
g > 4. On the other hand, it follows from results of Fay that Xx # 0 in the 
Jacobi variety of any compact Riemann surface, so K(Q) and [Sx] must also be 
situated in rather special positions with respect to one another whenever g ^ 4. 
What this means as a condition on the matrix Ö, in particular whether it is 
equivalent to the condition of Andreotti and Mayer, or whether it goes as far 
towards characterizing the period matrices of Riemann surfaces, has not yet 
been fully explored. Of course the statement of this condition is not very 
complete, since to be analogous to the condition of Andreotti and Mayer it 
should not merely be asserted that Xx =£ 0 but at least that Xx has a specified 
dimension; as will later be seen there are even stronger forms of this condition 
that do at least go as far towards characterizing the period matrices of 
Riemann surfaces as the Andreotti-Mayer condition. 
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The further discussion here of the subvariety Xx rests on a beautiful result of 
J. D. Fay, a simple consequence of his trisecant formula as discussed in [13 and 
14]; it is the assertion that for any points pl9 p2^ M there are complex 
constants q, r for which 

(26) e2(>v(Pl) - w(p2)) « r • 8,(0) + Wl,*j(PiWk(P2) ' 9,A(0). 
L jk 

Note that w(px) — w(p2) = ƒƒ* co depends on a choice of path from p2 to px\ 
the choice of another path has the effect of multiplying the left-hand side of 
(26) and, hence, the constants q, r by suitable complex constants. Having 
chosen a path, and having also chosen some local coordinate systems near px 

and p2 on M in terms of which the differentiations on the right-hand side of 
(26) are to be carried out, the constants r = r(pv p2) and q = q(pv p2) are 
locally well-defined holomorphic functions of px and p2\ for some purposes it 
is convenient to consider these functions as defined on the universal covering 
surface of M, where they are well-defined single-valued holomorphic functions 
as described in detail in [23]. At any rate it follows immediately from (26) that 

(27) WX-WXQ Xl9 

and hence that dim Xx > 2 in the Jacobi variety of any compact Riemann 
surface. 

For the Jacobi variety of a hyperelliptic Riemann surface of any genus, the 
situation is particularly simple. It is no doubt familiar, and is discussed in [20], 
among other places, that in this case there is a point E e J {M) such that, 
-Wx= Wx- E, and, hence, W1-W1=W1- E. Combining this with (10) 
and (4), it follows that 

0 1 = W^x - R = [Wg_x e(W2 -E)]-R= Wg_3 + E-R; 

using this, and noting that 0 1 is irreducible and - 0 1 == 01 , it further follows 
from Theorem 2 that 

Yx = 0 9 0 1 = (Wg_x - R) e(Wg_3 + E- R)=W2- E=Wl-Wl. 

Consequently, 

(27") X1 = Y1 = Wl-WlQJ(M) when Mis hyperelliptic. 

From this at least the following can readily be deduced in general. 

THEOREM 3. dim Xl = 2 in the Jacobi variety of a general Riemann surface. 

PROOF. Denoting the vector of second-order theta functions (13) temporarily 
by ^(w; 8) to emphasize that it is a holomorphic function of both w e Cg and 
fi e Qg9 introduce the holomorphic subvariety 

(28) î^j^BjeC^^: 

rank[e2(w; 0 ) , 62(0; 0 ) , 9 , ^ ( 0 ; Ö)] < 1 + ( g + * )} 
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and the natural projection TT: # \ -* $g. Whenever Q e $g is the period matrix 
of a compact Riemann surface then 

rankf^O; 0 ) , 3 , ^ ( 0 ; 0)] = 1 + (* + *) 

as already noted, so Xx = 7r_1(B) when this sub variety of Cg is viewed as a 
subvariety of /($2). The desired assertion follows quite easily upon using a few 
general results form complex analysis in several variables, results that can be 
found in [15], among other places, together with some results on Teichmüller 
spaces in the survey [6]. First the subset &* ç SCX consisting of all those points 
(w, Q) e Xx at which the subvariety 7r~\7r(w9 Q)) has dimension > 2 is a 
holomorphic subvariety of SFV Next since n~l(Q) n Off, viewed as a subvariety 
of Cg, is clearly invariant under the lattice subgroup generated by the columns 
of the matrix (/, fi), the restriction of 77- to #\* is a semiproper holomorphic 
mapping; so by the theorem of Kuhlmann and Whitney the image TT(&?) is a 
holomorphic subvariety of $ . Now the subset of $ g consisting of the 
normalized period matrices of compact Riemann surfaces is the image of a 
connected complex variety, Torelli space, under a genetically two-to-one 
holomorphic mapping. Those points of Torelli space for which the image Ü is 
contained in ir(&f) form a holomorphic subvariety which omits the hyper-
elliptic Riemann surfaces by (27"), so it must be a proper subvariety; thus the 
period matrix of a general Riemann surface is not contained in ^ ( ^ f ) , and 
that is just the desired result. 

It follows from the preceding theorem and (27') that Wx - Wx is at least an 
irreducible component of Xx in the Jacobi variety of a general Riemann 
surface. This theorem and several other very interesting and suggestive results 
about the locus Xx can be found in a preprint [17] by van Geemen and van der 
Geer, which only came to my attention after having essentially completed this 
paper. They show among other things that Wx - Wx is an irreducible compo­
nent of Xx for any Riemann surface of genus g> 5 that is not either trigonal 
or a smooth plane curve of degree 5, and that Xx n (W2 - W2)=

z Wx- Wx in 
the same cases. 

