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the very beginnings of the subject through ideals, class numbers etc., and ends 
with applications to Mersenne primes and diophantine equations. This is 
achieved with no sacrifice of lucidity. 

What is true of this chapter holds to a greater or lesser extent for most 
chapters. The interested mathematician may approach the material with 
minimal prior knowledge. The language is classical and the reader will not be 
impeded by the necessity of having a large mathematical vocabulary. On the 
other hand, the reader will be amply rewarded with beautiful results of 
considerable depth and can come away with a sense of satisfaction. 

In one of his letters to Sophie Germain, Gauss, referring to number theory, 
wrote that "the enchanting charms of this sublime science are not revealed 
except to those who have the courage to delve deeply into them." This book 
provides an admirable vehicle for so delving. 
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Since the second World War the theory of linear partial differential equa­
tions has undergone two major revolutions. The first was the advent, in the late 
forties, of a formalized theory of "generalized functions". Its starting point was 
the use of test-functions. The idea was not entirely new; it had been introduced 
earlier in the theory of Radon measures (in particular, on locally compact 
groups [Weil 1940]) and had something to do with the old quantum mechanics: 
one could not always assign a value at a point to certain "functions", such as 
Dirac's, but one could "test" them on suitable sets, or "against" suitable 
functions. In the most important case the test-functions are smooth (i.e., C00) 
and vanish identically off some compact set. The corresponding generalized 
functions were called "distributions" in [Schwartz 1948]. Distribution theory 
assimilated many ideas and discoveries of the preceding decades (by Heaviside, 
Hadamard, Sobolev, Bochner and others). To these it added new ones, of 
which the most successful were perhaps the now-called Schwartz spaces 6?, S?' 
and the theory of Fourier transform of tempered distributions—although 
again the link between slow (or tempered) growth, the Fourier transform and 
localization, and, beyond, causality, was not absolutely new, and certainly not 
to physicists. Schwartz gave a strong functional analysis slant to the theory, 
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drawing much from, and enlarging upon, the book [Banach 1932]. But the 
enduring merit of distribution theory has been that the basic operations of 
analysis, differentiation and convolution (and smoothing), and the 
Fourier/Laplace transforms and their inversion, which demanded so much 
care in the classical framework, could now be carried out without qualms by 
obeying purely algebraic rules. 

Distribution and PDE had been growing together for many years before the 
publication of [Schwartz 1950]: the purpose of Heaviside's calculus was to 
solve the differential equations of electrical networks; the realization by 
Hadamard that one could not avoid bringing in those special distributions, the 
"principal values'', had originated in the context of the Cauchy problem for 
the wave equation; the Sobolev estimates and the Sobolev spaces provided the 
most precise measure of the regularity of the weak solutions to elliptic 
boundary problems. Now everything was woven together in a harmonious 
whole, and the tools were standardized. The neatest example of this is perhaps 
to be found in the statement and proof of the Friedrichs lemma. 

Gradually distributions gained acceptance, and in the fifties they gave a 
renewed impetus to the study of linear PDE. They made the subject appealing 
to a number of then young analysists, of which the foremost among them were 
Ehrenpreis in the U.S., Malgrange in France, and, in Sweden, the author of the 
books under review. It is not easy, today, to appreciate how much of that 
appeal came precisely from the functional analysis "connection": it held (and 
to a remarkable extent, kept) the promise that a skillful blend of the Hahn-
Banach theorem, or of the closed graph theorem, with some (but not too much) 
hard analysis would enable one to reap a harvest of beautiful theorems. There 
was also the belief that the much extended role of the Fourier transform would 
help achieve the age-old objective of symbolic calculus: to reduce the problems 
of solving partial differential equations to those of dividing functions, and now 
distributions, by polynomials—this at a time when algebraic and analytic 
geometry were making spectacular advances. Today the theorems of the early 
fifties may seem simple; but this is the usual illusion of hindsight in mathe­
matics. Laurent Schwartz likes to recall a conversation he had with Marcel 
Riesz in Stockholm in 1949. He had mentioned that there might be a 
possibility of proving the existence of a fundamental solution for any linear 
PDE with constant coefficients. To which Riesz replied, "This is a goal for the 
next century!" 

Actually, soon afterwards, a number of important results about general 
differential operators with constant coefficients were obtained: of course, the 
existence of fundamental solutions, also the equivalence between the global 
solvability of the equation P(D)u = ƒ in C°°(B) and the i^Z^-convexity of 
the open set QcR" [Malgrange 1953]; the characterization of hypoellipticity 
[Hörmander 1954]; the description, by means of their Fourier/Laplace trans­
forms, of all the solutions of overdetermined systems of linear PDE with 
constant coefficients in convex open sets—the so-called "fundamental princi­
ple" of Ehrenpreis (ca 1960). 

