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Introduction. In his book Bases in Banach spaces. II (BBS II), Ivan Singer 
takes all knowledge of bases and their generalizations to be his province. More 
precisely, he states in the preface that "this volume attempts to present the 
results known today on generalizations of bases in Banach spaces and some 
unsolved problems concerning them". Bases in Banach spaces. I (BBS I) was 
published in 1970 and BBS II in 1981. During the writing of these books, basis 
theory and its generalizations began to develop very rapidly. The task of the 
author became not that of describing a theory already essentially developed, 
but of presenting a theory in a very rapid state of development. Thus, in order 
to achieve his goal of a complete account of basis theory, its generalizations, 
and its applications, Ivan Singer is working on a third volume on applications, 
bases in concrete spaces, and perhaps some loose ends. 

The book under review, BBS II, is encyclopaedic (at the Banach space level) 
with respect to its subject. It consists of twenty-one sections plus a section 
entitled Notes and remarks. The review will discuss the section on the solution 
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of the basis problem and the section on basic sequences separately. The 
remaining nineteen sections of the book are on the known generalizations of 
bases. From these nineteen sections the reviewer will extract only one of 
several possible themes for discussion, namely: What are some of the main 
generalizations of bases that have arisen over the years, how general are they, 
and how are they related to one another? 

The basis problem. Recall that a (Schauder) basis of an infinite dimensional 
Banach space (5-space) E is a sequence {xn} in E such that, for each x in E, 
there exists a unique sequence of scalars {at} such that x = 2*Lj atxi9 conver­
gence in the norm topology. For almost forty years the question of Banach ([2], 
1932), "Does every separable B-space possess a basis?" stood open. A 5-space 
E is said to have the approximation property if the identity operator on E can 
be approximated uniformly on every compact subset of E by continuous linear 
operators of finite rank. If each of the above continuous linear operators has 
norm no greater than some positive number À, the space E is said to have the 
bounded approximation property. When P. Enflo ([10], 1973) showed the ex­
istence of a separable reflexive 2?-space without the approximation property he 
also settled the basis problem in the negative. Enflo's result and his methods 
inspired a flow of papers on separable ^-spaces which fail to have the 
approximation property. BBS II begins with a section zero which gives two 
different proofs of the Pelczynski-Figiel ([29], 1973) theorem on the existence 
of subspaces of c0 and lp (2 < p < oo) which fail to have the approximation 
property. These proofs are refinements of the proofs of Figiel [11] and Davie 
([5], 1973), respectively. Section zero ends with the Lindenstrauss-James ([24], 
1971) example of a 5-space E with a basis whose dual space E* is separable 
but does not have the approximation property. This example is used later to 
construct the decisive example of Figiel and Johnson ([12], 1973) of a separable 
5-space with the approximation property but without the bounded approxima­
tion property. Thus there are separable ^-spaces with the approximation 
property which do not possess a basis. Singer's detailed and clear exposition of 
the proofs of the results mentioned above together with his copious notes and 
remarks on these outstanding achievements are a valuable contribution to the 
literature. 

Basic sequences. The negative solution of the basis problem not only 
stimulated research on bases but also provided motivation for studying their 
generalizations. The first of these is that of basic sequence. A sequence {xn} in 
a Banach space is a basic sequence if it is a basis of its closed linear span [xn]. 
Banach ([2], 1932) observed without proof that such sequences exist in every 
Z?-space. Recall that a basis is unconditional if the series's convergence in the 
expansion of each element is unconditional. Bessaga and Pelczynski ([4], 1958) 
asked the question, "Do unconditional basic sequences exist in every Z?-space?" 
This remains as probably the most important of the open questions in basis 
theory. A related question which goes back to Banach's book is: "Does every 
infinite dimensional #-space have a subspace isomorphic to either c0 or lp, for 
some 1 ^ p < oo?" Since c0 and the / spaces have unconditional bases, a 
positive solution to this question would have provided a positive solution to 
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the existence of unconditional basic sequences. However, Tsirelson ([37], 1974) 
gives an example of a reflexive 5-space which contains no subspace isomorphic 
to c0 or lp, 1 <p < oo. In contrast to our ignorance about the existence of 
unconditional basic sequences, it was shown by Pelczynski and Singer ([30], 
1964) that every 5-space with a basis has a conditional basis and from this it 
follows that every 5-space contains a conditional basic sequence. 