7. For surfaces of sufficiently small genus, a good deal more can be said, and 
indeed said quite explicitly. Before turning to the consideration of these special 
cases, though, an auxihary topological result should first be discussed. The 
homology classes in E%{J{M\T) carried by the subvarieties Wr of positive 
divisors have long been known and can be described quite explicitly; for many 
purposes a sufficiently explicit description is the intersection formula attri­
buted to Poincaré, asserting that 

(29) 9'~r\Wg_r m t f 2 ( g _ r ) ( / (M) ,Z ) , 

where @r = © n • • • n 0 is the r-fold intersection homology class and -
denotes that the classes indicated are homologous. This formula is discussed in 
[18], among other places, and both there and in [3] can be found some results 
about the homology classes carried by the subvarieties of special positive 
divisors in some cases. What will be needed here though is rather the 
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description of the homology class carried by Wx - Wl9 a problem also con­
sidered by S. Diaz [8]; the result is the following. 

THEOREM 4. In H4(J(M), Z), 

W2 if M is hyperelliptic, 
W — W 

1 l \2W2 if M is not hyperelliptic. 
PROOF. Since there is no torsion in the homology of a torus it is enough to 

prove the desired result for homology with real coefficients, so by de Rham's 
theorem it is enough to show that fwl~wl £

 = 7lfw2 £ ^or everY differential form 
£ of degree 4 on /(M), where TJ = 1 if M is hyperelliptic and 17 == 2 otherwise. 
Consider then the holomorphic mappings <j>9 $: M X M -> J {M) defined by 

<>(Pi> Pi) = w(Pi) + w(Pi)> HPi> PI) = H Pi) - HPz)-
Outside a proper subvariety of M X M the mapping <J> is a two-to-one mapping 
from M X M to W2, while outside another proper subvariety of M X M the 
mapping \p is a two-to-one mapping if M is hyperelliptic and a one-to-one 
mapping otherwise, as demonstrated in [20] for instance; therefore 

ƒ i-jf **(«) and ƒ =f/ *•(*) 
-V 2

 LJMXM JWl-Wl
 LJMY,M 

for every differential form £ of degree 4 on ƒ( M). Now there is a basis { £y} for 
the real differential forms of degree 1 on J(M) such that 

W \*J> \pj i f g + l < y < 2 g , 

where a., /?y are differential forms on M dual to the corresponding generators 
of the fundamental group (hence of the first homology group) of M and w: 
M -> /(M) is the imbedding (2); that is a simple consequence of the observa­
tion that the mapping w takes the paths aj9 fy to generators of the lattice 
subgroup if. It follows readily from this that 

(30) **(*,) = 
PM + fijiPi), 

(È)_l«j(Pi)-«j(Pi) i f l < 7 < « , 
* { j ) WPi)-Pj(Pz) Hg + Kj<2g, 

where aj(px) is the differential form ay on the first factor of the product 
M X M. The exterior products of differential forms of degree 1 span the space 
of differential forms on the torus /(M), so the proof finally reduces just to 
showing that 

ƒ p(ij) A p(ik) A *•(€,) A <t>*(U 
(31) MXM 

= ƒ *•(*,) A **(€*) A f (É, ) A *•(€„)• JMXM 
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Using (30), together with the observation from [19] or elsewhere that fMaj A /?, 
= 1, while 

f ajAak- [ <xj A pk = f $ A pk = 0 for; * k9 
JM JM JM 

it is readily verified that the two sides of (31) are equal, as desired, thereby 
concluding the proof. It might just be remarked in addition, though, that 
Wx — Wl= W2 — E for a hyperelliptic surface M, as already noted, and since 
W2 - E ~ W2, that provides an alternative proof of the desired result in the 
hyperelliptic case. 

There are, of course, the natural extensions of the preceding result, although 
they are probably of somewhat less interest; but it may be of interest to see at 
least a sketch of the general result. 

THEOREM 4'. In H2r(J(M\ T)for 2r < g, 

W2r if M is hyperelliptic, 

I I W2r if M is not hyperelliptic. 

PROOF. If M is hyperelliptic then -Wr=Wr- rE, so Wr-Wr= W2r - E 
~ W2ràs desired; therefore it can be supposed for the remainder of the proof 
that M is not hyperelliptic. The holomorphic mapping <£: M2r -+ W2n defined 
by 

2r 

7 - 1 

is of degree (2r)!, as demonstrated in [20] for example, and if it can be shown 
that the holomorphic mapping \p: M2r -* Wr- Wn defined by 

r 

t(pl>...,p2r)= £ {w(pj)-w(pJ+r)), 
7 = 1 

is of degree (r!)2, then the argument used in the proof of Theorem 4 will lead 
directly to the desired result. Thus it is only necessary to show that for general 
pointspj the only points qj for which $(pl9... ,p2r) = *K#i,... ,q2r) are those 
such that qv...,qr is some permutation of pv...,pr and qr+v...,q2r is some 
permutation of/? r + 1 , . . . ,p2r. If that is not the case then for arbitrary points pj 
there must exist some points q} that are not such a permutation of the points pj 
but for which $(Pi9... >p2r) = tKtfi,. • • >#2r)> hence for which 

