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The semimartingale calculus has emerged from the general theory of processes 
as an important tool for what Métivier claims in his preface is "the goal of 
many: the description of stochastic systems, the ability to study their behavior 
and the possibility of writing formulas and computational algorithms to 
evaluate and identify them (without mentioning their optimization!)." We will 
first describe some important ingredients of the calculus, beginning with the 
martingale stochastic integral. 

Let (S,F, P) be a probability space and let (Ff: t > 0) be an increasing 
family of sub-a-algebras of F. A random process M = (Af,) is a martingale if 
Ms is an ¥s measurable random variable for each s (Le., if M is adapted) and if 
E[Mt\Fs] — Ms whenever t > s. This definition makes sense even for Banach-
space-valued random processes. On the other hand, it is rather tricky to define 
martingales with values in a manifold—but J. M. Bismut did it using localiza­
tion and manifold connections [22]. The most famous martingale is the Wiener 
process, sometimes called brownian motion, W = (Wt\ t > 0). (See [24] for 
references omitted here.) 

A stochastic integral 

ƒ h(s, o)) dM(s, co) I abbreviated ƒ hsdMs\ 

can be defined when M is a martingale for certain types of functions h. As the 
notation suggests, a stochastic integral is similar to a Stieltjes-Lebesgue integral 
for each <o in Ö. However, the notation is misleading—many interesting 
martingales, the Wiener process included, have sample paths of unbounded 
variation over any interval for w in a set of probability one. This precludes 
defining the stochastic integral as a Stieltjes-Lebesgue integral for each <o. 

A recipe for contructing stochastic integrals is the following. First, if h is 
piecewise constant in t with jumps at tv f2,... ,/n, it is natural to define the 
stochastic integral by 

f'h,dM,-Zh(tl)(MlM-Mtl). 

If the value of the integral, which is a random variable for each t, is sufficiently 
continuous in h as h ranges over a suitable collection of step functions, then the 
integral can be defined for h in a larger collection of functions. 

Stochastic integrals were first constructed by N. Wiener. He considered the 
case in which M is a Wiener process and h is a function of s alone. The above 
recipe works for constructing the Wiener integral, although Wiener used a 
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different approach. The key is to observe that, for a step function h defined on 
the real line, 

(1) E^hsdWsJ=£h2
sds. 

This equality guarantees sufficient continuity to define the integral of any 
square integrable function h with respect to W, the result being a square 
integrable random variable for each t. This construction is equivalent to the 
usual construction of integrals in the Hubert space operator calculus of 
functional analysis. 

Itô [14] realized that a random function h can be allowed in Wiener's 
integral if h is required to be adapted. In fact, in case h is a random adapted 
step function, equation (1) is true with only a slight modification—the right-
hand side needs to be replaced by its expectation. Then Doob [9] convinced the 
world that the martingale property of the Wiener process was its key to success 
as a stochastic integrator when he proceeded to use a large class of martingales 
as integrators. 

Exploiting a decomposition theorem of Meyer, often called the Meyer-Doob 
decomposition theorem, Kunita and Watanabe [17] provided a rather general 
theory of integration with respect to martingales. Since the general theory 
allows the integrator to have jumps, it is useful to place a condition stronger 
than adaptedness, called "predictability", on the integrand. A random process 
A = (A(t, o))) can be viewed as a function on R+X fl. The a-algebra P of 
subsets of R+X £2 generated by left-continuous adapted random processes is 
called the class of predictable subsets of R + XÖ corresponding to (F,). A 
random process is called predictable if it is P measurable. In this modern 
terminology, due to Doléans-Dade and Meyer [7], the Meyer-Doob decomposi­
tion theorem implies (under certain technical assumptions) that for any 
martingale M there is an increasing predictable random process (M) such that 

(2) E^hsdMsf = E^hisd(M)s 

for predictable step functions h. This equality provides sufficient continuity to 
define the stochastic integral for predictable h such that the right-hand side of 
(2) is finite. 

Concurrent with the development of stochastic integrals was the generaliza­
tion of Itô's celebrated change of variable formula: 

f{Wt) =f{W0) +f'f'(Ws) dWs + \f'f"{Ws) ds. 