Bessaga and Peîczynski ([3], 1958) wrote a pioneering paper in which 
sufficient conditions are given for a sequence in a i?-space E to contain a basic 
subsequence. Johnson and Rosenthal ([19], 1972) discovered a dual to the main 
result of Bessaga and Pelczyhski. It gives sufficient conditions for a sequence in 
E* to contain a subsequence which is a w*-Schauder basic sequence. Yet 
another interesting existence theorem is due to Davis, Dean, and Lin ([6], 1973) 
who show that for every B-space E there exists a biorthogonal system {xn, ƒ„}, 
({xn} C E, { ƒ„} C E*) such that {xn} is basic in E, {fn} is basic in E* and each 
sequence is norm bounded. Perhaps the most interesting result in this area is due 
to Kadec and Pelczynski ([21], 1965) who showed that a sequence {xn} in a 
B-space contains a basic subsequence if and only if one of the following holds', (i) 
{xn} is not conditionally weakly compact; (ii) 0 is a weak limit point of {xn}. 

Biorthogonal systems. Recall that if E is a 2?-space a biorthogonal system is 
a pair of sequences ({*„}, {ƒ„}), {xn} C E, {fn} C E*9 such that f(xj) = 8iJ91, 
j — 1,2, A sequence {xn} is part of a biorthogonal system if and only if 
xn&[xl9 x 2 , . . . ,x n_ 1 , xn, xn+ ! , . . . ] , n — 1,2,— Such a sequence is called a 
minimal sequence. Minimal sequences exist in every #-space. For a minimal 
sequence {xn} there is a unique sequence of functional (the coefficient 
functional) {fn) which form a biorthogonal pair with {xn} if and only if {xn} 
is complete. In each separable 5-space E, every minimal sequence has an 
extension to a minimal sequence which is complete in E. 

Arsove and Edwards ([1], 1960) called a biorthogonal system [xn9 ƒ„}, 
({xn} C E, {fn} C E*) with {fn) total, a generalized basis of E. A space need 
not be separable to have a generalized basis, e.g. /^ has one. In fact a i?-space 
E has a generalized basis if and only if E* contains a total sequence {fn). 

A biorthogonal system {xn, ƒ„}, ({xn} C E, {fn} C £*) with {xn} complete 
and {ƒ„} total is called an M-basis (Markusevic-basis). Banach ([2], 1932) 
observed, without proof, and Markusevic ([27], 1943) proved that every separa­
ble Z?-space has an M-basis. Banach ([2], 1943) asked if, for every separable 
#-space E9 there exists an M-basis {xni fn) of E such that both {xn} and {fn) 
are norm bounded? This was finally answered in the affirmative by Ovsepian 
and Pelczynski ([28], 1975). With the help of others their result has been 
sharpened to the following: In every separable B-space E and for all e> 0 there 
exists an M-basis {xn} with coefficient functionals {ƒ„} such that sup I \xn II < 1 + 
e and sup 11 /n | | < 1 + e. It is interesting to note that Davis and Johnson ([7], 
1973) have shown that if "M-basis" is replaced above by "complete minimal 
sequence" the conclusion is " | | x j | < 1 -f e and \\fn\\ — 1 for each «". On the 
other hand, Singer ([36], 1971) and Davis and Johnson ([7], 1973) have shown 
that if "M-basis" is replaced by "biorthogonal system {xn9 fn) with {fn) total 
(i.e. {xn, fn) is a generalized basis)" then the conclusion is "lUJI = 1 and 
II fn\\ < 1 +e fo reach«" . 
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An M-basis can be very far from being a basis since every separable 5-space 
has an M-basis but some separable 2?-spaces do not have the approximation 
property. Ruckle ([33], 1970; [34], 1974) has studied three subclasses of 
M-bases, two of which he introduced. An M-basis {JC„} of E with coefficient 
functionals {fn) is strong if for each x G E there is a triangular matrix of 
scalars (Xnm(x)) such that x = Umn2"=iXni(x)fi(x)xi. An M-basis {xn, fn} of 
E is strongly series summable if there exists a triangular matrix (\nm) (indepen­
dent of x) such that x — \m\n

y2Ti^x\nifi{x)xi (x G E). The first notion is due 
to Ruckle and the second to Frink ([13], 1941). Ruckle has introduced a third 
class of M-bases called series summable M-bases which he shows is a subclass 
of the strong M-bases. It is not known whether the classes of strong and 
series-summable M-bases coincide. Ruckle shows that the class of strongly 
series summable M-bases is a proper subclass of the class of series summable 
M-bases. Furthermore he shows that a i?-space, which has a series summable 
basis, has the approximation property. It is not known whether a i?-space with 
a strongly series summable basis has a basis. 