(32) t {w(Pj) + w(qj+r)) = t {w(pj+r) + w(qj)); 
7 - 1 7=1 

that means that the point t e J {M) described by (32) actually lies in W2r. 
Fixing the points p v pr+v to any point t e W2r - W2r there corresponds a 
unique branched covering mapping mt\ M -> P 1 of degree 2r, so to t can be 
associated the divisors irrl(*t(Pi)) a n^ 7rt~1(7T

t(pl+r)) of degree 2r in M, and 
they must be holomorphic functions of t. Since the pointsp2,...9pr in the first 

Wr-Wr~ 
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divisor and pr+2,... >p2r in the second divisor are quite arbitrary, it must be the 
case that dimW2r > 2r - 2; but as shown in [20], among other places, that 
means the surface M is hyperelliptic, contrary to assumption, so it is impossi­
ble. If t e Wr

v for all points/^ and some v > 1, the situation can be reduced to 
one for a smaller value of r, so that suffices for the sketch of the proof. 

8. The simplest nontrivial case of the preceding considerations is that of a 
Riemann surface of genus g = 3. In this case the vector of second-order theta 
functions describes a holomorphic mapping 62: C

3 -» C8 or, equivalently, a 
holomorphic mapping [82]: J(M) -> P7, and dim Sx = 7 so that dim Sx = 1; 
thus Sx is the span of a single vector a e C8, where a is any vector for which 

la • 62(0) = Vx • djj2(0) = 0 f or 1 <j\ ^j2 < 3, 

and [Sf] = [a] is a single point of P7. By Theorem 1 either [a]£ K(Q) and 
01 = 0, or [a] e K(Q) and 01 is the single point 01 = 62"

1([a]) e J(Q). The 
second case is that of a hyperelliptic Riemann surface, since, as is well known 
and discussed in [20], among other places, a hyperelliptic Riemann surface can 
be characterized by the condition that dim01 = g - 3 ; moreover, for a 
hyperelUptic Riemann surface it follows directly from (3) that Wg_x = E, 
hence by (10) that 01 = E - R. Now if 01 is a single point, that point by 
symmetry must be the origin, so a = 62(0); thus hyperelliptic Riemann surfaces 
can be characterized by the condition that 

and on such a surface the hyperelUptic point E and the Riemann point R 
coincide. This characterization of hyperelliptic Riemann surfaces of genus 3 is 
neither new nor surprising, though, for by using Weierstrass's formula (4) it is 
readily seen to be equivalent to the characterization by the conditions that 
dim©1 > 0. Rather more interesting is the observation that in this case (19) 
takes the form Xx = {w e J(M): ta-82(w) = 0}. The second-order theta 
function la • 82(w) transforms under the lattice if like a product of two 
first-order theta functions, from which it follows that the divisor of this 
function la • 82(w) in J{M) carries the homology class 20 - 2W2 in 
H4(J(M\Z). If M is not hyperelliptic then 2W2 ~ Wx-Wx by Theorem 4, 
and since Wx - Wx c Xl9 it must be the case that Wx- Wx = Xx and the 
function xa • 82(w) vanishes to first order on this locus. On the other hand if M 
is hyperelliptic then W2 ~ Wx - Wv but since Wx- Wx = Xx in this situation 
anyway la • 82(w) vanishes precisely to the second order on this locus. At least 
it is true in any case that Xx = Wx- Wv Finally, if M is not hyperelliptic the 
whole construction leading to the space Yx is vacuous, so nothing further can 
be said. On the other hand if M is hyperelUptic then, since [Tx] is a nonempty 
subset of the point [Sf], it must be the case that Tx = Sx , hence Tx = Sx and 
Yx = Xx\ Theorem 2 then shows that Wx - Wx = Xx = Yx = 0, although the 
fact that Wx - Wx = 0 in this case also follows directly since E = -R. 

Both more interesting and more complicated is the case of a Riemann 
surface of genus g = 4. In this case the vector of second-order theta functions 
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describes a holomorphic mapping 82: C
4 -> C16, and dim Sx = 11 so dim Sx 

= 5; thus Sx is the span of any five linearly independent vectors av...,a5 in 
C16 for which 

xafi2 (0) = \ • djj2 (0) = 0 for 1 < j \ < j2 < 4. 

It is known, as discussed in [34] for example, that there are just three 
possibilities for the subvariety 01 : 

(i) 0 1 = Wx + E - R when M is hyperelliptic, 

(33) (ii) 0 1 = A U - A for some points ,4 * - 4 i n / ( M ) , 

(iii) 0 1 = A for some point A of order two in / ( M ) ; 

the general situation is (ii), while (iii) is the special case in which the two points 
A and -A coincide. If M is hyperelliptic, so that 0 1 is the irreducible 
one-dimensional subvariety of J{M) given by (i), then it follows readily from 
Theorem 2 that Yx = (W2 - E) U (W2 + IE - 2R)\ but it was also noted 
earlier that Yx = Wx — Wx and is, hence, irreducible in this case, so Yx = W2 

- E = W2 + IE - 2R and 3E = 2R in J(M). It also follows readily from 
Theorem 2 that Yx = ( 0 + 4 ) U (0 - ^ ) in case (ii) and Yx = 0 + A in case 
(iii); in both cases, dim Yx = 3. On the other hand, by definition, the sub-
variety Xx can be described as 

Xx= {w<=J(M):tar92(w) = 0îorl < / < 5 } . 