The last term on the right-hand side of Itô's formula reflects the fact that the 
Wiener process W is not absolutely continuous in t. Itô's formula is true for 
any twice continuously differentiable function /—in particular, no growth 
conditions are needed on ƒ. However, a localization procedure in which 
processes are restricted to an w-dependent interval [0, T(CO)) is needed to 
overcome possible quick growth of f'(Ws) when defining the dW integral. The 
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resulting integral may not be a martingale, but is an example of what are now 
called local martingales. 

If M is a martingale then Y defined by Yt = f(Mt) need not be a martingale 
or even a local martingale. Therefore Itô's formula must be extended to 
nonmartingale processes in order to obtain a class of processes which is closed 
under the operation Zt-* f(Zt). A satisfactory extension was given by 
Doléans-Dade and Meyer [7] who established a generalization of Itô's formula 
in which W is replaced by any process Z which can be represented as 
Z = M + V, where M is a local martingale, V is an adapted process with 
sample paths of finite variation over bounded intervals, and the sample paths 
of both M and V are right continuous and have left limits at all t. 

Processes Z with such a possibly nonunique representation have come to be 
called semimartingales. A consequence of the Doléans-Meyer formula is that if 
Z is a semimartingale then so is Y = (/(Z,)) for twice continuously differen­
tiate functions/. 

Integrals with respect to a semimartingale Z were originally defined by 
integrating with respect to V and M separately and showing that the result 
does not depend on the choice of the representation V + M for Z. However, 
such integrals can also be defined, in a manner closer to that of the martingale 
integral discussed above, by a method refined by Métivier and Pellaumail (see 
[21]), and used in the book under review. The key is the following fact. Given a 
semimartingale Z, there exists an increasing adapted right-continuous process 
C such that 

(3) £ j(sup jf' h, rfZ,)2} < E[CT-jT h]dCs} 

for all elementary predictable processes h and all stopping times T. Métivier 
terms C a "control process" of Z ("control", here has nothing to do with 
stochastic control). General semimartingale integrals can be constructed and 
studied through direct use of (3). This suggests that the theory of stochastic 
integration should be extended to all integrands Z which admit control 
processes. Little is gained for processes in finite dimensions—a process (as­
sumed adapted, right-continuous with left limits) admits a control process if 
and only if it is a semimartingale. However, the class of processes in infinite 
dimensions admitting a control process is strictly larger than the class of 
semimartingales. 

The preceding gives a sense in which, for processes in finite dimensions, 
semimartingales are the most general stochastic integrators. A related sense is 
the following: If Z is a semimartingale, then, for finite t> JW'Z, defined by 

ltz{A) - f'lAdZ„ ^ P , 

is a bounded a-additive L°-valued measure on the a-algebra P of predictable 
sets. Here L° denotes the space of random variables with the convergence in 
probability metric. Conversely, Dellacherie-Mokobodski-Meyer and K. 
Bichteler independently proved that the above characterizes semimartingales 
among all adapted, right-continuous-with-left-limits-randomprocesses Z [6,21]. 
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This fact indicates a close connection between stochastic integration and 
vector-valued measures. 

The semimartingale calculus is a powerful tool for explicitly connecting the 
behavior of processes under two different probability measures to the Radon-
Nikodym derivative of the measures. To see why, let P' be another probability 
distribution on the measure space (£2,F) which is absolutely continuous with 
respect to P, let P{ and Pt denote the respective restrictions of P' and P to F„ 
and let Lt denote the Radon-Nikodym derivative of P( with respect to Pr Then 
Lt is a martingale. More generally, if Mt is a martingale with respect to P' then 
MtLt is a martingale with respect to P. Any semimartingale on (S, F, P) is also 
a semimartingale on (Q,F, P'). Now the object of a typical dynamical estima­
tion problem (known as a "filtering problem" to electrical engineers) is to 
compute an estimate for some possibly time-varying parameter from observa­
tions of the sample paths of some random process. Often estimates are 
continually undated as more observations become available. Different parame­
ter values determine different probability distributions for the observed pro­
cess, so that multiple probability distributions on the a-algebras generated by 
the observed process naturally arise. These facts begin to explain the success of 
the semimartingale calculus in engineering statistical estimation contexts (con­
sult [20,26] for further information). 

