# RESEARCH ANNOUNCEMENTS 

# A NONLINEAR PARTIAL DIFFERENTIAL EQUATION AND THE UNCONDITIONAL CONSTANT <br> OF THE HAAR SYSTEM IN $L^{p}$ 

BY D. L. BURKHOLDER ${ }^{1}$

1. Introduction. Our aim here is to identify the best constant in an inequality (see Theorem 1) that has proved useful in the study of singular integrals, stochastic integrals, the structure of Banach spaces, and in several other areas of study. Our work yields the unconditional constant of the Haar system in $L^{p}(0,1)$ and rests partly on solving the nonlinear partial differential equation

$$
\begin{equation*}
(p-1)\left[y F_{y}-x F_{x}\right] F_{y y}-\left[(p-1) F_{y}-x F_{x y}\right]^{2}+x^{2} F_{x x} F_{y y}=0 \tag{1}
\end{equation*}
$$

for $F$ nonconstant and satisfying other conditions on a suitable domain of $\mathbf{R}^{2}$.
We assume throughout that $1<p<\infty$ and write $L^{p}$ for the real Lebesgue space $L^{p}(0,1)$. The unconditional constant $K_{p}(e)$ of a sequence $e=\left(e_{1}, e_{2}, \ldots\right)$ in $L^{p}$ is the least $K \in[1,+\infty]$ with the property that if $n$ is a positive integer and $a_{1}, \ldots, a_{n}$ are real numbers such that $\left\|\sum_{k=1}^{n} a_{k} e_{k}\right\|_{p}=1$, then

$$
\left\|\sum_{k=1}^{n} \epsilon_{k} a_{k} e_{k}\right\|_{p} \leq K
$$

for all choices of signs $\epsilon_{k} \in\{-1,1\}$. The sequence $e$ is a basis of $L^{p}$ if, for every $f \in L^{p}$, there is a unique sequence $a$ such that $\left\|f-\sum_{k=1}^{n} a_{k} e_{k}\right\|_{p} \rightarrow 0$ as $n \rightarrow \infty$. A sequence $d=\left(d_{1}, d_{2}, \ldots\right)$ in $L^{p}$ is a martingale difference sequence if $d_{n+1}$ is orthogonal to $\varphi\left(d_{1}, \ldots, d_{n}\right)$ for all bounded continuous functions $\varphi: \mathbf{R}^{n} \rightarrow \mathbf{R}$ and all $n \geq 1$.

The Haar system $h=\left(h_{1}, h_{2}, \ldots\right)$ is both a basis of $L^{p}$ (Schauder [11]) and a martingale difference sequence: $h_{n+1}$ is supported by a set on which $\varphi\left(h_{1}, \ldots, h_{n}\right)$ is constant. By an inequality of Paley (see [ 10 and 6]), its unconditional constant $K_{p}(h)$ is finite. More generally [2], $\sup _{d} K_{p}(d)$ is finite where the supremum is taken over all martingale difference sequences $d$ in $L^{p}$. In fact, if $d$ is a martingale difference sequence and $e$ is a basis of $L^{p}$, then

$$
\begin{equation*}
K_{p}(d) \leq K_{p}(h) \leq K_{p}(e) \tag{2}
\end{equation*}
$$

The right-hand side of (2) is due to Olevskir $[8,9]$ and the left-hand side to Maurey [7]. Lindenstrauss and Pełczyński [5] have an alternative approach to

[^0]the right-hand side via Liapounoff's theorem on the range of a vector measure. An alternative proof of the left-hand side follows easily from a result of Aldous [1]; also see [4].

Let $p^{*}=p \vee p^{\prime}$, the maximum of $p$ and $p^{\prime}$, where $1 / p+1 / p^{\prime}=1$.
THEOREM 1. The inequality

$$
\begin{equation*}
\left\|\sum_{k=1}^{n} \epsilon_{k} d_{k}\right\|_{p} \leq\left(p^{*}-1\right)\left\|\sum_{k=1}^{n} d_{k}\right\|_{p} \tag{3}
\end{equation*}
$$

holds for all martingale difference sequences $d$ in $L^{p}, \epsilon_{k} \in\{-1,1\}$, and $n \geq 1$. The constant $p^{*}-1$ is best possible. Furthermore, strict inequality holds in (3) if and only if $p \neq 2$ and $\left\|\sum_{k=1}^{n} d_{k}\right\|_{p}>0$.

Apart from the best constant, inequality (3) was first proved for the special case $d_{k}=a_{k} h_{k}$ by Paley [10] and, for all martingale difference sequences $d$, by the author in [2], where it was also shown that the numbers $\epsilon_{k}$ may be replaced by measurable functions $v_{k}$ with values in $[-1,1]$ for those $d$ for which $d_{k+1}$ is orthogonal to every bounded continuous function of $v_{1}, \ldots, v_{k+1}, d_{1}, \ldots, d_{k}$. The inequality then holds with the same constant [3].