This subvariety could only be three-dimensional if the five second-order theta 
functions lat • 62(w) had a common nontrivial factor ƒ(w), and since Xx ç Y1 

that factor could be taken to be of the form ƒ(w) = 0(w — B) for some point 
B e / ( M ) ; but by (14) the quotients xat • 62(w)/0(w - B) would all have to 
be constant multiples of 0(w + B\ and it would be impossible for the 
functions lat • 62(w) to be linearly independent. Thus dim Xl = 2 for any 
Riemann surface of genus g = 4, and there are such surfaces for which 
Xx ¥= Yl9 indeed for which these sub varieties have different dimensions. This is 
a rather special case though, arising from the trivial representation of the theta 
locus as a sum of subvarieties of complementary dimension in the form 
0 = ( 0 - ^ 4 ) + y4;for surfaces of higher genus the corresponding representa­
tion of the theta locus would be a nontrivial one, if it existed at all. It should be 
noted that this does not show that Xx = Wx — Wv but only that Wx - W1 is 
an irreducible component of Xv However, at least in case (ii) it follows that 
Wx - Wx c Xx c Yx = (0 + A) U (0 - A), and since Wx - Wx is irreduci­
ble, it must be that either W1 - Wx c 0 + A or Wx - Wx ç 0 - A; but by 
symmetry if Wx — Wx c 0 + A then J^ - Wx c © - A as well, hence actu­
ally Wx— Wx Q ( 0 + A) n (0 - v4). Further, though, the homology class of 
the intersection (0 4- A) C\ (0 - A) in H4(J(M),Z) is 0 2 - 2Ŵ 2 recalling 
(29), while Wx - Wx ~ 2W2 as well by Theorem 4; consequently 
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9. The trisecant formula of Fay has extensions that lead to somewhat finer 
results about the locus Xx as well as to quite interesting further properties of 
the second-order theta functions. These generalizations were discussed in [23], 
and the relevant material will be briefly summarized here. First, introducing 
the natural linear projection operator P: Cg -> CG/SV there are vectors 
ijki e Cc/Si that are skew-symmetric in the indicesy, k, I and for which 

(34) PdMw(Pl) - w{p2)) = q2LèJkl<(P>;(P2) 
kl 

for any points pv p2 ^ M; here q is a complex number that depends, of 
course, not just on the points pvp2, but also on the path from/?2

 t 0 7>i chosen 
in evaluating the left-hand side of (34), and on the choice of local coordinates 
near/?!, p2 in terms of which the differentiations on the right-hand side of (34) 
are carried out, just as in Fay's formula (26). Although it was not needed 
before, it will later be necessary to have observed that q ¥> 0 whenever/?! =£ p2 
on M. The vectors £jkl also have the property that 

(35) \ I P*jUMo)*k(pWAp)<{p) = Zijk,K{p>i{p) 
u klm kl 

for all points/? e M and any index j . Next, letting 5* be the subspace of CG 

spanned by Sx and any vectors in CG representing the vectors £jkl e CG/SY, 
and introducing the natural linear projection operator P*: CG -> CG/S*9 there 
are vectors Tjklm e CG/S* that satisfy the symmetry conditions rjklm = Tkjlm = 
tjkmi^'Timjk and for which 

(36) P*djJ2(w(Pl) - w{p2)) = q2Z%-2kiK(P>!(P2) 
kl 

for any points pv p2 e M, the complex number q being as in (34). These 
vectors Tjklm have, in addition, a number of other properties of some interest. 
First, 

(37) i'*fyk/,»&(0) = Tjklm + Tljkm + Tkljm> 

next 

2P%(w(Pl) + w(p2) - w(p3) - w(p4)) 
( 3 8 ) = ô E (TyY,m + Ty.m,/)w;(/?1)^(/?2)>v/(/?3)<(/?4) 

for all points/?7 e M and for some complex number Q depending on the points 
Pj and the other choices made; and finally 

(39) Lwv/(/>K(/>) = 0 
lm 

for all points/? e M and all indices j, fc. 
The vectors £jkl e C^/S^ now have a role to play in the investigation of the 

locus Xx ç J(M). First note that in view of their skew-symmetry there are 
really just (f ) of these vectors, and since 

dimCG/Sx > ( f ) whenever g>39 
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there is no purely dimensional obstruction to these vectors being linearly 
independent. 

THEOREM 5. If the vectors £Jkifor 1 < j < k < I < g are linearly independent 
then Wx — Wx is an irreducible component of Xx and can only meet another 
irreducible component ofXx at the point O & J(M). 

PROOF. The conclusion is automatically satisfied for hyperelliptic Riemann 
surfaces, so it can be supposed during the remainder of the proof that M is not 
hyperelliptic. Since P92(w) = 0 precisely when 82(H>) e Sv the subvariety 
Xx c J{M) can be defined by Xx = {w e /(Af): P92(w) = 0}. To prove the 
theorem it is then clearly enough just to show that the Jacobian matrix of these 
defining equations 82(w) at any point of Wx — Wx other than the origin is of 
rank g - 2. Now at the point w(px) - w(p2) ^ Wx- Wx they'th column of 
that Jacobian matrix is expressed in terms of the vectors £jkl by (34), and if 
w(px) ¥= w(p2) then/?! # p2 and q # 0; so what is to be demonstrated is that 
there are at most 2 linearly independent vectors c = ( c l 5 . . . , c g ) G C g for 
which 

(40) o-^Jklcxk(Pl)w;(p2) 
jkl 

Cj WJiPi) Wj(p2)\ 

ck <(Pi) w'k(Pi)y 
c, w;(Pl) w;(p2)J 

Of course whenever c is a linear combination of w'(px) and w'(p2) then (40) 
holds trivially. On the other hand, w\px) and w\p2) are linearly independent, 
and if there were a vector c not dependent on w'( j?i) and w\p2) but for which 
(40) held, there would be a nontrivial linear relation among the vectors £jkh 

contradicting the assumed linear independence. That suffices to conclude the 
proof. 

