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Quotients of Lie groups appear throughout mathematics and physics. To an 
algebraist, the nicest Lie groups are the simple Lie groups over the complex 
numbers. The most interesting quotients formed from these groups are the flag 
manifolds G/P obtained by dividing out by a "parabolic" subgroup. The 
algebraic geometric study of flag manifolds reveals several interesting interac­
tions between algebraic geometry, representation theory, and combinatorics. 
The main topic of the book under review is the description of the cohomology 
rings of complex flag manifolds with an accent on the combinatorial aspects 
thereof. 

By far the most famous of the flag manifolds are the Grassmannians. A 
Grassmannian Gd(V) consists of the set of all ^-dimensional subspaces of an 
rt-dimensional complex vector space V together with a suitable topology. To 
express Gd(V) in the form G/P, first note that the group of linear transforma­
tions with determinant 1, the special linear group SL(F), acts transitively on 
^-dimensional subspaces. Pick any ^-dimensional subspace W, and let P be the 
subgroup of G = SL(F) which stabilizes W. Then G/P with the quotient 
topology is the desired Grassmannian. More generally, let Wx C W2 C • • • C 
Wk be a strictly increasing sequence of subspaces of V (a, flag), and let P be the 
subgroup of G which stabilizes these subspaces. Most often a maximal flag 
(k = n) is taken, and then P is a "Borel" subgroup B. The resulting manifold 
G/B is sometimes referred to as the flag manifold. 

Grassmannians can be generalized in a second direction. Let G be the 
special orthogonal group SO(F) or symplectic group Sp(F). These are the 
subgroups of SL(F) which preserve symmetric or antisymmetric bilinear 
forms, respectively. Then the parabolic subgroups are again stabilizers of 
(suitably defined) flags of subspaces. All the simple Lie groups are known. Up 
to simple connectedness, there are only five other complex simple Lie groups: 
E6, E7, Es, F4, and G2. Flag manifolds can be formed from these groups using 
the general definition of parabolic subgroup given below. 

What is a Coxeter group? There is a general definition, but Hiller's book is 
mainly concerned with finite Coxeter groups. Ignoring the dihedral groups, 
there are only two finite Coxeter groups which are not Weyl groups. Let E be 
an n-dimensional Euclidean space. A Weyl group is a finite subgroup of the 
orthogonal group O(E) which is generated by n reflections and which leaves 
an ^-dimensional lattice of points in E invariant (hence the chemists' terminol­
ogy: "point crystallographic groups"). Irreducible Weyl groups have been 
classified. There are 3 infinite families: the symmetries of the regular ^-simplex 
(the symmetric group Sn), the symmetries of the w-cube, and a certain index 2 
subgroup of the cube group. And again there are five exceptional cases. 
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Now for the connection between Coxeter groups and Lie groups. First we 
will switch to algebraic geometric language and talk of algebraic groups rather 
than Lie groups. The structure of simple algebraic groups is very beautiful and 
well known [Hum]. The usual approach is to fix a subgroup T (for torus) which 
is isomorphic to the algebraic group oinXn diagonal matrices, with n as large 
as possible, and then to fix a maximal connected solvable subgroup B (a Borel 
subgroup) containing T. A parabolic subgroup is by definition any closed 
subgroup containing a Borel subgroup. These subgroups are the only sub­
groups P having the property that G/P is a projective variety. All parabolic 
subgroups are conjugate to some parabolic subgroup containing the fixed Borel 
subgroup B, and there are only 2" of these. They are indexed by subsets of 
nodes of the Dynkin diagram. The Weyl group of G is defined to be the 
normalizer of the torus modulo the torus, W= NG(T)/T. This definition is 
admittedly uninspiring to any but the most hardcore algebraists, but space 
does not permit us to describe how this W actually acts upon a Euclidean 
space associated to G. Every Weyl group arises from one or two algebraic 
groups in this manner. In the present context the main role of the Weyl group 
is to provide a set of coset representatives for the double coset decomposition 
of G with respect to B: G— UwEWBwB9 the Bruhat decomposition. If 
G = SL(« -f 1), then T is taken to be the diagonal matrices and B is taken to 
be the upper triangular matrices. Then the Weyl group can safely be thought of 
as the permutation matrices. The Bruhat decomposition projects down onto 
flag manifolds: G/P = UW(EWJBWP/P, where WJ is a set of coset representa­
tives for W/Wj, and Ws is the "parabolic" subgroup of W corresponding to 
P "D B. The closures BwP/P of the cells are called Schubert varieties. 

