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CASCADES OF PERIOD-DOUBLING BIFURCATIONS: 
A PREREQUISITE FOR HORSESHOES1 

BY JAMES A. YORKE AND KATHLEEN T. ALLIGOOD 

Since Smale [7] described the complicated dynamical behavior of horseshoe 
maps, many dynamical systems depending on a parameter have been shown 
to develop horseshoes. In the horseshoe, there are 2k fixed points for the kth. 
iterate of the map. Numerical studies of parametrized maps and the inves­
tigations of Newhouse [5] and Robinson [6] indicate there is a rich structure 
of attractors for parameters preceding the existence of the horseshoe. Once 
the horseshoe is formed, however, all periodic points are unstable and almost 
any trajectory starting in the horseshoe eventually leaves it. Assuming that 
cross-sectional areas are contracting, we prove that infinitely many cascades 
of period doublings must occur in the process of forming a horseshoe. Each 
such cascade need not evolve regularly or monotonically, but it must contain 
attracting periodic points of all the periods k,2k,4k,8k,..., for some k. For 
the area preserving case with n = 2, we have an analogous result, where elliptic 
periodic points replace attracting periodic points. 

We would like to thank L. Tedeschini-Lalli and S. Pelikan for their helpful 
suggestions. 

First, we introduce notation and give hypotheses for the formation of 
horseshoes. Let 

C = {(xi,..., xn) e Rn : x\ + • • • + x\_x < 1 and 0 < xn < 1}, 

E = {(xi,..., xn) e C : x\ 4- • • • + a£_i = 1}, 

T = {(xi,...,xn)eC :xn = 1}, and 

B = {(x1,...,xn)eC:xn = 0}. 

Let ƒ : C X [0,1] -> Rn be a C1 map such that ƒ (C X {0}) is disjoint from C, 
and ƒ(•, 1) is a horseshoe map, in the sense of Smale [7]. Specifically, writing 
C\ for f{C X {X}) and using corresponding notation for E, T, and B, we 
assume: 

(HI) There is a 6 < 1 such that if fk{p,\) = p for some X G [0,1], k > 1, 
and pÇîC, and if /^i , . . . , / in are the eigenvalues of Dpf

k(p, X), then |/z^-| < 0 
for i ^ j , 1 < i,j < n; 

(H2) C0 0 C is empty; 
(H3) TxnC and BxnC are empty, for all X, 0 < X < 1; 
(H4) Cx n E is empty, for all X, 0 < X < 1; and 
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(H5) If ƒfc(p, 1) = p, for some k > 1, p G C, then Dpf
k(p, 1) has an eigenvalue 

/x such that |/x| > 1. (For each k, there are 2k such points.) 
In addition, let P = {(p, X) G C X [0,1] : ƒ fc(p, X) = p, for some A;}; and for a 

point (p, X) G P, let A(p, X) = {//:// is an eigenvalue of Dpf
k(p, X), where A: is 

the minimum period of (p,X)}-

THEOREM 1. Let ƒ satisfy (H1)-(H5). For (p, 1) G P , the component of 
P containing (p, 1) has attracting periodic points of minimum period 2nk, for 
each n > 0. 

The main ideas in the proof of this theorem are outlined in the lemmas and 
discussion which follow. First, we form the orbit space 0(f) of equivalence 
classes of periodic points of ƒ : identify points (p, X) and (q, X) in P if / m (p , X) = 
q, for some m. We write 0(f,k) for orbits of ƒ of minimum period k. Hence, 
0(f) = Ufceiv £(ƒ,&). For e a s e °f notation, we write (p,X) G 0( / ) for any 
representative (p, X) of an orbit. By (HI), each orbit in 0(f) is in one of the 
following five disjoint subsets, classified according to the location of the /J, in 
A(p,X): 

(1) the set A of attracting orbits (|//| < 1, for all /i); 
(2) the set M of Mobius orbits (// < — 1, for some //); 
(3) the set S of saddle orbits (JJL > 1, for some //); 
(4) £+ = {(p,X) G 0( / ) : 1 G A(p,X)}; and 
(5)P_ = {(p,X)G0(/):- lGA(p,X)}. 
Now we analyze the structure of path components of orbits for a particular 

generic class G of functions in CX(C X / , P n ) . The set G is discussed in detail 
in [1 and 2]. Here we mention that the types of orbits in P+ and P_ are 
restricted for g G G: 

(1) Orbits in P+ n 0(g) are "saddle-node" bifurcation orbits from which 
two paths of non-Mobius orbits emanate: one path is a subset of S and one 
is a subset of A. Near the saddle-node, orbits on both paths have the same 
minimum period as the bifurcation orbit. 