For the case in which the Riemann surface M is not hyperelliptic, the proof 
actually demonstrated somewhat more than asserted in the statement of the 
theorem, namely the following. 

COROLLARY 1. If the surface M is not hyperelliptic and the vectors £jkl for 
1 < y < k < I < g are linearly independent then the defining equations i>82(w) 
generate the proper ideal of the subvariety Wx — Wx at each of its points outside 
the origin. 

If M is hyperelliptic and %jkl are linearly independent (a situation that may 
well not arise however) the same argument shows that the defining equations 
P^z(w) generate the proper ideal of the subvariety Xx = Wx- Wx = W2- E 
at each of its points outside the subvariety 2W1 - E. This exceptional locus 
2Wl — E is the set of all those points w(px) — w(p2) &Wl— Wx at which the 
vectors w'(Pi) and w'(p2) are linearly dependent or, equivalently, for which 
either px — p2 or px = rp2, where T: M -> M is the hyperelliptic involution, 
and is precisely the branch locus of the natural mapping M X M -> Wx- Wx\ 

- E É/*/det 
j<k<i 
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all the points of this locus except for the origin are regular points of the variety 
Wx - Wl9 but the Jacobian matrix of the defining equations PQ2(

W) cannot 
have maximal rank at any of these points. 

The condition that the vectors £jkl be linearly independent can be expressed 
as a property of the constants 9/-A./mô2(0) by means of equation (35). It is more 
interesting and informative though to proceed more indirectly, through the 
additional vectors TJklm9 and for that purpose it is convenient first to express 
these vectors in an alternative manner. It is a well-known theorem of M. 
Noether, as discussed thoroughly in [11] and other places, that among the 
products wjw'k of the Abelian differentials on M there are 3g - 3 linearly 
independent terms when M is not hyperelliptic, but only 2 g — 1 linearly 
independent terms when M is hyperelliptic. There are thus h linearly indepen­
dent complex symmetric matrices C = {cJk} for which T*Jk cjkWjWk = 0, where 

if M is not hyperelliptic 

if M is hyperelliptic; 

let Ca = {Cjk} for 1 < a < h be some basis for the space of such matrices. 
Introducing the symmetrized vectors 

(42) fJklm = rjklm + Tjmlk e CG/S{9 

it then follows from (39) that fJklm = EaXj[Ckm for some vectors xjt e CG/S*9 

and the symmetry properties of the vectors rJklm easily imply that 

xjlLkm L,xkmLjl' 
a a 

Viewing the constants cjt as forming an 

complex matrix C, and the /th components of the vectors x" as forming 
correspondingly a complex matrix Xi9 this symmetry condition can be written 
as the matricial identities tXiC

 ==iCXi; from this and the observation that 
rank C = h9 it follows quite readily that Xt = AtC for some symmetric h X h 
complex matrices At = {a^} and, consequently, 

(43) Tjklm^llaafiCjlcL 

for some vectors aap = a^a e CG/S* for 1 < a, /? < h. Note that by using 
(43) the result of (37) can be rewritten as 

(44) p*aJkMo) = T,*«p[c?kcL + tfcL + c«m4\ 

(41) 
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and, correspondingly, the result of (38) can be written as 

P%(w(Pl) + w(p2) - w(p3) - w(p4)) 

' ^ = 2 Ô £ aa^fmWJ(Pl)w'k(p2)w;(p3)w^(p4) 
aftjklm 

for all points pj e M and a suitable complex number Q. 
Before continuing the argument it is possibly worth pausing briefly to make 

a few observations about these last few results. First the vectors %jkl can be 
expressed in terms of the partial derivatives of orders 0, 2, 4 of the second-order 
theta functions at the origin as in (35), from which it appears to follow, as 
discussed in [23], that these vectors all he in the subspace S2 Q CG; but it is 
only the symmetrized versions (42) of the vectors rjklm that can be so expressed, 
so while these symmetrized vectors fJklm appear to lie in the subspace 52 ç CG, 
it is by no means certain that the vectors rjklm themselves do so. Second, and of 
much greater interest indeed, the expression (43) shows that the fjklm must 
satisfy a great many more linear relations than just those imposed by the 
symmetry conditions; if the further auxiliary vectors aap for 1 < a < /? < h 
are linearly independent, then all the linear relations among the fjklm are those 
following from the identity (43), and, correspondingly, all the linear relations 
among the vectors />*37-jk/m82(0) are generally those following from the identity 
(44). If the vectors \jkl are also linearly independent, then the vectors 
Pdjklm ̂ (0) can be expressed uniquely as some linear combinations of the £jkl 
and suitable representatives of the <za/8, and all the linear relations among the 
vectors i ^ / J ^ O ) a r e those following from such an identity; that must in 
particular be true for the linear relation 

(46) E P*jkiMQ)w;(pWk(p)wI(p)<(p) = 0, 
jklm 

which, as discussed in [23], is just a form of the well-known results of Dubrovin 
and others in which explicit solutions of the Kadomtsev-Petviashvili equation 
are given in terms of theta functions on Jacobi varieties, and should in 
principle be sufficient to determine whether there are any other such relations. 

