THE NEWTON DIAGRAM OF AN ANALYTIC MORPHISM, AND APPLICATIONS TO DIFFERENTIABLE FUNCTIONS

BY EDWARD BIERSTONE¹ AND PIERRE D. MILMAN²

Consider a system of equations of the form

(1)
$$f(x) = A(x) \cdot g(\phi(x)),$$

where $x = (x_1, ..., x_m)$, $\phi(x) = (\phi_1(x), ..., \phi_n(x))$ is an analytic mapping, and A(x) is a $p \times q$ matrix of analytic functions. Given $f(x) = (f_1(x), ..., f_p(x))C^{\infty}$, we seek C^{∞} solutions $g(y) = (g_1(y), ..., g_q(y))$. There is a necessary condition on the Taylor series of f at each point. Special cases are classical: when $\phi(x) \equiv x$ we have the division theorem of Malgrange [7, Chapter VI], and when $A(x) \equiv I$, the composition problem first studied by Glaeser [5].

We solve the problem in the case that $\phi(x)$ and A(x) are algebraic (or Nash), using a Hilbert-Samuel stratification associated to (1). Our methods, however, go far beyond this case. We present algebraic criteria for solving (1), based on a fundamental relationship between two invariants of an analytic morphism and an associated "Newton diagram". Hironaka's simple but powerful formal division algorithm [3] is exploited systematically. The only results from "differential analysis" used are Whitney's extension theorem [7, Chapter I] and Lojasiewicz's inequality [7, Chapter IV].

Let $\underline{k} = \mathbf{R}$ or C. (Some of our assertions hold for other fields.) Let M, N be analytic manifolds (over \underline{k}), and $\phi \colon M \to N$ an analytic mapping. Let A be a $p \times q$ matrix of analytic functions on M.

For each $a \in M$, let \mathcal{O}_a (respectively, $\hat{\mathcal{O}}_a$) denote the ring of germs of analytic functions at a (respectively, the completion of \mathcal{O}_a in the Krull topology). Let $\hat{\mathfrak{m}}_a$ be the maximal ideal of $\hat{\mathcal{O}}_a$. In the case $\underline{k} = \mathbf{R}$, let $C^{\infty}(M)$ denote the algebra of C^{∞} functions on M. There is a Taylor series homomorphism $f \mapsto \hat{f}_a$ from $C^{\infty}(M)^p$ onto $\hat{\mathcal{O}}_a^p$.

The mapping ϕ induces ring homomorphisms $\phi^* \colon C^{\infty}(N) \to C^{\infty}(M)$, $\phi_a^* \colon \mathcal{O}_{\phi(a)} \to \mathcal{O}_a$, and $\hat{\phi}_a^* \colon \hat{\mathcal{O}}_{\phi(a)} \to \hat{\mathcal{O}}_a$. Let $\Phi \colon C^{\infty}(N)^q \to C^{\infty}(M)^p$ denote the module homomorphism over ϕ^* defined by $\Phi(g) = A \cdot (g \circ \phi)$. Let $\hat{\Phi}_a \colon \hat{\mathcal{O}}_{\phi(a)}^q \to \hat{\mathcal{O}}_a^p$ denote the analogous module homomorphism over $\hat{\phi}_a^*$.

Let $(\Phi C^{\infty}(N)^q)$ denote the $C^{\infty}(N)$ -submodule of $C^{\infty}(M)^p$ consisting of elements which formally belong to the image $\Phi C^{\infty}(N)^q$ of Φ ; i.e., $(\Phi C^{\infty}(N)^q)^{\hat{}} = \{f \in C^{\infty}(M)^p : \text{ for all } b \in \phi(M), \text{ there exists } G_b \in \hat{\mathcal{O}}_b \text{ such that } \hat{f}_a = \hat{\Phi}_a(G_b) \text{ for all } a \in \phi^{-1}(b)\}$. Evidently, $(\Phi C^{\infty}(N)^q)^{\hat{}}$ is closed in the C^{∞} topology.