The first seven chapters of Volume I of the books under review here are 
devoted to a detailed exposition of distribution theory. In my opinion it is the 
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best now available in print. As in the earlier books of the same author, the 
economy of the argument is unequalled. All the theorems are there (among 
them the Schwartz kernel theorem), and they all have short, sometimes very 
short, yet always complete, proofs. The reasoning often follows the most clever 
shortcuts. The accent is on precision, reliability and brevity. This can make for 
arduous reading on the part of the inexperienced student, but it provides an 
ideal text to the mathematician who would like to teach a course or base a 
seminar on some of the topics discussed in the book. The description of "pure" 
distribution theory is interspersed with appucations to PDE (e.g., §§3.3, 4.4, 
6.2). These provide examples, both of the "things" one can do with distri­
butions, and of the general properties of linear PDE, expanded on in the 
subsequent volume(s). 

Volume II is devoted to PDE proper, and essentially to differential operators 
with constant coefficients. (Practically the only equations with variable coeffi­
cients that are touched upon in Volume II are those of equal strength, in 
Chapter XIII.) To some extent it is an updated version of certain chapters of 
the book [Hörmander 1963] covering fundamental solutions, inhomogeneous 
equations, hypoellipticity and the Cauchy problem. But it contains material 
that could not be found in the earlier book: a systematic approach (in Chapter 
XIII) to the phenomena of nonuniqueness in the Cauchy problem, which 
originated with the examples of Cohen and Plis in the late fifties; a chapter on 
scattering theory (Chapter XIV); one (Chapter XV) on global weighed esti­
mates for the solutions of the inhomogeneous Cauchy-Riemann equations in 
C", very much in the spirit of the author's approach to the analogous problem 
in strongly pseudoconvex domains (see Chapter IV in [Hörmander 1966]). The 
estimates in Chapter XV are aimed at the "cohomology with bounds" in Cw, 
but the author restricts his attention to (0, l)-forms and refers to the mono­
graphs [Ehrenpreis 1970] and [Palamodov 1970] for the treatment of equations 
on (0,4)-forms and the important appucations to over-determined systems of 
constant coefficients PDE in convex open sets. The last chapter of Volume II is 
devoted to convolution equations: approximation of solutions of homogeneous 
convolution equations by exponential-polynomial solutions, solvability of in-
homogeneous convolution equations in convex open sets, hypoelliptic and 
hyperbolic convolution equations, thus presenting in practically definitive form 
work by Ehrenpreis, Malgrange, and Hörmander himself which dates back to 
the fifties. Volume II closes with an Appendix devoted to the study of the 
properties of polynomial equations in several variables that are needed in the 
preceding chapters. It is based on Puiseux expansion and the Seidenberg-
Tarski theorem, of which a proof is given. 

It is time now for this reviewer to go back to the last chapters of Volume I. 
For their contents partake of the second revolutionary phase of PDE theory 
and herald the new things to come, and Volume III, to appear soon. The 
second revolution arrived under the banners of pseudodifferential operators, 
microlocal analysis, Fourier integral operators and Sato's hyperfunctions. It 
sprang to life after Calderon's work on uniqueness in the Cauchy problem and 
the Atyah-Singer index theorem; it gained momentum thanks to the interest in 
subelliptic estimates, in local solvability and in propagation of singularities. 
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But this is another story, better left to the reviewer of Volume III. As a 
preparation to all this new "microfocal" world, Chapter VII of Volume I 
presents a detailed treatment of the stationary phase formula (and a proof of 
the Malgrange preparation theorem, eventually needed in the microlocal 
reduction to standard forms). Chapter VIII is entirely devoted to the wave-front 
set, which is the central notion of (the first) microlocalization. Chapter IX 
looks at the analytic wave-front set and introduces a definition of hyperfunc-
tions in the spirit of Martineau. 
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The appearance of a book on shape theory provides the reviewer with the 
opportunity of assessing where shape theory came from, and what of value is 
coming out of it.1 

1. A little history: Cech homology 1928-1968. In the late twenties, there was 
point set topology and there was algebraic topology, but the correct relation­
ship between the two subjects had not yet become clear. In those days, 
algebraic topology meant, in the main, the homology theory of simplicial 
complexes with integer coefficients. The topological invariance of this theory 
was more or less established, but the restriction of the theory to polyhedra 
appeared to the point set topologist to be arbitrary and ugly. 

Then, in 1928, Alexandroff [2] discovered a theorem which, with hindsight, 
can be seen to express the proper relationship between the two subjects. The 

1 References refer to the bibliography of the book under review. 