Now let v be the dimension of the linear subspace of CG/SX spanned by all 
the vectors £jkh so that 0 < v < (f ), and let /* be the dimension of the linear 
subspace of CG/Sf spanned by all the vectors aafiy so that 

where h is given by (41). It might be expected that in general these dimensions 
would take their maximal values, so, in particular, Theorem 5 would apply in 
general. That is not the case for hyperelliptic Riemann surfaces though; 
indeed, noting that all of these vectors have representatives in CG and recalling 
that 

dim51 = l + ( g ^ 1 ) , 
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it follows immediately that 

(47) *> + /i + l + ( g + M ^ 2 * ' 

and when v and fi have their maximal values even this inequality cannot hold 
for g ^ 9. Actually it was observed at the beginning of §8 that for a hyper-
elliptic surface of genus 3 the second-order theta function defining the locus 
Xx = Wx — Wx vanishes to second order there, so v = 0; thus it is not just the 
exceptionally large value of h given by (41) that is the problem, since v by itself 
does not have its maximal value v = 1 in this case. For the hyperelliptic 
surfaces it was already shown in {21") that Xx = Wx— Wv though, so this 
point will not be pursued further. On the other hand, at least for a nonhyperel-
liptic surface of sufficiently small genus, both v and /x always take their 
maximal values. 

THEOREM 6. The vectors ijkl for 1 < y < k < I < g and the vectors aap for 
1 ^ a ^ /? < hare linearly independent for any nonhyperelliptic Riemann surface 
of genus g = 3, 4, or 5. 

PROOF. It follows from (45) that P*92(W2 - W2) is contained in the linear 
subspace of CG/S* spanned by the vectors aap, hence 92(W2~ W2) is con­
tained in the linear subspace of CG spanned by Sx and representatives of the 
vectors £jkl and aaj8; consequently, if S2 is the dimension of the smallest linear 
subspace of CG containing 82(JF2 - W2) then 

(48) ^ + ^ + l + ( g + 1 ) > S 2 . 

When g = 3 or 4 the sub variety W2 — W2 is the entire Jacobi variety J(M ) so 
S2 = G. When g = 5, W2- W2 is of codimension one in /(Af), and if 82 < G 
the image of this subvariety under the imbedding 82: J(M) -> CG would he in 
a hyperplane in CG, hence W2 - W2 itself could be contained in the zero locus 
of some second-order theta function xc • 62(w); but W2 - W2 is homologous to 
6WA by Theorem 4', while the divisor of any second-order theta function is 
only homologous to 20 ~ 2W49 an evident impossibility. Thus when g = 5 it is 
also the case that 82 = G. Using these explicit values for 82, condition (48) can 
be rewritten as 

( 1 when g = 3, 
5 when g = 4, 
16 when g = 5, 

while a simple calculation from the formulas given for the maximum values of 
v and /A shows that the reversed inequalities also hold; thus both v and fi must 
take their maximum values in each of these cases, and that suffices to conclude 
the proof. 

It is perhaps worth observing that the inequality (48) does hold universally, 
and that upon combining this with the obvious upper bounds for v and jn there 
ensues the inequality 82< G whenever M is not hyperelliptic and g> 6; the 
subvariety 82(^2 "" ^2) m u s t therefore he in a proper linear subspace of CG 
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whenever g > 6 and M is not hyperelliptic. The problem in extending the proof 
of Theorem 6 to surfaces of genus g > 6 is just that of determining Ô2 in these 
cases. It is of course possible just to extend the analysis that led to the series of 
results (34) through (39) on which the proof of Theorem 2 was based, yielding 
at the same time relations between still higher-order derivatives of the second-
order theta functions and results about the higher-dimensional subvarieties 
Wr— Wr. This may indeed be a reasonably profitable direction for further 
investigation; the results become successively more complicated, but there may 
be enough overall regularity and simplicity to make them useful. At any rate it 
might be expected that the dimensions v and [x always attain their maximal 
values for nonhyperelliptic surfaces, and that the imbedding dimension 52 also 
always attains its maximal value so that (48) is an equality. It is a fairly simple 
matter to show that the analogous dimension 8V the dimension of the smallest 
linear subspace of CG containing h2(Wl - Wx\ always attains its maximal 
value 

-er); 
indeed, if that were not the case, then in view of (26) there would have to be a 
nontrivial linear relation 

cr(Pi> Pi) + q(Pi> Pif E CjkWjiPiWkiPi) = ° 

holding for all points/?!,p2 e M, but that cannot happen, since for any fixed 
point/?! the expressions r(pl9 p2) and q(pv PiYw'kiPi) are> a s noted in [23], 
linearly independent functions of the variable p2 e M. Thus, at least in the 
case v = 1, and quite possibly in all cases v > 1, when considering subvarieties 
defined in terms of the subspaces Sv ç CG, there is no need to introduce 
auxiliary subspaces as was done in (20) when considering subvarieties defined 
in terms of the subspaces S^ç CG, so nothing playing the role of the 
subvarieties Yv could be expected. That may explain the observable asymmetry 
in the discussion in §5. 

