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review, is supplemented by 236 pages of appendices that bring the book 
up-to-date, and provide a more systematic treatment of some topics from the 
French version. In summary, the authors have prepared a valuable reference 
for mathematicians and engineers. 
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The book under review belongs to an area which, for want of a better term, I 
shall call one-dimensional function theory. "Function theory" should be 
interpreted here, not in the old sense of the theory of functions of a complex 
variable, but rather in a broader sense encompassing both the analysis of 
functions, holomorphic or not, and the analysis of spaces of functions. The 
settings for one-dimensional function theory are primarily the unit disk and 
the upper half of the complex plane together with their boundaries, the unit 
circle and the real line, respectively. 

One-dimensional function theory is not a branch of mathematics in the way 
that, say, operator theory and low-dimensional topology are. Perhaps it does 
not even deserve a name of its own. The operator theorist seeks to understand 
the structure of operators, the low-dimensional topologist to understand the 
structure of three-dimensional and four-dimensional manifolds. The practi­
tioner of one-dimensional function theory is aware of no comparable ultimate 
goal. This in part reflects the status of one-dimensional function theory as a 
handmaiden of several other, more coherent, disciplines—operator theory, 
theory of Banach spaces and topological vector spaces, prediction theory, 
systems theory, theory of commutative Banach algebras—which it provides 
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with basic tools and examples. Much of the story of one-dimensional function 
theory is in fact the story of the interaction of complex analysis and harmonic 
analysis with these other disciplines. Nevertheless, whether or not the area 
deserves a name of its own, it does possess a soul of its own and a beauty all its 
own. 

The theory began with the thesis of P. Fatou, published in 1906 [1]. Fatou 
established the almost everywhere existence of nontangential boundary values 
for certain classes of harmonic and holomorphic functions in the unit disk, 
setting the stage for the interplay between real and complex analysis. Ten years 
later, F. Riesz and M. Riesz, building on and extending Fatou's results and 
methods, presented their famous theorem on analytic measures: A nonzero 
complex Borel measure on the unit circle whose Fourier coefficients with 
negative indices vanish is mutually absolutely continuous with respect to 
Lebesgue measure [2]. The theorem implies, for example, that the boundary 
values of a nonzero bounded holomorphic function in the unit disk cannot 
vanish on a set of positive measure. 

The spaces Hp were named by F. Riesz in a paper published in 1923 [3]. For 
p > Q,HP is the class of holomorphic functions ƒ in the unit disk that satisfy 
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The "H" was in honor of G. H. Hardy, who, in 1915, had shown that the 
/7-norms appearing in the above supremum increase with r [4]. Riesz estab­
lished a fundamental factorization theorem, showing that an Hp function ƒ can 
be written as bg, where b is a so-called Blaschke product and g is free of zeros. 
The function b is bounded with boundary values of unit modulus (a.e.) while g 
belongs with ƒ to Hp. Riesz used his factorization theorem to obtain simple 
proofs of known and new results. This general Une of investigation, which 
belongs to the theory of the boundary behavior of holomorphic functions, 
developed steadily in the 1920s and 1930s. At the same time another aspect of 
the subject, boundedness theorems, emerged and grew. The theorems of M. 
Riesz [5] and A. N. Kolmogorov [6] on the Lp and weak l) boundedness of the 
conjugation operator appeared in 1924 and 1925, respectively. Hardy and J. E. 
Littlewood introduced their maximal function and applied it to Hp functions 
in 1930 [7]. 

Since about 1950, one-dimensional function theory has been pervaded by 
the viewpoint of abstract analysis. This trend was signaled in 1949 by 
A. Beurling [8] who, using a refinement of F. Riesz's factorization (the 
inner-outer factorization), classified the closed invariant subspaces of the 
unilateral shift operator on the Hubert space H2. It became clear to mathema­
ticians who had been reared on a diet of functional analysis that the spaces Hp 

and their near relatives offer substantial examples and problems to illuminate 
the general theory. 

Here are three samples. 1. One can see from the F. and M. Riesz theorem 
that the Banach space Hl, unlike its father, L1, is a dual space. Therefore, by 
the Krein-Milman theorem, the unit ball of Hl has extreme points. What are 



104 BOOK REVIEWS 

they? 2. The functions that are holomorphic and uniformly continuous in the 
unit disk form a Banach algebra, called the disk algebra, under the supremum 
norm. Can one describe the closed ideals of that algebra? 3. The space H°° of 
bounded holomorphic functions in the unit disk is a Banach algebra under the 
supremum norm. The unit disk is homeomorphically embedded (in an obvious 
way) in the Gelfand space (maximal ideal space) of H°°. Is the unit disk dense 
in the Gelfand space of H°°l Question 1 was raised and answered by 
K. deLeeuw and W. Rudin [9]. They showed that the extreme points of the unit 
ball of Hx are the outer functions of unit norm. Question 2 was answered 
independently by Beurling (unpublished) and Rudin [10]. The description of 
the closed ideals in the disk algebra involves the inner-outer factorization and 
is related to Beurling's H2 invariant subspace theorem. The affirmative answer 
to Question 3 is the famous corona theorem of L. Carleson [11]—more on that 
later. 