Received by the editors March 23, 1983.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 32B20, 58C25; Secondary 32C42.

¹Research partially supported by NSERC operating grant A9070.

²Supported by NSERC University Research Fellowship and operating grant U0076.

THEOREM 1. Suppose that M, N, ϕ and A are algebraic (or Nash). If ϕ is proper, then $\Phi C^{\infty}(N)^q = (\Phi C^{\infty}(N)^q)^{\hat{}}$.

In the following, we use the same notation for a germ at a point and a representative of the germ in a suitable neighborhood.

Let $s \in \mathbb{N}$. Let $M^s_{\phi} = \{\mathbf{x} = (x^1, ..., x^s) \in M^s \colon \phi(x^1) = \cdots = \phi(x^s)\}$, and let $\phi \colon M^s_{\phi} \to N$ be the induced morphism.

Invariants of an analytic morphism. Let $\mathbf{a}=(a^1,\ldots,a^s)\in M^s_{\phi}$. Put $b=\phi(\mathbf{a})$. Let $\mathcal{R}_{\mathbf{a}}$ denote the submodule $\mathcal{R}_{\mathbf{a}}=\bigcap_{i=1}^s \operatorname{Ker} \hat{\Phi}_{a^i}$ of $\hat{\mathcal{O}}^q_b$.

By a lemma of Chevalley [4, §II], there is a function $l = l(k, \mathbf{a})$ from N to itself with the following property: If $G \in \hat{\mathcal{O}}_b^q$ and $\hat{\Phi}_{a^i}(G) \in \hat{\mathfrak{m}}_{a^i}^{l+1} \cdot \hat{\mathcal{O}}_{a^i}^p$, $1 \le i \le s$, then $G \in \mathcal{R}_{\mathbf{a}} + \hat{\mathfrak{m}}_b^{k+1} \cdot \hat{\mathcal{O}}_b^q$. We say there is a uniform Chevalley estimate if we can choose l = k(k) independent of a (locally in $M_{\dot{a}}^s$).

Let $H_{\mathbf{a}}(k)$ denote the Hilbert-Samuel function of the $\hat{\mathcal{O}}_b$ -module $\hat{\mathcal{O}}_b^q/\mathcal{R}_{\mathbf{a}}$; i.e.,

$$H_{\mathbf{a}}(k) = \dim_{\underline{k}} \frac{\hat{\mathcal{O}}_{b}^{q}}{\mathcal{R}_{\mathbf{a}} + \hat{\mathfrak{m}}_{b}^{k+1} \cdot \hat{\mathcal{O}}_{b}^{q}}.$$

We say that $H_{\mathbf{a}}$ is (analytic) Zariski (upper-) semicontinuous if, for every irreducible germ of an analytic subset X at a point of M_{ϕ}^{s} , there is a germ of a proper analytic subset Y of X, with the following properties:

- (i) $H_{\mathbf{a}}(k)$ is constant in X Y for all k.
- (ii) If $\mathbf{a} \in X Y$ and $\mathbf{a}' \in Y$, then $H_{\mathbf{a}'}(k) \ge H_{\mathbf{a}}(k)$ for all k, and $H_{\mathbf{a}'}(k) > H_{\mathbf{a}}(k)$ for some k.

The Newton diagram. Since all our results are local in N, we assume that N is an open subset of \underline{k}^n . Following Hironaka [3], we associate to $\mathcal{R}_{\mathbf{a}}$ a subset $\mathfrak{N}_{\mathbf{a}}$ of $\mathbf{N}^n \times \{1, \ldots, q\}$.

If $\beta = (\beta_1, ..., \beta_n) \in \mathbb{N}^n$, put $|\beta| = \beta_1 + \cdots + \beta_n$. We order the (n+2)-tuples $(\beta_1, ..., \beta_n, j, |\beta|)$, where $(\beta, j) \in \mathbb{N}^n \times \{1, ..., q\}$, lexicographically from the right. This induces a total ordering of $\mathbb{N}^n \times \{1, ..., q\}$.

