
BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 7, Number 3, 1982 

RESEARCH ANNOUNCEMENTS 

A NONLINEAR PARTIAL DIFFERENTIAL EQUATION 
AND THE UNCONDITIONAL CONSTANT 

OF THE HAAR SYSTEM IN LP 

BY D. L. BURKHOLDER1 

1. Introduction. Our aim here is to identify the best constant in an 
inequality (see Theorem 1) that has proved useful in the study of singular 
integrals, stochastic integrals, the structure of Banach spaces, and in several 
other areas of study. Our work yields the unconditional constant of the Haar 
system in LP(0,1) and rests partly on solving the nonlinear partial differential 
equation 
(1) (p- l)[yFy - xFx]Fyy - [{p - l)Fy - xFxy]

2 + x2FxxFyy = 0 

for F nonconstant and satisfying other conditions on a suitable domain of R2. 
We assume throughout that 1 < p < oo and write LP for the real Lebesgue 

space LP(0,1). The unconditional constant Kp(e) of a sequence e = (ei, e2,...) 
in LP is the least K e [ l , +oo] with the property that if n is a positive integer 
and o i , . . . ,a n are real numbers such that || Y*k=iafcefc||p = 1, then 

I n I 
\J2 ekak^k\ 
l*-l lip 

for all choices of signs €& G {—1,1}. The sequence e is a basis of Lp if, for 
every ƒ G LP, there is a unique sequence o such that || ƒ — ]Cfc=i ak^k\\p —• 0 as 
n —• oo. A sequence d = (di ,^, . . . ) in LP is a martingale difference sequence 
if dn+i is orthogonal to <p(dii...idn) for all bounded continuous functions 
<p: Rn - • Rand all n > l . 

The Haar system h = (fei,/i2,...) is both a basis of Lv (Schauder [11]) 
and a martingale difference sequence: /in+i is supported by a set on which 
p(/ii,. . . ,/in) is constant. By an inequality of Paley (see [10 and 6]), its 
unconditional constant Kp(h) is finite. More generally [2], supd Kp(d) is finite 
where the supremum is taken over all martingale difference sequences d in Lp. 
In fact, if d is a martingale difference sequence and e is a basis of Lp, then 
(2) Kp{d)<Kp(h)<Kp(e). 

The right-hand side of (2) is due to 01evskiï[8, 9] and the left-hand side to 
Maurey [7]. Lindenstrauss and Peîczynski [5] have an alternative approach to 
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the right-hand side via Liapounoff's theorem on the range of a vector measure. 
An alternative proof of the left-hand side follows easily from a result of Aldous 
[1]; also see [4]. 

Let p* = p V p', the maximum of p and p', where 1/p + 1/p' = 1. 

THEOREM 1. The inequality 

(3) £ € * d * < ( P * - I ) 
n 

/lo/ck /or all martingale difference sequences d in LP, 6k € {—1,1}, and n > 1. 
The constant p* — 1 is best possible. Furthermore, strict inequality holds in (3) 
if and only ifp ^ 2 and || £ £ = 1 dfc||p > 0. 

Apart from the best constant, inequality (3) was first proved for the special 
case dk = akhk by Paley [10] and, for all martingale difference sequences d, by 
the author in [2], where it was also shown that the numbers €& may be replaced 
by measurable functions Vk with values in [—1,1] for those d for which dk+i 
is orthogonal to every bounded continuous function of v\}..., v^+i, d\,..., dk-
The inequality then holds with the same constant [3]. 

COROLLARY 1. The unconditional constant of the Haar system in LP is 
given by 

(4) Kp(h) = p*-1. 

2. Sketch of the proof of Theorem 1. Consider the domain 

\x — y\P n = |(x,2/,*)GR3:|^|P<tJ, 

with boundary 3fi, and note, for example, that the section {(x, t) : (x, y, t) G ft} 
determined by y is convex. The following lemma is an immediate consequence 
of Theorem 3.3 of [3]. 

LEMMA 1. Lfu: ftUdft—>R is continuous, 
(i) for all y£R, the mapping (x, t) —• u(x, y, t) is convex on the section of ft 

determined by y, 
(ii) for all xGR, the mapping (y, t) —• u(x, y, t) is convex on the section of ft 

determined by x, and 
(iii) forall(x,yyt)edft, 

x + y 

then 

"(0,0,1) 
1 n 1 
L C CfcCk 
|fc=i 

ip 1 

< 
ip 1 

l n l 
i> \k=i 1 
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Here we seek the greatest function u satisfying the conditions of this lemma. 
Such a function does exist and must also satisfy the symmetry property 

u{x, y, t) = u(y, x, t) = u(-x, - y , t) 

and the homogeneity property 

u{x, y, t) = X~pu(Xx, Xy, Xp£), X > 0. 

