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solutions as "equilibrium" solutions, and by IPs studied refusal to use "that" 
as a relative pronoun, a refusal that could make H. W. Fowler undergo the 
usual rotational instability in his grave.) 

Each of these books offers an effective entrée into a lively area of research 
and a helpful guide for those who wish to apply the theory. Each book would 
nicely complement the standard texts used in beginning graduate courses in 
ordinary differential equations. 
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The pair have reached that fearful chasm, 
How tempting to bestride! 
For lordly Wharf is there pent in 
With rocks on either side. 
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Such temptation is the essence of interpolation theory. For example, if an 
operator is bounded on the Lebesgue space Ü and on L00, then intuition 
demands that it be bounded also on Lp for 1 <p < oo. Similarly, if an 
operator is bounded on the space C of continuous functions and on the space 
C2 of twice-con tinuously-dif f eren tiable functions, one hopes that it will be 
bounded also on C1. Hope and glory are not to be confused, however, 
especially in mathematics, and numerous efforts over the past half-century to 
resolve such problems have led to the development of a rich and interesting 
theory of interpolation of operators. 

The seminal work is an interpolation theorem for L ̂ -spaces established by 
Marcel Riesz in 1926. Operators that are bounded from Lp to Lq are said to be 
of strong type (/?, q). If 1 <pQ9 qQ9 pl9 qx < oo and if \/pe = (1 - 0)/p0 + 
0/P\> l/#0 — 0 ~ 0)/% + Q/a\ (0 ^ 0 < 1), then Riesz's theorem asserts 
that every linear operator of strong types (p09q0) and (p{9 q})i$ also of strong 
type (ƒ>*,?*). 

The operator norm Me is a logarithmically convex function of 0, that is, 
Me < Mc~eMf, at least under certain restrictions on the parameters. These 
restrictions can be removed completely, however, for L ̂ -spaces with complex 
scalars, as was demonstrated by O. V. Thorin in 1939. Thorin's proof makes 
clever use of the Hadamard three-lines theorem from complex function theory. 
Later referred to by J. E. Littlewood as "the most impudent idea in analysis", 
the proof has become standard in the literature, where the result is usually 
known as the Riesz-Thorin convexity theorem. 

The year 1939 saw another major advance in the theory, this one due to 
J. Marcinkiewicz. The strong-type hypotheses required in the Riesz-Thorin 
theorem are too restrictive for many potential applications. For example, in 
1927, M. Riesz had established the L^-boundedness ( 1 < / ? < O O ) of the 
Hubert transform H (so H is of strong type (/?,/?) for 1 <p < oo) but this 
cannot be deduced from the Riesz-Thorin theorem because H fails to be of 
strong type (1,1) (or (oo, oo)). There is, however, a weaker result of A. N. 
Kolmogorov (1923) to the effect that H maps Ü into a somewhat larger space, 
which is now known as weak-Ü. In other words, although H is not of strong 
type (1,1), it does have a property which might appropriately be referred to as 
weak type (1,1). 

Enlarging this concept to include values of/? other than/? = 1, Marcinkie­
wicz proceeded to show that the strong-type conclusions of the Riesz-Thorin 
theorem remain intact even when the strong-type hypotheses of that theorem 
are replaced by the corresponding weak-type conditions. Some additional 
restrictions on the parameters are needed but we need not specify them here. It 
is important to point out that Marcinkiewicz's proof, in contrast to Thorin's, is 
distinctly ra*/-variable in character, and depends on an adroitly chosen decom­
position, by truncation, of a function into its "large" and "small" parts. 

