THE GEOMETRY OF THE MODULI SPACE OF RIEMANN SURFACES

BY SCOTT A. WOLPERT¹

We wish to describe how the hyperbolic geometry of a Riemann surface of genus g, $g \ge 2$, leads to a symplectic geometry on T_g , the genus g Teichmüller space, and \overline{M}_g , the moduli space of genus g stable curves. The symplectic structure has three elements: the Weil-Petersson Kähler form, the Fenchel-Nielsen vector fields t_* , and the geodesic length functions l_* . Weil introduced a Kähler metric for T_g based on the Petersson product for automorphic forms; the metric is invariant under the covering of T_g onto M_g , the classical moduli space of Riemann surfaces [1].

To a geodesic α on a marked Riemann surface \hat{R} with hyperbolic metric is associated the Fenchel-Nielsen vector field t_{α} on T_g ; t_{α} is the infinitesimal generator of the flow given by the Fenchel-Nielsen (fractional twist) deformation for α [7]. The infinitesimal generators of Thurston's earthquake flows form the completion (in the compact-open topology) of the Fenchel-Nielsen vector fields [6]. A basic invariant of the geodesic α on a marked surface \hat{R} is its length $l_{\alpha}(\hat{R})$; the exterior derivative dl_{α} is a 1-form on T_g . We have the following formulas for the Weil-Petersson Kähler form ω [8].

THEOREM 1.

$$\begin{split} (\mathrm{i}) & \qquad \omega(t_\alpha,\,) = -dl_\alpha, \\ (\mathrm{ii}) & \qquad \omega(t_\alpha,t_\beta) = \sum_{p \in \alpha^\#\beta} \cos\theta_p, \\ & \qquad t_\alpha t_\beta l_\gamma = \sum_{(p,q) \in \alpha^\#\gamma \times \beta^\#\gamma} \frac{e^{l_1} + e^{l_2}}{2(e^{l_\gamma} - 1)} \sin\theta_p \sin\theta_q \\ (\mathrm{iii}) & \qquad - \sum_{(r,s) \in \alpha^\#\beta \times \beta^\#\gamma} \frac{e^{m_1} + e^{m_2}}{2(e^{l_\beta} - 1)} \sin\theta_r \sin\theta_s. \end{split}$$

An immediate consequence of (i) is that the symplectic form ω is invariant under the flow of a Fenchel-Nielsen vector field. The r.h.s. of (ii), evaluated at $\hat{R} \in T_g$, is the sum of the cosines of the angles at the intersections of the geodesics α and β on the surface \hat{R} . Similarly the r.h.s. of (iii) is a sum of trigonometric invariants for pairs of intersections; l_1 and l_2 are the lengths of the segments on γ defined by p,q and, likewise, for m_1 and m_2 relative to β . Finally (i) and (ii) may be combined to show that the renormalized vector

Received by the editors May 10, 1983.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 30A46, 14H15.

¹Partially supported by a grant from the National Science Foundation; Alfred P. Sloan Fellow.

fields, $N_{\alpha} = (4 \sinh l_{\alpha}/2)t_{\alpha}$, span a Lie algebra over the integers, which admits a purely topological characterization [8].

Fenchel-Nielsen introduced real analytic coordinates for T_g as the parameters for the construction of a hyperbolic metric on a genus g surface. The twist-length coordinates (τ_j, l_j) vary freely: $\tau_j \in \mathbf{R}$, $l_j \in \mathbf{R}^+$ [6, 10]. An immediate consequence is that T_g is a cell: $T_g \approx (\mathbf{R}^+ \times \mathbf{R})^{3g-3}$. The Kähler form ω is given simply in Fenchel-Nielsen coordinates [10].

Theorem 2.
$$\omega = -\sum_{j} d\tau_{j} \wedge dl_{j}$$
.

In particular, the data (ω, τ_j, l_j) represent a completely integrable Hamiltonian system. Using the above formula it is readily checked that ω extends to a symplectic form on $\overline{\mathcal{M}}_g$, the moduli space of stable curves (hyperbolic Riemann surfaces with nodes). Denote by ω^{FN} this extension of ω to $\overline{\mathcal{M}}_g$.

Our most recent efforts have been directed towards establishing the following.

THEOREM 3. An integral multiple of ω/π^2 is the Chern form of a positive line bundle over \overline{M}_q .