Let T = (tmn) be a consistent infinite matrix. A sequence {xn} in a 2?-space 
£ is a T-basis of E if for every x G E there exists a unique sequence of scalars 
(af) such that the series '2ï?Llaixi is T-summable to x. It is interesting to note 
that Gelbaum ([14], 1950) and Kozlov ([22], 1950) independently introduced 
the notion of T-basis in the same year. Furthermore, every T-basis of a Z?-space 
E is a strong M-basis of E, and every triangular T-basis of a B-space E is a 
strongly series summable M-basis of E. 

A pair of families (xi9 ƒ ) / e / where {xt}ier C E and { f t } i E r C E* is called an 
extended biorthogonal system iif^Xj) = ô/y(/, j G ƒ). An extended M-basis of E 
is an E-complete, total extended biorthogonal system. The results here have 
been interesting and even surprising. On the one hand not every i?-space 
admits an E-complete extended biorthogonal system, e.g., /^ does not. On the 
other hand every 2?-space admits a total extended biorthogonal system. If a 
B-space admits an extended M-basis then it contains no subspace isomorphic 
to /«>(ƒ), / uncountable. It is an open question whether 1^(1) can be replaced 
by /^ in the above. On the positive side, if a 2?-space is weakly compactly 
generated each of its subspaces has an extended M-basis. 

Bases of operators. In the preceding generalizations of the basis concept, 
each element of the space had an expansion but convergence requirements of 
the expansions were relaxed. We now examine generalizations in which each 
element of the space has an expansion which is required to converge to the 
element. For a basis {xn} of E, two sequences of finite rank linear operators 
may be defined: 

Pn:E-*E by Pn(x) = anxn U = 2 * / * i ) a n d 

n 

Sn(x)= 2 i > ( * ) , * G £ , n= 1,2,.... 

Both {Pn} and {Sn} are uniformly bounded sequences of projections satisfying 
ptpj = 8upi = &ijpj a n d s

nSm = SmSn = ^min(„,m), respectively. Furthermore, it 
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is true that x = \imnSn(x) = 2fL\Pi(x), x E E. Various selections of these 
properties have been used as generalizations of the basis concept. 

A sequence of finite rank endomorphisms {un} C L(E, E) is called an 
approximative basis of operators of E if x = lim un(x) (x E: E). Approximative 
bases go back to Banach [2, p. 237] who used "compact operators" instead of 
"finite rank endomorphisms", and he asked whether every separable 2?-space 
admitted such a "generalized" basis. The notion of approximative basis of E 
has an equivalent formulation in terms of a sequence of elements in E and a 
row finite matrix of functional in E*. 

A sequence of nonzero endomorphisms of finite rank {vn} C L(E9 E) is a. 
finite dimensional expansion of the identity IE of E if x — 2 ° ^ vt(x) (x E E). A 
main result of the theory is the following theorem: For a B-space E the 
following are equivalent', (i) E has an approximative basis, (ii) There exists a 
finite dimensional expansion of the identity IE. (iii) E is separable and has the 
bounded approximation property. Coupling this with the fact that there are 
separable ^-spaces without the bounded approximation property it follows 
that there are separable Z?-spaces which do not admit approximative bases. 

Kadec ([20], 1961) calls a complete minimal sequence {xn} in a 2?-space E an 
operational basis of E if there exists a sequence of endomorphisms vn: 
[xl9...9xn] ->[xl9...9xn] such that x = limw vn(2,"=l fi{x)xi) (x E E) where 
{ƒ„} are the coefficient functionals. Kadec ([20], 1961) noted that every 
operational basis of a 5-space E is a norming M-basis of E. Johnson ([18], 
1970) showed that a 2?-space has an operational basis if and only if it has a 
approximative basis. 

