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THE NEWTON DIAGRAM OF AN ANALYTIC MORPfflSM, 
AND APPLICATIONS TO DIFFERENTIATE FUNCTIONS 

BY EDWARD BIERSTONE1 AND PIERRE D. MILMAN2 

Consider a system of equations of the form 

(i) ƒ(*)=4*) •»(#*)), 
where x = (xi , . . . ,xm) , <j>(x) = (</>i(x),...,0n(x)) is an analytic mapping, and 
A(x) is a px q matrix of analytic functions. Given f(x) = {fi{x),..., fp(x))C°°, 
we seek C°° solutions g(y) = {gi{y),..., gq(y))- There is a necessary condition 
on the Taylor series of ƒ at each point. Special cases are classical: when 
<t>(x) = x we have the division theorem of Malgrange [7, Chapter VI], and 
when A(x) = / , the composition problem first studied by Glaeser [5]. 

We solve the problem in the case that 0(x) and A(x) are algebraic (or Nash), 
using a Hilbert-Samuel stratification associated to (1). Our methods, however, 
go far beyond this case. We present algebraic criteria for solving (1), based on 
a fundamental relationship between two invariants of an analytic morphism 
and an associated "Newton diagram". Hironaka's simple but powerful formal 
division algorithm [3] is exploited systematically. The only results from 
"differential analysis" used are Whitney's extension theorem [7, Chapter I] 
and Lojasiewicz's inequality [7, Chapter IV]. 

Let k = R or C. (Some of our assertions hold for other fields.) Let M, N 
be analytic manifolds (over /ç), and 0: M —• AT an analytic mapping. Let A 
be a p X q matrix of analytic functions on M. 

For each a G M, let 0a (respectively, da) denote the ring of germs of 
analytic functions at a (respectively, the completion of 0a in the Krull topol­
ogy). Let xha be the maximal ideal of Ô0. In the case k — R, let C°°(M) denote 
the algebra of C°° functions on M. There is a Taylor series homomorphism 
ƒ >-» fa from C°°{My onto ôP

a. 
The mapping <f> induces ring homomorphisms 0*: C°°(N) -> C°°(M), 

K' 0<t>{a) -+ 0a, and fc: ô# a) -+ 0a- Let $ : C°°{N)<* -> C°°{My denote the 
module homomorphism over 0* defined by $(g) = A- (gofy. Let <la : ô^ a ) —• 
0a denote the analogous module homomorphism over 0*. 

Let (QC°°(N)*Ydenote the C°°{N)-submodule of C°°{Mf consisting of ele­
ments which formally belong to the image $C°°(N)q of $; i.e., (^C00(AT)«)/S= 
{ƒ € C°°{Mf: for all b G 0(M), there exists Gb G Öb such that fa = 9a{Gb) 
for all a G 0_1(&)}- Evidently, ( f c C ^ i V ^ i s closed in the C°° topology. 
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THEOREM 1. Suppose that M, N, <j> and A are algebraic (or Nash). If<j) is 
proper, then ^C°°(Nf = {9C°°(N^y. 

In the following, we use the same notation for a germ at a point and a 
representative of the germ in a suitable neighborhood. 

Let s G N. Let M£ = {x = (x1,..., xs) G M8: ^(x1) = • • • = </>(x5)}, and let 
<j> : M£ —• N be the induced morphism. 

Invariants of an analytic morphism. Let a = (a1,..., as) G MJ. Put b = 

</>(&). Let £ a denote the submodule £ a = rii=i Ker $a» of ô 6 . 
By a lemma of Chevalley [4, §11], there is a function I = l(ky&) from N to 

itself with the following property: If G G ö\ and *a<(G) G m'j"1 • Ô^, 1 < z < s, 
say there is a uniform Chevalley estimate if we 

can choose / = k(k) independent of a (locally in M^). 

Let HB(k) denote the Hubert-Samuel function of the ô^-module Ôb/Za; i.e., 

We say that ifa is (analytic) Zariski (upper-) semicontinuous if, for every 
irreducible germ of an analytic subset X at a point of M^, there is a germ of 
a proper analytic subset y of X, with the following properties: 

(i) H&(k) is constant in X — Y for all k. 
(ii) If a G X - Y and a' G Y, then jffa.(fc) > ffa(k) for all fc, and ffa<fc) > 

ifa(A:) for some A:. 

The Newton diagram. Since all our results are local in N, we assume that 
N is an open subset of kn. Following Hironaka [3], we associate to £ a a subset 
<na of N n x { i , . . . , ? } . 