The classical results of one-dimensional function theory generalize in diverse 
and sometimes surprising ways. Extensions to one-dimensional domains other 
than the disk came early; already in their 1916 paper, F. and M. Riesz used 
their theorem to extend Fatou's results on nontangential boundary values to 
Jordan domains with rectifiable boundaries. The basic theory for a half-plane 
was worked out in the 1930s by E. Hille and J. D. Tamarkin [12] and others. 
For applications in operator theory, prediction theory and systems theory, one 
needs to extend portions of Hp theory, for example, the inner-outer factoriza­
tion, to vector-valued and operator-valued functions. Such extensions, al­
though often by no means routine, have been quite successful [13-15]. At­
tempts to extend the theory to several complex variables, on the other hand, 
have been more tentative, and much remains unknown. The one-dimensional 
theory has pointed to fruitful directions, but the existing one-dimensional 
techniques are often inadequate. 

Large portions of the classical theory of Hardy spaces have been extended to 
the setting of abstract function algebras [16], a development which has consid­
erably enriched the classical theory. The same can be said, even more emphati­
cally, in connection with extensions to Euclidean spaces [17, 18]. Here, the 
classical complex variable techniques are not available, of course; one must 
adopt a thoroughly real variable attitude. Not only have powerful new tech­
niques been invented, but basic new results—new even to the one-dimensional 
theory—have been discovered. 

The F. and M. Riesz theorem typifies this entire area of mathematics. The 
original proof relies upon certain constructions with holomorphic functions. 
The theorem has an alternative formulation: every Hl function is the Poisson 
integral of its boundary function, and, unless the function is identically zero, 
the boundary function is nonzero almost everywhere. F. Riesz's 1923 paper 
contains a proof of this version, involving factorization, which is based on 
completely different ideas from the original proof. The first generalization of 
the theorem I know of, due to S. Bochner, appeared in 1944 [19]; it states that 
a measure on a torus whose Fourier coefficients are confined to an octant is 
absolutely continuous with respect to Lebesgue measure. The proof depends on 
one of the Hardy-Littlewood maximal theorems and specializes to a proof of 
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the original theorem different from the two already mentioned. In 1958, 
H. Helson and D. Lowdenslager published an influential paper [20] in which 
they extended much of the classical Hp theory to the context of compact 
Abelian groups with ordered duals; their techniques are from real variables 
and elementary Hubert space theory. In particular, their paper contains a 
version of the F. and M. Riesz theorem from which one can deduce Bochner's 
version. A new proof of the original F. and M. Riesz theorem results which is 
totally different from any of its predecessors—even more different from them 
than they are from each other. The new proof can be rephrased in a way that 
makes the Riesz theorem depend on elementary properties of unitary operators 
[21]. In 1963, F. Forelli [22] presented a proof of the Helson-Lowdenslager 
theorem which is close in spirit to the original proof of F. and M. Riesz (and to 
a later one of Helson [23]). 

The Helson-Lowdenslager theory evolved during the 1960s into the theory of 
function algebras. During the process of evolution many abstract versions of 
the F. and M. Riesz theorem surfaced and played leading roles. The ultimate 
version, in this direction, is due to I. Glicksberg [24]; its proof is an adaptation 
of Forelli's. In another direction, deLeeuw and Glicksberg extended the 
Helson-Lowdenslager version to a more general group-theoretic context [25], 
and Forelli extended it to dynamical systems [26]. 

There are yet other extensions. For instance, in their 1916 paper, the Riesz 
brothers drew motivation from a geometric consequence of their theorem: on a 
rectifiable Jordan curve in the plane, harmonic measure (evaluated at an 
interior point) and arc length measure are mutually absolutely continuous. 
That result has been extended to bounded Lipschitz domains in Euclidean 
spaces by B. Dahlberg [27]. 

The discussion above affords a too narrow but, I hope, a suggestive glimpse 
of the vast area I am calling one-dimensional function theory. The area is of 
great interest to many mathematicians whose primary focus is elsewhere. 
Others are attracted to it by its intrinsic beauty, a quality that the book under 
review succeeds in conveying. 

The book is concerned with the theory in the unit disk and the upper 
half-plane. The basic earlier results, from Fatou to Beurling, are developed in 
the first three chapters, after which the material comes predominantly from the 
last twenty years. During that time the two deepest and farthest reaching 
results have been Carleson's corona theorem and C. Fefferman's duality 
theorem. 

The corona theorem, that the unit disk is dense in the Gelfand space of H°°9 

has a more concrete formulation: if fl9...9fn are functions in H°° such that 
l /^z) ! + ••• + | /w (z) | is bounded away from 0 for | z | < 1, then /1 ? . . . , /n 

generate H°° as an ideal (that is, there are g\,...,gn in H°° such that 
/i£i + * * * +/«£« ~ !)• This formulation suggests certain interpolation prob­
lems, notably, the problem of characterizing the so-called interpolating se­
quences for H°° (sequences (zn) in the unit disk such that the map f-*(f(zn)) 
from H°° to /°° is onto). The latter problem was solved by Carleson in 1958 
[28]. The heart of Carleson's proof of the corona theorem is a complicated 
construction which produces, for a given function ƒ in H°°, a system of curves 
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surrounding the set where ƒ is small and possessing certain additional proper­
ties. The curves enabled Carleson to solve an interpolation problem D. J. 
Newman had previously shown implies the corona theorem. L. Hörmander [29] 
subsequently introduced a less complicated approach involving the 8-equation 
which evades Newman's argument. It still needs Carleson's construction, 
however. Carleson's construction has found important applications besides the 
corona theorem. Our author was the first person after Carleson to use it in a 
significant way. 