Let $b=(b_1,\ldots,b_n)\in N$. We identify $\hat{\mathcal{O}}_b$ with the ring of formal power series $\underline{k}[[y-b]]=\underline{k}[[y_1-b_1,\ldots,y_n-b_n]]$. Let $G\in\hat{\mathcal{O}}_b^q$, $G=(G_1,\ldots,G_q)$. Write $G_j=\sum_{\beta\in\mathbf{N}^n}g_{\beta,j}(y-b)^\beta$, $1\leq j\leq q$, where $g_{\beta,j}\in\underline{k}$ and $(y-b)^\beta$ denotes $(y_1-b_1)^{\beta_1}\cdots(y_n-b_n)^{\beta_n}$. Let $\nu(G)$ denote the smallest (β,j) such that $g_{\beta,j}\neq 0$.

The Newton diagram $\mathfrak{N}_{\mathbf{a}}$ of $\mathcal{R}_{\mathbf{a}}$ is defined as $\{\nu(G): G \in \mathcal{R}_{\mathbf{a}}\}$. Clearly, $\mathfrak{N}_{\mathbf{a}} + \mathbf{N}^n = \mathfrak{N}_{\mathbf{a}}$, where addition is defined by $(\beta, j) + \gamma = (\beta + \gamma, j), \ (\beta, j) \in \mathbf{N}^n \times \{1, \ldots, q\}, \ \gamma \in \mathbf{N}^n$.

REMARKS. (i) There is a smallest finite subset \mathfrak{V}_a of \mathfrak{N}_a such that $\mathfrak{N}_a = \mathfrak{V}_a + \mathbf{N}^n$.

(ii) $H_{\mathbf{a}}(k)$ is the number of elements $(\beta, j) \in \mathbb{N}^n \times \{1, ..., q\}$ such that $|\beta| \le k$ and $(\beta, j) \notin \mathfrak{N}_{\mathbf{a}}$.

THEOREM 2. The following conditions are equivalent:

- (2.1) There is a uniform Chevalley estimate.
- (2.2) The Hilbert-Samuel function $H_{\mathbf{a}}$ is Zariski semicontinuous.

(2.3) Each point of M_{ϕ}^s admits a neighborhood U and a filtration $U = X_0 \supset X_1 \supset \cdots \supset X_l = \emptyset$ by closed analytic subsets of U, such that the Newton diagram $\mathfrak{N}_{\mathbf{a}}$ is constant on $X_i - X_{i+1}$ for each i.

Suppose $\underline{k} = \mathbf{R}$. If ϕ is proper, then (locally in N) there is a bound s on the number of connected components of a fiber $\phi^{-1}(b)$. With this s, we prove:

THEOREM 3. Suppose ϕ is proper. Then each of the conditions of Theorem 2 implies $\Phi C^{\infty}(N)^q = (\Phi C^{\infty}(N)^q)^{\hat{}}$.

IDEA OF THE PROOF. It follows from Theorem 2 that there is a locally finite partition $\{X_i\}$ of M^s_ϕ such that, for each i:

- (i) X_i is a connected smooth semianalytic subset of M^s_{ϕ} .
- (ii) $\overline{X}_i X_i \subset Y_{i-1}$, where $Y_i = \bigcup_{j < i} X_j$.
- (iii) For all $\mathbf{a} \in X_i \phi^{-1}(\phi(Y_{i-1}), \ \mathcal{R}_{\mathbf{a}} = \bigcap_{a \in \phi^{-1}(\phi(\mathbf{a}))} \mathrm{Ker} \ \hat{\Phi}_a$
- (iv) $\mathfrak{N}_{\mathbf{a}}$ is constant on X_i .