(2) Orbits in B^nO(g) are "period-doubling" bifurcation orbits from which 
3 paths of orbits—two non-Mobius and one Mobius—emanate. Near the 
bifurcation orbit, each of the non-Mobius paths is a subset either of A or of 
S depending on the direction of the path in X. (See index discussion below.) 
Orbits on one of the non-Mobius branches have twice the minimum period 
of the bifurcation orbit, while orbits on the other two branches have the 
same minimum period. In addition, an analysis of the eigenvalues near the 
bifurcation orbit (under (HI)) shows that the low period non-Mobius orbits 
must be attractors (i.e., saddle orbits cannot "period-double"). 

From the description of generic orbits, we obtain the following lemma: 

LEMMA 1 [2]. Let g EG. Each non-Mobius orbit in 0(g) is contained in a 
(topological) 1-manifoldT of non-Mobius orbits of 0(g). 

The critical step in proving Theorem 1 is the use of the orbit index, as 
developed for generic maps in [3] and [4], to orient the 1-manifold T. If (p,X) 
is not a bifurcation orbit, then its index, denoted <p(p), is -hi for attractors, 
0 for Mobius orbits, and —1 for saddles. (See [4] for the precise definition.) 
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If the periods of orbits on Y are bounded, then I \ 0 = {(p,X) G T : X = Xo} 
is finite, and ^ £>(p), for (p,Xo) G I \ 0 , is invariant under changes in X. The 
invariance property of <p allows us to choose a preferred direction on T in the 
following manner: 

(1) if <p(p) = H-I, follow T through increasing X values; 
(2) if (p(p) = — 1, follow T through decreasing X values. 

Hence Y changes direction (from X increasing to X decreasing, or vice versa) at 
orbits in B+. It may or may not change direction at orbits in £_, depending 
on the types of orbits of the two non-Mobius branches. 

Now let (q, 1) be a saddle orbit in 0(g, /c), and let Y be the oriented 1-
manifold of non-Mobius orbits which begins at (q, 1). We follow Y through 
decreasing X values from (ç, 1), as its orientation requires. Since there are no 
(periodic) orbits in Co, either Y must change direction or all nonbifurcation 
orbits on Y are saddles, and the periods of these orbits are unbounded. Since 
saddle orbits cannot "period-double", the second case is impossible. Hence Y 
contains attractors. Furthermore, Y cannot reintersect C\ since the direction 
of approach (through increasing X) would imply that ToCi contains either an 
attractor or a bifurcation orbit, both of which are impossible. Thus Y—{(q, 1)} 
is contained in C X (0,1). The global continuation results of [2] and [4] give 
the following lemma: 

LEMMA 2. Let g G G, and let (q, 1) G 0(g, k) be a saddle orbit on a path Y 
of non-Mobius orbits (as in Lemma Ï). Then the minimum periods of orbits in 
T are unbounded. Furthermore, there is an attractor of minimum period 2nk 
onY, for eachn > 0. 

The statement about the existence of attractors follows from the fact that 
saddle orbits cannot "period-double". An analysis of generic bifurcations 
provides an analogous result for (q, 1) G M, if we follow a path of Mobius orbits 
from (q, 1) through decreasing X to a period-doubling bifurcation. Finally, we 
take limits of the generic paths described in Lemma 2 and use the "virtual 
period" techniques developed in [1 and 2] to obtain the result in the general 
case (Theorem 1). 

The 'Virtual period" techniques also give information as to the number of 
attractors of each minimum period in the limit case. We define a cascade from 
period k to be a sequence {Kn}neN of (nonempty) components of A such that 
Ko is a subset of 0(f, A;), and if (p, X) G Kn, then the minimum period of (p, X) 
is 2nk. Furthermore, we require that UneN Kn is contained in one component 
of P . 

THEOREM 2. Let ƒ satisfy (H1)-(H5), and let N be the number of saddle 
orbits of minimum period k in C\. Then there are at least N disjoint cascades 
from period k in 0(f). 
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