One of the main constructions in Hiller's book is that of Bruhat order. This 
order is defined on the elements of a Weyl group by ordering the Schubert 
varieties of a flag manifold G/B\ namely, w < w' iff BwB/B C Bw'B/B. 
Alternatively, an equivalent definition can be easily formulated in abstract 
Coxeter group terms and applied to arbitrary Coxeter groups. Either definition 
can be extended to the coset spaces WJ corresponding to arbitrary G/P. The 
Bruhat orders comprise an important, combinatorial aspect of Lie theory: Not 
only are they finite ordered discrete structures (and thus combinatorial in the 
modern sense), but their elements and ordering can usually be described with 
permutations of multisets and tableaux (and are thus combinatorial in the 
traditional sense) [Prl]. These nice descriptions arise because the three infinite 
families of Weyl groups are either symmetric groups or closely related to 
symmetric groups. Hiller summarizes many of the known combinatorial results 
concerning Bruhat posets in a section of the last chapter of his book. Three of 
the most interesting of these results are [Ver, Stl, and B-W]. 

Bruhat orders are used most often in the book under review to index nice 
bases for the cohomology rings H*(G/P). Since the spaces G/P are manifolds, 
subvarieties define cohomology classes, and intersection of subvarieties corre­
sponds to cup product. The Schubert varieties provide a cellular decomposition 
(or a finite CW-decomposition) for G/P, implying that the classes defined by 
the Schubert varieties form an additive basis for the cohomology. The need to 
study the cohomology of Grassmannians reachs back to the work of Schubert. 
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He considered such enumerative questions as: How many lines in complex 
projective 3-space intersect four given lines? (Answer: 2.) Schubert's methods 
were not rigorous, but he was able to answer this and many other much harder 
questions correctly. Widespread concern over the validity of Schubert's meth­
ods led Hilbert to pose the rigorous justification of Schubert's results as his 
15 th problem in 1900. Cohomology theory today provides the correct setting 
for these computations. Two good expository papers on this subject have been 
written by Kleiman and Laksov [K-L, Kle]. Each Schubert variety in Gd(n) 
consists of a set of d-subspaces satisfying certain linear conditions. Roughly 
speaking, requiring a rf-subspace to satisfy various conditions can correspond 
to intersecting these subvarieties or taking the cup product. Thus a certain 
description of H*(Gd(n)) which provides for effective computations has come 
to be known as the Schubert calculus. Describing a Schubert calculus for an 
arbitrary flag manifold is the central topic of the book under review. It should 
be noted that the standard Schubert calculus for the Grassmannian is not 
sufficient to justify all of Schubert's computations. Schubert's claim that 
666,841,088 space quadrics are tangent to 9 quadrics in general position has 
only recently been confirmed by DeConcini and Procesi [D-P]. The standard 
Schubert calculus is most effective with problems concerning linear varieties in 
projective space. 

As the author observes in a supplementary section to Chapter III, there are 
many methods and/or viewpoints by which the cohomology of complex 
Grassmannians can be derived and/or described, including invariant differen­
tial forms [Sto] and the theory of symmetric functions [St2, Las]. One view­
point which generalizes to arbitrary flag manifolds is that of Lie algebra 
cohomology [Kos]. Hiller considers two approaches to cohomology, initially in 
both cases just for Grassmannians. The first approach is the Schubert calculus 
viewpoint: "Special" Schubert classes (which turn out to be the normal Chern 
classes) are selected, and the cup products of these classes with arbitrary 
Schubert classes are described (Pieri's formula). Then an arbitrary Schubert 
class is expressed as a cup product polynomial in the special Schubert classes 
(Giambelli's formula). Griffiths and Harris also cover this material [G-H]. 
Hiller and Boe have recently found explicit, combinatorial descriptions of 
Pieri's formula in the cases SO(2« + 1)/SL(«) and Sp(2n)/SL(n) [H-B]. The 
second approach to the cohomology of the Grassmannians (which is only 
outlined) is to describe H*(Ga(n)) in terms of Chern class generators and 
relations. 