Let $f \in (\Phi C^{\infty}(N)^q)$. By induction on i, we assume f is flat on $\phi^{-1}(\phi(Y_{i-1}))$. Let $\mathbf{a} = (a^1, \ldots, a^s) \in X_i - \phi^{-1}(\phi(Y_{i-1}))$, $b = \phi(\mathbf{a})$. By (iii), (iv) and Hironaka's formal division theorem [3], there is a unique $G = G_b \in \hat{\mathcal{O}}_b^q$ such that $\hat{f}_a = \hat{\Phi}_a(G_b)$ for all $a \in \phi^{-1}(b)$, and $g_{\beta,j} = 0$ for all $(\beta,j) \in \mathfrak{N}_{\mathbf{a}}$. Then the G_b are induced by a q-tuple of C^{∞} functions which are flat on $\phi(Y_{i-1})$ (cf. [2]).

THEOREM 4. The conditions of Theorem 2 are satisfied in each of the following cases:

- (4.1) M, N, ϕ and A are algebraic.
- (4.2) $\phi = identity$.
- (4.3) A = I and ϕ is regular; i.e., for each $a \in M$, the Krull dimension of $\mathcal{O}_{\phi(a)}/\mathrm{Ker}\,\phi_a^*$ equals the generic rank of ϕ near a.
 - $(4.4) \phi$ is finite.

REMARKS. (i) The algebraic hypothesis in (4.1) is essential only to the following point in our proof: If $a \in M$, $b = \phi(a)$, then any $G \in \hat{\mathcal{O}}_b^q$ such that $\hat{\Phi}_a(G) = 0$ can be approximated to any order by an algebraic solution. Writing $y = \phi(x)$ in local coordinates, this amounts to considering the system of equations $A(x) \cdot g(y) = \sum_{i=1}^n h_i(x,y)(y_i - \phi_i(x))$, and finding an algebraic approximation g(y), $h_i(x,y)$ to a given formal solution. Since the equations are linear in the h_i , this special case of "Artin approximation with respect to nested subrings" follows from Artin's theorem [1].

(ii) In the classical coherent case (4.2), the uniform Chevalley estimate is equivalent to a "uniform Artin-Rees lemma" (cf. [9]), and the conclusion of Theorem 3 is Malgrange's theorem on ideals generated by analytic functions. The uniform Chevalley estimate (2.1) in case (4.3) can be obtained using techniques of [9] (as Tougeron showed us); Theorem 3 in this case gives the composition theorem of [2]. In case (4.4), condition (2.2) follows from the finite coherence theorem of Grauert and Remmert [6], and Theorem 3 recovers a result of Merrien [8].

Detailed proofs of our theorems will appear.

REFERENCES

- 1. M. Artin, Algebraic approximation to structures over complete local rings, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 23-58.
- 2. E. Bierstone and P. D. Milman, Composite differentiable functions, Ann. of Math. (2) 116 (1982), 541-558.
- 3. J. Briançon, Weierstrass préparé à la Hironaka, Astérisque 7, 8 (1973), 67-73.
- 4. C. Chevalley, On the theory of local rings, Ann. of Math. (2) 44 (1943), 690-708.
- 5. G. Glaeser, Fonctions composées différentiables, Ann. of Math. (2) 77 (1963), 193-209.
- H. Grauert and R. Remmert, Bilder and Urbilder analytischer Garben, Ann. of Math. (2) 68 (1958), 393-443.
- 7. B. Malgrange, Ideals of differentiable functions, Oxford Univ. Press, Bombay, 1966.
- 8. J. Merrien, Applications des faisceaux analytiques semi-cohérents aux fonctions différentiables, Ann. Inst. Fourier (Grenoble) 31 (1981), 63-82.
- 9. J. Cl. Tougeron, Existence de bornes uniformes pour certaines familles d'idéaux de l'anneau des séries formelles <u>k[[x]]</u>. Applications (to appear).

Department of Mathematics, University of Toronto, Toronto, Canada M5S 1A1