Following Marcinkiewicz's death, in tragic circumstances in the early days of 
the Second World War, the theorem lay dormant for a number of years until 
his former mentor and collaborator, A. Zygmund, published a much expanded 
version in 1956, together with proof and many additional applications. With 
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subsequent refinements due to many mathematicians, the Marcinkiewicz theo­
rem has been firmly established as one of the cornerstones of modern harmonic 
analysis. We mention, in particular, the work of A. P. Calderón which, 
building on earlier results of E. M. Stein and G. Weiss, provides a natural 
formulation of the Marcinkiewicz interpolation theorem in terms of the 
two-parameter family of Lorentz spaces Lpq. This in turn leads to an extensive 
theory of interpolation in rearrangement-invariant Banach function spaces. 

There are, of course, many other types of spaces for which interpolation 
theorems are desirable. The various kinds of spaces of smooth (or analytic) 
functions—Lipschitz spaces, Sobolev spaces, Besov spaces, Hardy spaces, etc. 
—are natural candidates, as indeed are any families of spaces defined in terms 
of one or more parameters. Consolidation of existing results was thus a natural 
next step, and by the late fifties there began to emerge a unified theory of 
interpolation in Banach spaces. 

Central to the theory is the concept of an interpolation method. From each 
couple (X0, Xx) of Banach spaces, an interpolation method constructs a family 
of Banach spaces, say (X0, Xx)d (0 < 6 < 1), for which the interpolation 
property automatically holds. That is to say, if (XQ9 Xx) and (Y0,YX) are any 
two such couples, then every linear operator which is bounded from X0 to Y0 

and from Xx to Yx is to have the property that it be bounded also from 
(X0,Xx)dto(Y0,Yx)e. 

Two such methods are known and widely used. The first, the so-called real 
method (because of its basis in the "splitting" technique used in the proof of 
the Marcinkiewicz interpolation theorem), was devised by E. Gagliardo in 1959 
and subsequently refined into more useable form by J.-L. Lions and J. Peetre. 
The second, based on Thorin's proof of the Riesz-Thorin theorem, was 
developed independently by A. P. Calderón, S. G. Kreïn, and J.-L. Lions 
around 1960 and is referred to as the complex method. A third method, the 
Riesz method, has been developed very recently by J. Peetre and is based on 
Riesz's original, rather mysterious, proof of the original interpolation theorem. 
The implications of this new method are not yet clear and much remains to be 
done. The complex method has also seen radical improvement recently, with 
important new applications, largely due to the efforts of R. Coifman, M. 
Cwikel, R. Rochberg, Y. Sagher, and G. Weiss. 

The methods begin with a couple (X0, Xx) of Banach spaces, that is, a pair 
of Banach spaces each of which is embedded in a suitable larger space (so that 
the sum X0 + Xx and intersection X0 C\ Xx make sense). In the complex 
method, the space (X0, Xx)e is constituted by the values F(6) as F varies over 
the set of (X0 + A^-valued analytic functions in the strip 0 < Rez ^ 1 that 
take values in X0 on the left-hand boundary { / / : -oo<*<oo} and values in 
Xx on the right-hand boundary (1 + it: -oo < t < oo}. In the real method, 
which is most-often exhibited as a two-parameter method, the space (X0, Xx)dq 

(0 < 0 < 1, 1 < # < oo) is determined by imposing appropriate growth condi­
tions on the Peetre K-functional 

K(f, t) = inf (||/0|U0 + /«/JU,) (0 < t < oo) 
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of elements ƒ e l 0 + Xx. Thus ƒ E (X0, Xx)$q if 

is finite. 
The interpolation property is not difficult to prove for either the real or the 

complex method. The real difficulty arises in trying to identify in concrete 
terms the interpolation spaces so-constructed by these methods. In the real 
method, for example, this amounts to identifying the ^-functional, but this has 
been done in many important cases. Thus, for the pair (L1, L°°), the ^-func­
tional is JQf*(s)ds, where/* is the decreasing rearrangement of/. The real 
interpolation spaces are then easily seen to be the Lorentz spaces Lpq so that 
the abstract theory reproduces in this case the classical Marcinkiewicz result. 
The ^-functional for the pair (C, Ck) is essentially the Zcth order modulus of 
continuity so that Lipschitz spaces occur as the real interpolation spaces. 
Similarly, for the pairs (if1, L°°) and (L^BMO), the Â^-functionals are ex­
pressible in terms of the grand maximal function and the Fefferman-Stein 
sharp function, and so on. 