The main subject of this book is a description of the cohomology of 
arbitrary flag manifolds which combines these two approaches, following the 
work of Bernstein, Gelfand, and Gelfand [BGG] and Demazure [De2] of the 
early 70s. Let the Weyl group W of G be realized in the usual fashion 
W CO(E). Then W also acts on the polynomial functions on the complexifi-
cation V of E9 which form a graded ring S(V). Let Iw be the homogeneous 
ideal of S(V) which is generated by the JF-invariant polynomials of positive 
degree. Then the quotient Sw = S(V)/IW is known as the coinvariant ring of 
W. Borel showed in 1953 that Sw and H*(G/B,C) are isomorphic as graded 
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rings [Bol]. But this fact doesn't contain as much geometric information as one 
would like. The Weyl groups of SO(2n + 1) and Sp(2«) coincide, implying 
that their coinvariant algebras do, but the manifolds SO(2n + X)/B and 
Sp(2«)/2? are different. What is needed is knowledge of the cup product 
multiplication with respect to some geometrically defined basis for H*{G/B), i.e. 
a generalization of the Schubert calculus. Chevalley found an analog to Pieri's 
formula for general G/P in 1958 [Che, Del]. Demazure and BGG indepen­
dently combined the results of Borel and Chevalley in 1973: They constructed 
a Schubert calculus for G/B in the abstract algebraic setting of Sw. Hiller 
presents this construction of the Schubert calculus in some detail. Unfor­
tunately, he only has time to outline BGG's proof that the ring so constructed 
coincides with H*(G/B). Giving full treatment to the proof would require 
spending some time on the subject of line bundles on flag manifolds. 

An interesting present day descendent of the papers of Demazure and BGG 
is the work of Lascoux and Schutzenberger concerning "Schubert polynomials" 
and "flag Schur functions" [L-S]. One consequence of this work is a third 
proof (in addition to [St3] and [E-G]) of the following difficult conjecture of 
Stanley: The number of ways of passing from the permutation l , 2 , . . . , n — l , « 
to n, n — 1,...,2,1 using adjacent transpositions is equal to the number of 
standard Young tableaux on the perfect staircase shape with n — \ squares in 
the first row. 

The smallest flag manifolds G/P are the most tractable; these occur when P 
is a maximal (by containment) parabolic subgroup. Grassmannians are of this 
form. But Grassmannians have an additional nice property: Whenever a 
Schubert class [X] is multiplied by the unique codimension 1 Schubert class 
[U] in H*(Gd(n))9 the result is the sum (with all coefficients 1) of the Schubert 
classes lying just above [X] in the Bruhat order. A few other flag manifolds 
formed with maximal P have this property: one other nontrivial infinite family 
SO(k)/Pspin, two trivial infinite families, and two exceptionals E6/D5 and 
E7/E6. Flag manifolds with this property are called minuscule. It seems that 
anything true for Grassmannians is true for all minuscule cases. The minuscule 
flag manifolds occupy a very pretty area of overlap between algebraic geome­
try, representation theory, and combinatorics. Topics related to the minuscule 
flag manifolds include the 27 lines on a cubic curve in projective 3-space, the 
spin representation of the orthogonal group, and the ballot problem from 
combinatorics. 

One interesting connection between algebraic geometry and combinatorics 
arises during the computation of the self-intersection multiplicity of the unique 
codimension 1 Schubert variety U of a minuscule flag manifold G/P. This 
computation is performed in the last chapter of Hiller's book, and also appears 
as a paper [Hil]. If the complex dimension of G/P is d, then the intersection of 
d generic varieties cohomologous to U is a union of N points. In cohomology 
this is expressed as [U]d = N[Z]9 where Z is the unique O-dimensional 
Schubert variety in G/P and N is the self-intersection multiplicity of U. Using 
the Bruhat poset description of H*(G/P) together with the fact that all 
coefficients are 1 in the sum for [U] U [X] in the minuscule case, it is easy to 
see that N must also be the number of strictly increasing maximal chains in the 
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Bruhat poset. The posets for the two nontrivial infinite families of minuscule 
flag manifolds have arisen independently in combinatorics [Lil, Li2]. Counting 
strict maximal chains in the poset corresponding to the Grassmannian is 
equivalent to a special case of the ballot problem: Given k candidates in an 
election which eventually receive ax > a2 > — • ak>0 votes, respectively, what 
is the probability that if the ballots are counted one at a time that candidate 
#1 will never trail candidate #2, candidate #2 will never trail candidate 
# 3 , . . . in the intermediate vote tallies? This problem was solved by 
Bertrand in 1887 for k = 2 and by MacMahon in 1915 for general k. But 
Schubert and Frobenius obtained expressions in the 1890s for equivalent 
quantities in their contexts, the Schubert calculus and representations of the 
symmetric group, respectively. To get strict maximal chains in the Bruhat poset 
associated to Gd(n\ take k = d and ax, = n — d for 1 < i < d. The general 
ballot problem is equivalent to finding the number of standard Young tableaux 
of a given shape, which in the theory of symmetric groups is the dimension of 
the irreducible representation indexed by that shape. It was in this context that 
Frame, Robinson, and Thrall derived their beautiful but mysterious "hook" 
formula for this quantity. And (as Hiller notes) a similar formula developed by 
Schur during his study of projective representations of the symmetric group, 
the hook formula for shifted standard Young tableaux, counts the number of 
strict maximal chains in the Bruhat posets for the minuscule flag manifolds 
SO(fc)/Pspin. 