Corollary 1. The unconditional constant of the Haar system in $L^{p}$ is given by

$$
\begin{equation*}
K_{p}(h)=p^{*}-1 \tag{4}
\end{equation*}
$$

2. Sketch of the proof of Theorem 1. Consider the domain

$$
\Omega=\left\{(x, y, t) \in \mathbf{R}^{3}:\left|\frac{x-y}{2}\right|^{p}<t\right\}
$$

with boundary $\partial \Omega$, and note, for example, that the section $\{(x, t):(x, y, t) \in \Omega\}$ determined by $y$ is convex. The following lemma is an immediate consequence of Theorem 3.3 of [3].

LEMMA 1. If $u: \Omega \cup \partial \Omega \rightarrow \mathbf{R}$ is continuous,
(i) for all $y \in \mathbf{R}$, the mapping $(x, t) \rightarrow u(x, y, t)$ is convex on the section of $\Omega$ determined by $y$,
(ii) for all $x \in \mathbf{R}$, the mapping $(y, t) \rightarrow u(x, y, t)$ is convex on the section of $\Omega$ determined by $x$, and
(iii) for all $(x, y, t) \in \partial \Omega$,

$$
u(x, y, t) \leq\left|\frac{x+y}{2}\right|^{p}
$$

then

$$
u(0,0,1)\left\|\sum_{k=1}^{n} \epsilon_{k} d_{k}\right\|_{p}^{p} \leq\left\|\sum_{k=1}^{n} d_{k}\right\|_{p}^{p}
$$

Here we seek the greatest function $u$ satisfying the conditions of this lemma. Such a function does exist and must also satisfy the symmetry property

$$
u(x, y, t)=u(y, x, t)=u(-x,-y, t)
$$

and the homogeneity property

$$
u(x, y, t)=\lambda^{-p} u\left(\lambda x, \lambda y, \lambda^{p} t\right), \quad \lambda>0 .
$$

Therefore, if $F(x, y)=u(x, y, 1)$ and $(x, y, t) \in \Omega$, then

$$
\begin{equation*}
u(x, y, t)=t F\left(x t^{-1 / p}, y t^{-1 / p}\right) \tag{5}
\end{equation*}
$$

Now suppose that $u$ is twice continuously differentiable on a neighborhood of some point $\left(x_{0}, y_{0}, 1\right) \in \Omega$. Then (i) and (ii) imply that, on the same neighborhood, $u_{x x} \geq 0, u_{y y} \geq 0, u_{t t} \geq 0, u_{x x} u_{t t}-u_{x t}^{2} \geq 0$, and $u_{y y} u_{t t}-u_{y t}^{2} \geq$ 0 . These lead, by (5), to the following system of differential inequalities for $F$ on a neighborhood of $\left(x_{0}, y_{0}\right)$ :

$$
\begin{gather*}
F_{x x} \geq 0,  \tag{6}\\
F_{y y} \geq 0,  \tag{7}\\
x^{2} F_{x x}+2 x y F_{x y}+y^{2} F_{y y}-(p-1)\left[x F_{x}+y F_{y}\right] \geq 0,  \tag{8}\\
(p-1)\left[x F_{x}-y F_{y}\right] F_{x x}-\left[(p-1) F_{x}-y F_{x y}\right]^{2}+y^{2} F_{x x} F_{y y} \geq 0,  \tag{9}\\
(p-1)\left[y F_{y}-x F_{x}\right] F_{y y}-\left[(p-1) F_{y}-x F_{x y}\right]^{2}+x^{2} F_{x x} F_{y y} \geq 0 . \tag{10}
\end{gather*}
$$

The maximality of $u$ also implies that

$$
\begin{equation*}
F(x, y)=\left|\frac{x+y}{2}\right|^{p}, \quad(x, y) \in \partial D \tag{11}
\end{equation*}
$$

where $D=\{(x, y):|x-y|<2\}$, and suggests that, on some subdomains of $D$, equality should hold in at least one of the above differential inequalities, which one depending upon the subdomain.

Additional study leads to the consideration of the differential equation (1) on the subdomain

$$
\begin{equation*}
\{(x, y) \in D: x>0,(1-2 / p) x<y<x\} . \tag{12}
\end{equation*}
$$

The key step is to solve equation (1) on (12) for a function $F$ in harmony with the boundary condition (11) and the other requirements of our problem.

Equation (1) has the following solution on (12):

$$
\begin{equation*}
F=(w-1)^{p} \tag{13}
\end{equation*}
$$

where $w>p$ is the unique solution to

$$
\begin{equation*}
x^{p}[1-p(x-y) / 2 x]+p w^{p-1}-w^{p}=0 . \tag{14}
\end{equation*}
$$

If $1<p \leq 2$, this function $F$ not only satisfies (10) with equality on the subdomain (12) but also satisfies (6)-(9) there.