The theory of interpolation methods has become an indispensable tool in 
areas such as partial differential equations, approximation theory, and harmonic 
analysis. The literature is extensive and includes several good books on 
different aspects of the theory. No single work can hope to cover it all and in 
the book under review the authors have concentrated on providing a solid 
introduction to the subject. Applications are confined to the last chapter on 
spaces of smooth functions (contributed by S. G. Kreïn and absent, for 
technical reasons, in the original Soviet edition). 

The functional-analytic foundations of the subject are laid in the first 
chapter. Much of this material was developed originally by N. Aronszajn and 
E. Gagliardo in a more general setting. The authors have done an excellent job 
of distilling this formidable body of material into their concise and readable 
account. 

The second chapter returns to the origins of the subject and develops the 
theory of interpolation on spaces of measurable functions. It contains a 
comprehensive treatment of rearrangements of functions which, although 
omitted in some texts, would seem to us to be essential to any proper 
understanding of the abstract theory. The main interpolation theorems for 
rearrangement-invariant spaces are developed from an analysis of measure-pre­
serving transformations (by contrast, the original work of Calderón proceeded 
by means of a limiting argument from a result of Hardy, Littlewood, and Pólya 
on doubly stochastic matrices), which makes for a cohesive account and one 
which could well become a standard reference for workers in the area. 

The remaining chapters describe in detail the real and complex methods and 
their relationships with the associated idea of a "scale" of spaces. Interesting 
applications are interspersed throughout the book, although, as we have 
mentioned earlier, the main thrust is to provide a thorough introduction to the 
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subject of interpolation itself. The translation is lucid, professionally done, and 
reads well. All in all, the book is a welcome addition to the literature. 
Wordsworth, we are sure, would have approved. 
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Introduction. The Hamilton-Jacobi equation is probably known to most 
engineers and physicists as a partial differential equation which pops up in the 
study of (Lagrangian or Hamiltonian) mechanics, yielding solutions of a 
system of ordinary differential equations, as its characteristics, after a varia­
tional procedure is used. It is also known, again through its relation to the 
calculus of variations, to people studying control theory, differential games, or 
other optimization problems, although it is sometimes referred to as the 
" Bellman equation" in these contexts. 

The last thirty years has seen the rise of a new interest in the Hamilton-Jacobi 
equation. With the rise of computers and new numerical techniques, the failure 
of classical smooth solutions to describe physical situations except in limited 
(local) domains, and the needs of mathematical modeling, aerospace engineer­
ing, and other applications to have solutions described everywhere, many 
mathematicians have become interested in global solutions (whatever that 
means). As nearly the most general first order partial differential equation, and 
as an equation for which global results were possible, the Hamilton-Jacobi 
equation became a natural target for mathematicians studying global solutions. 

In order to clarify the object of interest a little better, let us define the 
Hamilton-Jacobi equation. In its most familiar classical form, the Hamilton-
Jacobi equation is 

U/dt + H(t,x, Du) = 0, 

where H is a given function, called the Hamiltonian, x is in Rn, and Du denotes 
the gradient of the solution, w, with respect to x. Here t is a single variable 
(usually called "time"). The separation of the distinguished variable "f " from 
the gradient, Du, in //, makes the Hamilton-Jacobi equation much easier to 
handle than the general first order equation. The Cauchy (or initial value) 
problem is always noncharacteristic, thus amenable to solution. This same 
separation of t also makes the Hamilton-Jacobi equation essentially an evolu­
tion equation, thus allows a mass of evolution equation techniques to be 
brought to bear. 

The Hamilton-Jacobi equation, as defined by Professor Lions, is 

H(x, w, Du) — 0, 