Theorem 6 shows that the antic hypothesis and, hence, the conclusions of 
Theorem 5 and its corollary hold for all nonhyperelliptic surfaces of suffi­
ciently small genus, leading thus to the following. 

COROLLARY 2. The subvariety Wx — Wx is an irreducible component of the 
locus Xx for any Riemann surface of genus g = 3, 4, or 5; /ƒ, moreover, the 
Riemann surface is nonhyperelliptic then the defining equations P82(w) generate 
the proper ideal of Wx — Wx at each of its points outside the origin. 

For a surface of genus g = 3 or for a hyperelliptic surface Xx= Wx- Wv as 
already noted, while for a nonhyperelliptic surface of genus g = 4, it is an easy 
consequence of the above corollary that Wx — Wx is the unique irreducible 
component of Xx of dimension > 2 passing through the origin; indeed, if there 
is another such component A then, since A and Wx — Wx are two-dimensional 
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sub varieties of the four-dimensional manifold /(M), necessarily 

dim(^l n(Wl- »\)) = 0, 

and at any point of A n (Wl - Wx) outside the origin the defining equations 
P82(H>) describe the unions U {Wx - Wx), contradicting the corollary. 

There remain the questions whether the defining equations P82(H>) generate 
the proper ideal of the subvariety Xx at the origin for a nonhyperelliptic 
Riemann surface of genus g == 3, 4, or 5, and whether Xx can ever have any 
components other than Wx — Wx for a surface of genus g = 4 or 5; and there 
are other sub varieties of /(Af) and approaches to these questions suggested by 
the preceding discussion. Indeed, between the linear subspaces Sx and S2 there 
is the intermediate subspace S* spanned by Sx and the vectors £jkh and that 
leads to a consideration of the subvariety 

Xf = { w e / f M j ^ W e S f } = {w e J(M) : P*82(w) = 0}, 

for which, of course, Xx c Xf ç X2. At least for surfaces of genus g = 4 this 
subvariety can quite readily be analyzed by using equation (45), although this 
does require a further treatment of the dependence of the scalar parameter Q 
on the choice of the points p/> the result is that Xx* is a three-dimensional 
subvariety of /(Af ) of the form Xf = (W2 - V) U (V - W2) for some curve 
V ç /(Af ), the zero locus of a particular second-order theta function. The 
analogue of (45), but with the projection operator P in place of P*, a formula 
to be found in [23], can be used to obtain alternative descriptions of the pull 
back of the locus Xx to the product Af4, thus providing a somewhat different 
approach that will be discussed elsewhere; it may serve to describe the locus Xx 
more fully, and at least leads to a rather interesting further analysis of the 
second-order theta functions. The extension of this approach to Riemann 
surfaces of higher genus and the subvarieties Xv f or v > 1 requires a further 
exploration of yet higher-order derivatives of the second-order theta functions 
at the origin. 

10. The derivation of the properties of the second-order theta functions as 
described in the preceding sections is obviously just a preliminary step towards 
a more complete theory of these fascinating functions, so a few words about 
where these directions of research might lead should possibly be added here. 
Probably the most interesting of the properties discussed here are those related 
to the linear independence of the auxiliary vectors £Jkl and rJklm9 which closely 
involve the derivatives of the second-order theta functions at the origin; such 
properties should lead to further results about the roles these theta functions 
play in leading to explicit solutions of certain nonhnear partial differential 
equations. There is clearly much work to be done in that direction, On the 
other hand the subvarieties Wv - Wv are of considerable interest as being the 
most invariant among the subvarieties of positive divisors, being independent 
of choices of base points and firmly anchored at the origin in the Jacobi variety 
/(Af). These are the subvarieties most likely to be amenable to an explicit 
description in terms of the period matrix alone, through the intermediation of 
the theta functions; that is certainly quite satisfactorily the case for Riemann 
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surfaces of genus g = 3, and in at least a primitive manner for surfaces of 
genus g = 4 and 5, although clearly much remains to be done. The sub variety 
Wx — Wl itself determines the Riemann surface M, being birationally equiva­
lent to the symmetric product M(2) and having the property that (W1 - Wx) n 
Wg_x consists of g copies of ±WV That leads to yet another approach to 
Torelli's theorem that the canonical period matrix of a Riemann surface 
uniquely determines the surface, and more importantly leads to another 
approach to describing mappings between Riemann surfaces directly in terms 
of their period matrices. 

There is again the question of what can be said about the second-order theta 
functions on general principally polarized Abelian varieties, as distinct from 
Jacobi varieties, and related to that the question of the extent to which these 
properties of the theta functions characterize the Jacobi varieties among 
arbitrary principally polarized Abelian varieties. As already noted, the condi­
tion that dim K{Q) n [Sf] > g - 4, as a condition on the period matrix £2, 
picks out a subvariety of the Siegel upper half-space, one component of which 
is the closure of the set of period matrices of Riemann surfaces of genus g; the 
condition that dim K(Q) n[Sx]^ 2 may have the same property, since at least 
a somewhat related condition described by Novikov has that property, as 
discussed earher here. If both of these conditions are satisfied then the theta 
locus 0 contains the subvariety Xx + 01, and that may be sufficient with some 
generic regularity conditions to guarantee that the Abelian variety is a Jacobi 
variety; the condition 0 = Xx + 01 should correspondingly characterize the 
Jacobi variety of a hyperelliptic Riemann surface. The condition Xx + 01 c 0 
should by itself suffice to show that dim Xx < 2; the geometric consequences 
of such an inclusion would at any rate be an interesting topic to pursue further. 