If P = (/?i,..., pn) e Nn , put \/3\ =/?! + . . . + f3n. We order the (n + 2)-tuples 
(/?i,...,/3n>J>\P\), where (/?,j) G Nn x {l , . . . ,g} , lexicographically from the 
right. This induces a total ordering of Nn X {1, . . . , q}. 

Let b = (bi,...,6n) G AT. We identify Öb with the ring of formal power 
series k[[y-b\] = fc[[|/i —&i,...,2/n —&n]]. Let G G Ôb, G = (Gi,. . . ,Gg). Write 
Gj = Jlpew 9p,j(y ~ b)^, 1 < j < q, where gpj G £ and (y - b)P denotes 
(2/1 — bi)^1" \yn — bnY

n. Let v(G) denote the smallest {/3,j) such that gpj ^ 
0. 

The Newton diagram $1* of £ a is defined as {^(G) : G G £ a } . Clearly, 
Wa+Nn = <tta, where addition is defined by (/3,j) + 7 = (/? + 7,i), (/?,i) G 
N n x { l , . . . , ç } , 7 G N n . 

REMARKS, (i) There is a smallest finite subset 93a of 0îa such that 0îa= 
<Ua+Nn. 

(ii) H&(k) is the number of elements (/3,j) G Nn x {1 , . . . , q} such that \/3\ < k 
and (/?,.ƒ) £ 9 V 

THEOREM 2. TTie following conditions are equivalent: 
(2.1) TTiere is a uniform Chevalley estimate. 
(2.2) The Hubert-Samuel function H& is Zariski semicontinuous. 
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(2.3) Each point of M^ admits a neighborhood U and a filtration U = Xo D 
X\ D • • • D Xi = 0 by closed analytic subsets of U, such that the Newton 
diagram 9ta is constant on Xi — X^+i for each i. 

Suppose k = R. If <j) is proper, then (locally in N) there is a bound s on 
the number of connected components of a fiber </>-1(6). With this s, we prove: 

THEOREM 3. Suppose <j> is proper. Then each of the conditions of Theorem 
2 implies <PC°°{Ny = (•C°°(JV)«)*. 

IDEA OF THE PROOF. It follows from Theorem 2 that there is a locally 
finite partition {Xi} of M^ such that, for each i: 

(i) Xi is a connected smooth semianalytic subset of MJ. 

(ii) Xi-XiC Yi-u where Y< = U;<; Xâ. 

(iii) For all a G X* - <T H ^ - i ) , ** = f W - K * * ) ) K e r *°" 
(iv) Oîa is constant on X^. 
Let ƒ G ($C°°(Ar)9)~. By induction on i, we assume ƒ is flat on 0_1(^(Yi_i)). 

Le ta = (a 1 , . . . , a a )GX i -^- 1 (0(Yi_i ) ) , & = <£(a). By (iii), (iv) and Hironaka's 
formal division theorem [3], there is a unique G = Gb € 0b such that fa = 
^a(Gb) for all a G 0-1(&)i and ( ^ = 0 for all (P,j) G OV Then the Gb are 
induced by a g-tuple of C°° functions which are flat on <t>(Yi-1) (c^- [2])-

THEOREM 4. T/ie conditions of Theorem 2 are satisfied in each of the 
following cases: 

(4.1) M, N, (j) and A are algebraic. 
(4.2) 0 ^identity. 
(4.3) A = I and (j> is regular; i.e., for each a G M, the Krull dimension of 

0<f>(a)/Ker </>* equals the generic rank of <\> near a. 
(4.4) (j> is finite. 

REMARKS, (i) The algebraic hypothesis in (4.1) is essential only to the 
following point in our proof: If a G M, b = 0(a), then any G G Ôb such 
that Ôa(G) = 0 can be approximated to any order by an algebraic solution. 
Writing y = </>(x) in local coordinates, this amounts to considering the system 
of equations A(x) • g(y) = X)?=i hi{xiy){Vi ~ «M )̂)» an(^ finding an algebraic 
approximation ^(y), hi(x,y) to a given formal solution. Since the equations 
are linear in the hi, this special case of "Artin approximation with respect to 
nested subrings" follows from Artin's theorem [1]. 

(ii) In the classical coherent case (4.2), the uniform Chevalley estimate is 
equivalent to a "uniform Artin-Rees lemma" (cf. [9]), and the conclusion of 
Theorem 3 is Malgrange's theorem on ideals generated by analytic functions. 
The uniform Chevalley estimate (2.1) in case (4.3) can be obtained using 
techniques of [9] (as Tougeron showed us); Theorem 3 in this case gives the 
composition theorem of [2]. In case (4.4), condition (2.2) follows from the finite 
coherence theorem of Grauert and Remmert [6], and Theorem 3 recovers a 
result of Merrien [8]. 

Detailed proofs of our theorems will appear. 
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