Besides ordinary cohomology, another major (but interrelated) topic con­
cerning flag manifolds is the study of line bundles L on these spaces and the 
associated sheaf cohomology H*(G/P, L). For a start in this subject, see the 
nice introductory article [Bo2]. Very ample line bundles on an abstract projec­
tive variety correspond to embeddings of the variety in projective space. Line 
bundles on G/P 's have the additional property that they carry representations 
of the group G. In fact, isomorphism classes of very ample line bundles on 
G/B correspond naturally with equivalence classes of finite dimensional repre­
sentations of G. 

In addition to providing the connection between the Schubert structure 
erected on the coinvariant ring Sw and H*(G/B), line bundles on flag 
manifolds also appear in Hiller's book when he gives a brief summary of a 
recent result of Seshadri [Ses]. Any flag manifold formed with a maximal 
parabolic subgroup has a very ample line bundle L which gives an embedding 
of the manifold analogous to the Plucker embedding of the Grassmannian. 
Once a Borel subgroup (and therefore a root system) has been fixed, there is a 
natural way to index both maximal parabolic subgroups P} of G and funda­
mental highest weights Xj of G with positive simple roots aJ9 Kj <n.lf Lis 
the Plucker-like line bundle for PJ9 then by the Borel-Weil theorem the vector 
space of line bundle global sections H°(G/PJ9 ®

 mL) is an irreducible (/-mod­
ule with highest weight m\ i( •>, where i is the Weyl automorphism on the 
positive simple roots. But it is also known that H°(G/Pjy ®mL) = Rm, the 
mth graded piece of the homogeneous coordinate ring for G/P in the given 
embedding. Now we can state Seshadri's result: If Pj is a minuscule maximal 
parabolic subgroup, then there is a vector space basis for Rm indexed by 
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weakly increasing chains with m elements in the Bruhat poset associated to 
G/Piuy But the Bruhat posets associated to G/Pj and G/Pi(J) are isomorphic. 
Thus the number of weak m-chains in these posets is the dimension of the mth 
graded piece of the coordinate ring of G/Pj in this embedding, whereas the 
number of strict maximal chains is the self-intersection multiplicity of the 
Schubert variety U C G/P. It is natural to ask, as does Hiller in [Hil], if there 
is any theoretical connection here. 

Before answering this, we will make some additional remarks on Seshadri's 
work. The language of [Ses] and succeeding papers is heavily algebraic 
geometric, and the introductions emphasize applications to sheaf cohomology 
vanishing theorems. But it should be noted that the central results, describing 
bases for finite dimensional representations in terms of posets or poset-like 
objects, can be expressed entirely in terms of the language of representation 
theory. Since this result is of great interest in the context of representation 
theory alone, it would be desirable to have a proof which does not use 
algebraic geometry. When the Bruhat poset for the Grassmannian is described 
combinatorially, Seshadri's chains become special cases of the semistandard 
Young tableaux often used in physics texts to describe bases for representa­
tions of SL(«). In later papers Seshadri and coworkers Lakshmibai and Musili 
have extended this "standard monomial" theory not only to all representations 
of SL(«) (thereby producing all semistandard Young tableaux), but also to any 
representation of SO(A:) or Sp(2«) [LMS]. These results have many applica­
tions. In addition to sheaf cohomology computations, they also can be used to 
prove that the homogeneous coordinate rings of certain Schubert varieties are 
arithmetically Cohen-Macaulay [D-L, H-L]. (These two papers use in addition 
the combinatorial-topological notion of the shellability of certain simplicial 
complexes associated to the Bruhat posets [B-W].) 