11. There are yet other approaches to using the second-order theta functions 
to describe canonical subvarieties of Jacobi varieties. Only one such, which if 
in some ways leads to less explicit descriptions nonetheless in other ways leads 
to more comprehensive descriptions, will be discussed here; it really involves 
the mapping 8*: Cg -> CG rather than 82: C

g -» CG, with notation as in §4, so 
it can be used to describe subvarieties J(M) that are not necessarily symmetric 
under the involution E: J(M) -> J(M) induced by the mapping w -> —w. If 
/?!,...9pn are any n distinct points of the Riemann surface M and b = px + 
• • • + pn is the divisor formed from these points, then introduce the 28 X n 
matrix 

(49) e2(w; b) = (e 2 (w(^) + H B ^ W A ) + » } . 

The rank of this matrix is clearly the same at all points w + X as X ranges over 
the lattice if, so any condition on w expressed in terms of the rank of this 
matrix can be used to describe a well-defined subvariety of the torus J(M). 
The basic result, as described in [21], is 

(50) Wn
nS2

p - w(b) = {w e J(M) :rank02(w; b)<p). 

It is not really necessary that the points pj e M be distinct if the appropriate 
conventions are followed, and indeed in [21] this description was really given 
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primarily in the case in which all the points coincide. If, for example, px = p2 

then the column ^2(w(p2) -\- iw) must be replaced by 

M2{w{z) + \w)/dz\z=pV 

while if /?! = p2 = p3 then, in addition, the column 62(w(/?3) + %w) must be 
replaced by 

d\(w(z) + fy)/dz2\z_Pl, 

and so on; the derivatives are calculated in terms of any local coordinate z near 
the point px on M. This thus provides a complete description of all the 
subvarieties of special positive divisors in /( M ). In particular, for n = p = 3, 

(51) Wx - w(b) = (>ve / (M): ranke 2 (w;b)< 3}, 

where b = px + p2 + /?3, the matrix 62(w; b) being of size 28 X 3 in this case. 
The principal disadvantage of this description is that it is necessary to know 

the images w(pj) of n points of the Riemann surface under the canonical 
imbedding of that surface in its Jacobi variety, or the images of these points 
and the tangent vectors to the imbedded surface at these points if there are 
simple coincidences, and so on. Actually since there is full freedom of 
translation it is really only necessary to know the n - 1 intrinsically de­
termined vectors w(pj) - w(pn) for 1 < j < n - 1 if all the points pj are 
distinct, or the n - 1 vectors dvw(z)/dzp\ 2=p for 1 < v ^ n - 1 if all of the 
points pj coincide with p. It does mean that it requires knowing considerably 
more than just the period matrix to use this method to describe the subvarieties 
of special positive divisors. That naturally leads to the question of what the 
corresponding locus is if in place of the points w(pj) simply n arbitrary points 
Wj EL J(M) are taken with the natural modifications in cases of coincidences. 
This question has so far only been treated in the special case (51), but the 
results there are reasonably complete and quite interesting and hold for more 
general Abelian varieties than just Jacobi varieties. The result established in 
[22] is that if B is an irreducible period matrix in the Siegel upper half-space, if 
wvw29 w3 are three points of/(B) in sufficiently general position, and if 

e2(w) = ( e ^ + i>v),e2(w2 + »,e3(>v3 + i*)} , 
then {we/ (B) : rank02(w) < 3} either consists of finitely many points 
(indeed of at least three, but always a bounded number of points independent 
of the choice of Wj) or is a nonsingular irreducible curve M of genus g (in 
which case /(B) = J(M) is the Jacobi variety of that Riemann surface M). 
The condition that the points Wj be in sufficiently general position can be given 
a very precise meaning, namely that there is no nonzero complex multipli­
cation F of /(B) for which F(wx) = F(w2) = F(w3). The corresponding result 
for coincident points Wj was established by Welters in [40], and both results 
were generalized further and put into a more definitive form by Welters in [41]. 
These results provide a necessary and sufficient condition that an Abelian 
variety /(B) actually be a Jacobi variety, thus leading to another approach to 
the Schottky problem, as discussed in [22 and 41]; a related characterization 
for nonhyperelliptic Jacobi varieties was given by Welters in [42]. In [4] 
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Arbarello and De Concini show that this condition can be expressed as a set of 
equations in the theta constants and their derivatives; this gives a condition, 
quite directly expressed in terms of explicit functions of the matrix £2, that Q be 
the normalized period matrix of a Riemann surface. Some simphfications of 
this condition were discussed by Welters in [41]. The functions as functions of 
S seem nonetheless somewhat complicated insofar as their behavior under the 
action of the generalized modular group on the Siegel upper half-space. On the 
other hand, this approach appears able to shed some light on the status of a 
conjectured solution of the Schottky problem proposed by Novikov and to be 
complementary in some ways to another approach to the Schottky problem 
developed by Shiota, as discussed in [4]. 
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