Therefore, if F(x, y) = u(x, yf 1) and (x, yy t) € 0, then 

(5) u(x,y,t) = tF(xt-1/p,2/t-1/P). 

Now suppose that u is twice continuously differentiable on a neighborhood 
of some point (xo,2/o>l) € 0. Then (i) and (ii) imply that, on the same 
neighborhood, uxx > 0, uyy > 0, utt > 0, uxxutt - u^t > 0, and uyyUtt — u2

yt > 
0. These lead, by (5), to the following system of differential inequalities for F 
on a neighborhood of (xo,2/o)-

(6) Fxx > 0, 

(7) Fyy > 0, 

(8) x2Fxx + 2xyFxy + y2Fyy - (p - l)[xFx + yFy] > 0, 

(9) (p - l)[xFx - yFy)Fxx - [(p - 1)FX - yFxy]
2 + 2/2Fxxi^y > 0, 

(10) (p - l)[yFy - xF s]Fw - [(p - l)Fy - xFX2/]
2 + x2FxxFyy > 0. 

The maximality of u also implies that 

|x + 
(11) F(x,2/) = (x ,y )€3A 

where D = {(x,y): |x — y| < 2}, and suggests that, on some subdomains of 
D, equality should hold in at least one of the above differential inequalities, 
which one depending upon the subdomain. 

Additional study leads to the consideration of the differential equation (1) 
on the subdomain 

(12) {(x, y) € D: x > 0, (1 - 2/p)x < y < x}. 

The key step is to solve equation (1) on (12) for a function F in harmony with 
the boundary condition (11) and the other requirements of our problem. 

Equation (1) has the following solution on (12): 

(13) F = (w-lf 

where w > p is the unique solution to 

(14) xp[l - p(x - y)/2x] + pwp-x - wp = 0. 

If 1 < p < 2, this function F not only satisfies (10) with equality on the 
subdomain (12) but also satisfies (6)-(9) there. 
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On the subdomain 

(15) {(x, y)£D:x>0,-x<y<(l- 2/p)x}, 

the differential equations corresponding to (8)-(10) have the solution 

(16) F(x,y) = x + y 1 - \x — y\p 

(p-iy. 
If 1 < P < 2, then (6) and (7) are also satisfied on (15). 

LEMMA 2. Let 1 < p < 2 and u be the continuous function on Q U dQ 
satisfying (5) on Q where F is the continuous function on D given by (13) on the 
subdomain (12), by (16) on (15), and satisfying F(x, y) = F(y, x) = F(—x, —y) 
on D. Then u satisfies the conditions of Lemma 1 and is, in fact, the greatest 
such function. 

In particular, u(0,0,1) = (p — l)p so that, by Lemma 1, 

1 n 

\\^2 ekdk\ 
l l f c = l 1 

< 
\p 1 

1 n 1 

E* |fc=i | 
( p - l ) 

Using the identity (p — l)(p' — 1) = 1, we obtain 

<(p'-i)i Ed* 
fc=l 

which is the inequality of Theorem 1 in the case 1 < p < 2. The case 2 < p < oo 
follows by duality [2]. 

To see that the constant p* — 1 is best possible, consider the following 
example. Let 1 < p < 2 and x > 0. Let w > p satisfy xp + pwp~~1 — wp = 0. 
Set 0 = 1 - 1/w = 1/w' and 

wS 
& = ! - • * > 1 , x-f k6' 

where 0 < 6 < x/w. Using the same notation for an interval [a, 6) and its 
characteristic function, set 

<*i = x[0,l), 
d2 = ô[0,/31) + [0(x + 6)-x}[p1,l), 

d3 = «[0, /3i/3a) + [*(* + 26) - (x + (5)] [ft/fc, ft), 

and so forth. Then 

and 

lim lim lim 
x—+0 6—>0n—KX> 

lim lim lim 
x—*0 6—•O n—*oo 

| f c = l 1 

II n 1 
Ed* 

||fc=i 
\p 

= 1 

p - l . 

For the complete proof of Theorem 1 and the study of related inequalities 
and boundary value problems, see [4]. 
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