On the subdomain

$$
\begin{equation*}
\{(x, y) \in D: x>0,-x<y<(1-2 / p) x\} \tag{15}
\end{equation*}
$$

the differential equations corresponding to (8)-(10) have the solution

$$
\begin{equation*}
F(x, y)=\left|\frac{x+y}{2}\right|^{p}+\left[1-\left|\frac{x-y}{2}\right|^{p}\right](p-1)^{p} . \tag{16}
\end{equation*}
$$

If $1<p \leq 2$, then (6) and (7) are also satisfied on (15).
Lemma 2. Let $1<p \leq 2$ and $u$ be the continuous function on $\Omega \cup \partial \Omega$ satisfying (5) on $\Omega$ where $F$ is the continuous function on $D$ given by (13) on the subdomain (12), by (16) on (15), and satisfying $F(x, y)=F(y, x)=F(-x,-y)$ on $D$. Then $u$ satisfies the conditions of Lemma 1 and is, in fact, the greatest such function.

In particular, $u(0,0,1)=(p-1)^{p}$ so that, by Lemma 1,

$$
(p-1)\left\|\sum_{k=1}^{n} \epsilon_{k} d_{k}\right\|_{p} \leq\left\|\sum_{k=1}^{n} d_{k}\right\|_{p}
$$

Using the identity $(p-1)\left(p^{\prime}-1\right)=1$, we obtain

$$
\left\|\sum_{k=1}^{n} \epsilon_{k} d_{k}\right\|_{p} \leq\left(p^{\prime}-1\right)\left\|\sum_{k=1}^{n} d_{k}\right\|_{p},
$$

which is the inequality of Theorem 1 in the case $1<p \leq 2$. The case $2<p<\infty$ follows by duality [2].

To see that the constant $p^{*}-1$ is best possible, consider the following example. Let $1<p \leq 2$ and $x>0$. Let $w>p$ satisfy $x^{p}+p w^{p-1}-w^{p}=0$. Set $\theta=1-1 / w=1 / w^{\prime}$ and

$$
\beta_{k}=1-\frac{w \delta}{x+k \delta}, \quad k \geq 1
$$

where $0<\delta<x / w$. Using the same notation for an interval $[a, b)$ and its characteristic function, set

$$
\begin{aligned}
& d_{1}=x[0,1) \\
& d_{2}=\delta\left[0, \beta_{1}\right)+[\theta(x+\delta)-x]\left[\beta_{1}, 1\right) \\
& d_{3}=\delta\left[0, \beta_{1} \beta_{2}\right)+[\theta(x+2 \delta)-(x+\delta)]\left[\beta_{1} \beta_{2}, \beta_{1}\right)
\end{aligned}
$$

and so forth. Then

$$
\lim _{x \rightarrow 0} \lim _{\delta \rightarrow 0} \lim _{n \rightarrow \infty}\left\|\sum_{k=1}^{n}(-1)^{k} d_{k}\right\|_{p}=1
$$

and

$$
\lim _{x \rightarrow 0} \lim _{\delta \rightarrow 0} \lim _{n \rightarrow \infty}\left\|\sum_{k=1}^{n} d_{k}\right\|_{p}=p-1
$$

For the complete proof of Theorem 1 and the study of related inequalities and boundary value problems, see [4].

## References

1. D. J. Aldous, Unconditional bases and martingales in $L_{p}(F)$, Math. Proc. Cambridge Philos. Soc. 85 (1979), 117-123.
2. D. L. Burkholder, Martingale transforms, Ann. Math. Statist. 37 (1966), 1494-1504.
3. $\qquad$ , A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional, Ann. Probab. 9 (1981), 997-1011.
4. _, Boundary value problems and sharp inequalities for martingale transforms, Ann. Probab. (to appear).
5. J. Lindenstrauss and A. Pelczyriski, Contributions to the theory of the classical Banach spaces, J. Funct. Anal. 8 (1971), 225-249.
6. J. Marcinkiewicz, Quelques théorèmes sur les séries orthogonales, Ann. Soc. Polon. Math. 16 (1937), 84-96.
7. B. Maurey, Système de Haar, Séminaire Maurey-Schwartz (1974-1975), Ecole Polytechnique, Paris, 1975.
8. A. M. OlevskiY, Fourier series and Lebesgue functions, Uspehi Mat. Nauk 22 (1967), 237-239. (Russian)
9. ___, Fourier series with respect to general orthogonal systems, Springer-Verlag, New York-Heidelberg-Berlin, 1975.
10. R. E. A. C. Paley, A remarkable series of orthogonal functions. I, Proc. London Math. Soc. 34 (1932), 241-264.
11. J. Schauder, Eine Eigenschaft des Haarschen Orthogonaloystems, Math. Z. 28 (1928), 317-320.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS 61801


[^0]:    Received by the editors June 30, 1982.
    1980 Mathematics Subject Classification. Primary 46E30, 60G46; Secondary 35C05.
    Key words and phrases. Haar system, unconditional constant, basis, martingale difference sequence, nonlinear partial differential equation.
    ${ }^{1}$ This work was supported in part by a grant from the National Science Foundation.