Let us sketch the development of this result. In [9], using formula (i) above, the integral $\int_{M_{1,1}} \omega$, $M_{1,1}$ the moduli space of once punctured tori, was calculated: the value is $\pi^2/6$. Masur showed that the Weil-Petersson metric in complex coordinates is actually singular for vectors transverse to $\mathcal{D} = \overline{M}_g - M_g$, the divisor of surfaces with nodes, [5]. Nevertheless in [10] it was shown that $\omega^{\mathbb{C}}$, the extension to \overline{M}_g of the Kähler form considered in complex coordinates, is a closed, type (1,1) current and $\omega^{\mathbb{C}}$ and ω^{FN} represent the same cohomology class in $H^2(\overline{M}_g; \mathbf{R})$. In [11] we considered the generalization of the earlier $\pi^2/6$ result: $\omega/\pi^2 \in H^2(\overline{M}_g; \mathbf{Q})$. But first note that the divisor $\mathcal{D} = \overline{M}_g - M_g$ is reducible, $\mathcal{D} = \mathcal{D}_0 \cup \cdots \cup \mathcal{D}_{\lfloor g/2 \rfloor}$, where the generic surface R represented in \mathcal{D}_k has one node separating R into components of genus k and genus g-k. Certainly the divisors \mathcal{D}_k define cohomology classes in $H_{6g-8}(\overline{M}_g)$, and by Poincaré duality ω also determines a class in $H_{6g-8}(\overline{M}_g)$.

THEOREM 4.
$$\{\omega/\pi^2, \mathcal{D}_0, \ldots, \mathcal{D}_{\lfloor g/2 \rfloor}\}$$
 is a basis for $H_{6g-8}(\overline{\mathcal{M}}_g; \mathbf{Q})$.

The plan of the proof of Theorem 4 is straightforward. By the work of Harer [4] and an application of Mayer-Vietoris, one checks beforehand that $H_2(\overline{M}_g; \mathbf{Q})$ has rank $2 + \lfloor g/2 \rfloor$. A candidate basis is then presented for each of $H_2(\overline{M}_g)$ and $H_{6g-8}(\overline{M}_g)$, and the intersection pairing is evaluated [11]. The pairing is nonsingular and so bases have been given for the homology groups H_2 and H_{6g-8} . By similar techniques it may also be shown that the rank of $H_{2k}(\overline{M}_g)$, k < g, is at least

$$\frac{1}{2} \binom{g-1}{k}$$
.

To complete the proof of Theorem 3 it only remains to check that ω is cohomologous in the sense of currents to a closed, positive, (1,1) form. Let Ω be that multiple of ω/π^2 which represents a class in $H^2(\overline{M}_g; \mathbf{Z})$. Now the formalism of Chern classes extends to currents: Ω determines the class of a

line bundle over \overline{M}_g . By direct potential theoretic estimation it is shown that Ω is the curvature form, again in the sense of currents, of a *continuous* metric in a line bundle [12]. Next it is checked that ω is bounded below by a smooth positive (1,1) form; Ω is a positive current. Finally, standard techniques from the study of plurisubharmonic functions may be used to complete the argument [12].

 \overline{M}_g is a compact, complex V-manifold and so we may refer to Baily's version of the Kodaira Imbedding Theorem [2].

THEOREM 5. The positive line bundle associated to the Weil-Petersson Kähler form gives rise to a projective embedding: $\overline{\mathbb{M}}_q \hookrightarrow \mathbb{C}P^n$.

REFERENCES

- 1. L. V. Ahlfors, Some remarks on Teichmüller's space of Riemann surfaces, Ann. of Math. (2) 74 (1961), 171-191.
- 2. W. L. Baily, On the imbedding of V-manifolds in projective space, Amer. J. Math. 79 (1957), 403-430.
 - 3. L. Bers, Spaces of degenerating Riemann surfaces, Ann. of Math. Stud. 79 (1974), 43-55.
- 4. J. Harer, The second homology group of the mapping class group of an orientable surface, Invent. Math. 72 (1982), 221-239.
- 5. H. Masur, The extension of the Weil-Petersson metric to the boundary of Teichmüller space, Duke Math. J. 43 (1976), 623-635.
 - 6. W. P. Thurston, The geometry and topology of 3-manifolds, notes.
 - 7. S. A. Wolpert, The Fenchel-Nielsen deformation, Ann. of Math. (2) 115 (1982), 501-528.
- 8. _____, On the symplectic geometry of deformations of a hyperbolic surface, Ann. of Math. (2) 117 (1983), 207-234.
- 9. ____, On the Kähler form of the moduli space of once punctured tori, Comment. Math. Helv. 58 (1983), 246-256.
- 10. ____, On the Weil-Petersson geometry of the moduli space of curves, Amer. J. Math. (to appear).
- 11. ____, On the homology of the moduli space of stable curves, Ann. of Math. (2) 118 (1983), 491-523.
- 12. ____, On obtaining a positive bundle from the Weil-Petersson class, Amer. J. Math. (to appear).
 - 13. ____, Chern forms and the Riemann tensor for the moduli space of curves, preprint.

Department of Mathematics, University of Maryland, College Park, Maryland 20742