Now for the answer: Yes, there is a theoretical connection. The degree of an 
embedded projective variety of dimension d is the number of points M left 
after intersecting the variety with d generic hyperplanes in the ambient 
projective space. It is easily computed if one knows the Hilbert polynomial 
h(m) — dimc Rm (m > 0) for the homogeneous coordinate ring: M — d\hd, 
where hd is the leading coefficient of the Hilbert polynomial. Now it is an easy 
fact that if a finite partially ordered set has d + 1 elements in its longest strict 
maximal chains, then the number of weakly increasing chains with m elements 
is a polynomial z(m) of degree d. Furthermore, the number of strict maximal 
chains is N = d\zd9 where zd is the leading coefficient of z(m). But by 
Seshadri's result, h(m) = z(m). Thus M — N, and the degree of G/Pj is equal 
to the number of strict maximal chains in the associated Bruhat poset. (Stanley 
used this line of reasoning to show that the degree of a skew Schubert variety 
in a Grassmannian could be computed by finding the number of skew 
standard Young tableaux of a certain shape [St2].) But TV is also the self-inter­
section multiplicity of the Schubert variety U. Therefore the degree of the 
embedded manifold is equal to the self-intersection multiplicity of the unique 
codimension 1 Schubert variety. But this must be true, since it is known that 
under the given Plucker-like embedding this Schubert variety is a hyperplane 
section for the overlying space! Because of the two roles (intersection theory 
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and representation theory) played by isomorphic Bruhat posets for G/Pj and 
G/PiUy the algebraic geometry picture matches up perfectly with the combina­
torial picture, right down to a two variable generating function identity which 
arises in each context independently [Pr2]. In spite of this pretty picture, the 
quickest way of computing the degree of any Plucker-embedded G/Pj with Pj 
maximal is to use no combinatorics at all. Since Rm is the irreducible G-module 
with highest weight wA/(y), the Weyl dimension formula can be used to express 
h(m) as a polynomial in m. This method dates back to Hirzebruch [Hir], who 
found M— 13,110 for the exceptional flag manifold E7/E6, as opposed to 
Hiller's miscounted 13,188. Robert Steinberg notes that 13,110 = 
2 • 3 • 5 • (18 + 1) • 23 and 78 = 2 • 3 • (12 + 1) for E6/D5, where 18 and 12 
are magic numbers (the "Coxeter numbers") for E7 and E6 (personal com­
munication). 

Chapter I of The geometry of Coxeter groups consists of a handy collection 
(with proofs) of some basic facts about Coxeter groups. Included are Tits' 
theorem that the canonical reflection representation of any Coxeter group 
generated by a finite number of reflections is faithful and discrete, the 
classification of finite Coxeter groups, and basic facts about the Bruhat order. 
The standard reference for Coxeter groups is [Bou]. Chapter II presents 
standard material on the invariant theory of finite Coxeter groups in the 
context of complex reflection groups. There is no shortage of accessible 
treatments of this subject; e.g. see [Fla, St4], or Chapters 9 and 10 of [Car]. 
Chapters III and IV deal with the cohomology of Grassmannians and general 
flag manifolds, respectively, as described above. Chapter IV is probably the 
first appearance of [BGG] and [De2] in book form. This chapter also appears 
as [Hi2]. The last chapter, Chapter V, consists of miscellaneous topics involv­
ing the Bruhat order, including the self-intersection multiplicity computations 
and the description of Seshadri's result mentioned above. 

This book is well written, especially for a set of lecture notes. It is perhaps 
closer to a "real" book in quality and care of preparation: not typeset but 
virtually no typographical errors, and a smallish but adequate index. There are 
plenty of references: 163 for a 212 page book, many to original sources. It 
should be readily accessible to second year graduate students. The chapter 
introductions and concluding sections are interesting and useful, containing 
both historical notes and remarks on contemporary related topics. 
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Angular momentum is a physical quantity which appeared first in classical 
mechanics. Consider indeed the simplest case of a particle moving in R3. The 
observables of this physical system are (C00-) functions from T*R3 =* R6 = 
{O, p)\x, p G R3}. The Poisson bracket {•,•} associates to every pair (/ , g) 
of such functions the function {/, g) defined by 

(1) {f,g} = l fof-fyg-dsg-fyf)-
k=\ 

Notice, in particular, that for all k, I = 1,2,3, 

(2) {**, *'} = 0 = {pk, p1}; {**, p'} = 8*'l. 

Then the angular momentum L = x X p is the triple (L1, L2, L3) of functions 

(3) LJ(x,p) =xkpl - xlpk
9 

where (y, k91) is any triple of indices obtained from (1,2,3) by cyclic permuta­
tions. The Poisson brackets between the components of the angular momentum 
are 

(4) {V,Lk}=Ll
9 

where again (y, k, I) are cyclic permutations of (1,2,3). 
The angular momentum appeared in the quantum mechanical description of 

a particle, moving similarly in R3, as the triple L = (L\ L2, L3) of operators, 