The next ingredient of semimartingale calculus is the stochastic integral (or 
formal differential) equation, a prototype of which was given by K. Itô [15] 
(see [8,13] for the extension to semimartingale driving term): 

(4) Xt = X0 + V m(Xs, s) ds + V o(Xs, s) dWs; XQ given. 
Jo Jo 

Under Lipschitz hypothesis on m and a, solutions to this equation are unique 
in the strong sense that distinct solutions agree for all t with probability one. 
Under much weaker conditions, one can still guarantee that the distribution of 
the solution is unique. For example, it is only necessary to require m to be 
bounded and measurable for appropriate o [13,25]. In a typical stochastic 
control problem, the function m, and possibly a, in (4) depends on an 
additional variable us. The goal is to find a control u = (us: 0 < s < T) which 
is a casual function of some "observed" random process related to X in order 
to maximize a reward such as EJ(XT). Uniqueness results with minimal 
regularity have been extremely useful in formulating stochastic control prob­
lems without making ad hoc smoothness assumptions on admissible controls 
[3,11,12]. 

The fact that f(Zt) yields a semimartingale if Zt is a martingale makes it 
possible to study semitfiartingales with values in a differentiable manifold and 
to study stochastic differential equations in manifolds. Due to the second 
derivative term appearing in Itô's change of variable formula, second order 
tangent vectors are appropriate for specifying semimartingale trajectories [22]. 
Some regularity theorems—for example the surprising fact that the solution of 
the stochastic differential equation (4) for fixed t is continuously differentiable 
with respect to the initial value (if m and a are smooth enough)—and 
stochastic calculus of variation results are most easily studied in the context of 
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differential geometry. See [2,22,13] and the references therein for a good 
introduction to this area of current research. 

It is possible to extend Itô's change of variable formula to situations when 
the second derivative of ƒ only exists as a generalized function which is a finite 
signed measure. For example, if ƒ is the difference of two convex functions and 
Z is a real-valued sample continuous semimartingale then 

f(Zt)=f(Z0)+ff>(Zs)ds+ff"(du)mZ), 

where L"(Z) is the "local-time of Z at u up to time t" (See [1] for an 
introduction and recent work using local time of semimartingales.) Recently 
local times have been shown to be an elegant and powerful tool in the study of 
uniqueness and comparison theorems for stochastic differential equations [18]. 

Two other areas of current interest involving semimartingale calculus are (1) 
the extension of the semimartingale calculus to multiple parameter random 
processes [19], and (2) the use of semimartingales to prove random process 
convergence theorems (see, e.g., [16]). 

Some comments about Metivier's book are in order. Metivier's book and his 
earlier book written with Pellaumail [21] are the first to present stochastic 
integration using the notion of control processes described above. This is an 
appealing alternative to the original approach used in other texts. Also, the 
reader can grasp the essentials of both approaches using this book. Metivier's 
book (using [21] as a follow-up) is the best place to begin learning about 
stochastic integrals and differential equations for Banach-space-valued 
processes. Such processes, for example measure-valued processes, are gaining 
increased attention for biological and economic models. 

Another notable feature of the book is the use of quasimartingales to present 
Doob's martingale inequalities in a novel fashion that is both elegant and 
well-matched to the study of stochastic integration presented later. A highlight 
is the application of martingale convergence concepts to the study of conver­
gence of stochastic algorithms. 

Some well-known application areas, such as nonlinear stochastic estimation 
and control, are not considered, and some applications that are given are far 
from convincing. For example, the "application" to queueing theory gives 
complicated expressions for modeling a rather simple queue using a semi­
martingale. The semimartingale calculus may be truly valuable in the analysis 
of queues, but the impression one gets (which is probably correct anyway) 
from Métivier is just the opposite. Another problem is that the book suffers 
from a high incidence of sometimes severe typographical errors. 

The book is suitable for a text in a second year graduate special topics 
course, with measure theory and some measure theoretic probability as a 
prerequisite. The book also complements well the important works of Meyer 
and Dellacherie [5,6], which are the most complete and elegantly written books 
on the semimartingale calculus and the "Strasbourg school" general theory of 
processes accompanying their study. However, [5 and 6] do not cover integra­
tion with respect to semimartingales in infinite dimensions, let alone integra­
tion with respect to the more general processes considered by Métivier. 
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Readers having difficulty tackling the general theory may find Chung's and 
William's more elementary book [4], or Elliot's book [10], a good place to start. 
Elliot's book follows [6] in organization but is less comprehensive and contains 
more examples and applications. 
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