Fefferman's duality theorem [30] identifies the dual of the Hardy space Hx 

as BMO, the space of functions of bounded mean oscillation. (The actual 
statement of the theorem is more precise, of course.) The space H1 here is not 
the one introduced earlier in this review but a real variables version which can 
be defined in Euclidean spaces. The theorem emerged as part of the program 
to extend the classical Hardy space theory to Euclidean spaces and was not 
foreshadowed by any one-dimensional development. Its impact was sudden 
and pervasive. 

The theorems of Carleson and Fefferman are linked through the notion of a 
Carleson measure. A (one-dimensional) Carleson measure is a positive measure 
m on the unit disk (or upper half-plane) with the property that the Poisson 
integral defines a bounded map from Lp of the unit circle (or real line) to 
Lp(m\ 1 <p < oo. Carleson gave a geometric characterization of such mea­
sures. The chief difficulty in Carleson's corona construction derives from the 
requirement that arc length measure on the constructed curves be a Carleson 
measure. By achieving that property, Carleson was able to use the curves to 
make certain estimates needed to solve Newman's interpolation problem. 
Hörmander's approach to the corona theorem is based on a connection 
between Carleson measures and the existence of bounded solutions of 8-
equations. In Fefferman's theorem, Carleson measures come up in a char­
acterization of BMO functions. Insight into the relation between Carleson's 
theorem and Fefferman's enabled T. Wolff in 1979 to devise a proof of 
Carleson's theorem (actually, of a refinement of it) which avoids the Carleson 
construction. 

Garnett's book contains thorough and very informative chapters on BMO 
and on the corona theorem. The former chapter contains not only Fefferman's 
theorem and the needed preliminaries but many of the theorem's ramifications 
as well. The latter chapter presents both Wolff's proof and, in very understand­
able fashion, the original Carleson construction. The book contains much else 
besides—interpolation problems, a little on abstract function algebras, a great 
deal on concrete function algebras, properties of the conjugation operator, and 
approximation problems are some of the other ingredients. I refer the reader to 
my review in Mathematical Reviews for a more systematic outline of the 
contents. 

The book of Garnett is not an exhaustive account of one-dimensional 
function theory; no reasonably sized book could be. Its most noticeable lack is 
in the direction of operator theory. Within its scope, however, it pursues the 
subject to considerable depth. Real variable methods, emphasizing the role of 
maximal functions, are employed whenever possible, so the book should be 
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especially useful to someone intending to pursue the theory in higher dimen­
sions. The style, while perhaps a little mechanical and curt, is nevertheless clear 
and precise. The author has exercised great care in presenting the material and 
has restructured many a proof into more understandable form. I can highly 
recommend the book as an excellent source for many of the deeper advances in 
one-dimensional function theory during the past two decades. (The beginner in 
the subject, though, will probably appreciate a more leisurely introduction; for 
that I recommend the recent book of P. Koosis [31].) 

To repeat myself, many pursue one-dimensional function theory for its own 
sake while many are attracted there initially due to the demands of some other 
specialty. Both parties will find much of value in Garnett's book. 
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Winning ways is a masterpiece. We should have been disappointed were it 
anything less. Fifteen years in the preparation, and representing the collabora­
tion of three mathematicians of extraordinary talent, the result is the most 
compelling and comprehensive treatment of mathematical games to appear in 
this century. 

First, an enumeration of some of the things which this book is not. It has an 
empty intersection with " the Theory of Games" in the sense of von Neumann 
and Morgenstern [6]. More generally, it avoids discussion of "games" in which 
randomizing elements (the roll of dice, the shuffling of cards, the spinning of 
discs, or other methods of selecting a "move" in a stochastic fashion) play any 
role. This leaves full information, "deterministic" games such as chess, check­
ers (draughts), and Go, in which two players move alternately. However, these 
three examples of games actually played by adult humans are far too com­
plicated to be analyzed in Winning ways. 

Winning ways is published in two volumes. The first volume (WWI) is 
subtitled Games in general, while the second (WWII) is subtitled Games in 
particular. Each volume in turn consists of two parts. The four parts are 
associated successively with Spades, Hearts, Clubs, and Diamonds, but this has 
no underlying significance, and is for identification purposes only. 

"Spade-work" (the first eight chapters) develops the generalized theory for 
analyzing and evaluating Nim-Hke games. The published analysis of Nim itself 
[1] goes back to C. L. Bouton in 1902. In 1939, P. M. Grundy [5] published a 
method for the recursive evaluation of positions in a relatively large class of 
Nim-like games, and this evaluation function for such a game became known 