Schauder decompositions. An infinite sequence {Gn} of (not necessarily 
closed) linear subspaces of a 5-space E is called a decomposition (or basis of 
subspaces) of E if, for each x E E, there exists a unique sequence {xn}9 

xn E Gn (n = 1,2,...) such that x = 2^=1xw. If each Gn is closed, or, equiva-
lently, if each of the projections Pn{x) — xn (n = 1,2,...) where x = ^<fL\Xi 

(x( E Gt) is continuous, the decomposition is called a Schauder decomposition. 
A finite dimensional decomposition, i.e., one in which each subspace of the 
decomposition has finite dimension, is automatically a Schauder decomposi­
tion. This very natural generalization of the basis concept was introduced by 
M. M. Grindblium ([15], 1950). In the early 1960's Schauder decompositions 
were studied by this reviewer and his doctoral students, Sanders ([35], 1965), 
Retherford ([31], 1966), Ruckle ([32], 1964) and others. Although some nonsep-
arable ^-spaces admit Schauder decompositions it was shown (with partial 
results by Sanders and Retherford) by Dean ([8], 1967) that l^ does not admit 
a Schauder decomposition. Nevertheless this particular generalization of the 
basis concept has proved its importance. There are results in terms of Schauder 
decompositions which do not have analogues for bases or whose analogues for 
bases are not known or are false. For example, an open question for bases is: If 
E is an infinite dimensional separable i?-space, does there exist a subspace F of 
E so that both F and E/F have a basis? Johnson and Rosenthal ([19], 1972) 
have shown that if E is an infinite dimensional separable B-space, there exists a 
subspace F of E such that both F and E/F have a finite dimensional decomposi­
tion. 
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Maddaus ([26], 1938) first generalized the notion of basis by replacing the 
sequence {xn} C E by a function X(t) on some appropriate space T into a 
#-space E and by representing each element x G E as an integral rather than 
the sum of a series. R. E. Edwards ([9], 1960) introduced integral bases of 
inductive limits of Fréchet spaces. Hale ([16], 1969) showed that if a i?-space 
admitted an integral basis in the sense of Edwards then it also possessed a 
Schauder decomposition. Thus we conclude that /^ does not have an integral 
basis. 

If, in the definition of approximative basis of E one replaces the term "finite 
rank endomorphisms" by "finite rank projections" one obtains the definition 
of what Lindenstrauss ([23], 1964) called a H-basis of E. It is not known 
whether a B-space with an approximative basis must also have a Il-basis. 
However, it can be shown that if a i?-space has a n-basis it also has a n-basis 
with the additional property umun — un{n^m). A n-basis with this addi­
tional property is called a ir-basis. Thus a i?-space has a n-basis if and only if 
it has a 7r-basis. Johnson ([17], 1976) called a n-basis {un} of E with the 
additional property that umun — um (m < n) a dual ir-basis. In all three of 
these projection type bases if there exists a positive X such that \\un\\ <X for 
all «, the basis is called a IIA-basis, a 77\-basis, or a dual 7rx-basis. The following 
main theorem connects these concepts. For a B-space E the following statements 
are equivalent: (i) E has a finite dimensional decomposition, (ii) E has a dual 
v-basis, (iii) E is isomorphic to a space which has a Ul+e-basis for each e > 0. 
(iv) E has a IT-basis {un} with the property that unum — umun — uïïûn(^nm), 
n,m—\,2, It is not known whether the word dual may be omitted in the 
above theorem. It is also not known whether a 2?-space with a finite dimen­
sional decomposition must also have a basis. 

Conclusion. Since there exist i?-spaces which do not have integral bases, 
Schauder decompositions, or even extended M-bases and there exist separable 
Z?-spaces which do not possess approximative bases, the quest for more 
effective generalizations continues. Sections seventeen through twenty of BBS 
II describe this quest with topics like transfinite bases, extended approximative 
bases, transfinite Schauder decompositions, and ordinal resolutions of the 
identity. 

BBS I and BBS II by no means exhaust the literature on bases. Singer's 
project will not be complete until BBS III is written. It is to consist of a 
chapter on Applications of bases and their generalizations to the study of Banach 
spaces and a chapter on Bases in concrete spaces. In a sense, the best (that is, 
the applications), has been saved until the last. To mention two such applica­
tions, basis theory played a decisive role in showing that all separable ^-spaces 
are homeomorphic and in showing that if each subspace of a separable 2?-space 
is complemented the space is isomorphic to Hubert space. It also should be 
noted that a considerable body of significant work exists on bases and their 
generalizations in nonlocally convex spaces and in locally convex spaces of 
importance which are not Banach spaces. 

Every expert in basis theory and every student of basis theory should have 
ready access to BBS I and BBS II. They are the most complete reference books 
on the subject. Furthermore, the proofs of theorems have been given in 
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readable detail well within the scope of graduate students. Singer likes proofs. 
He savors them. For some theorems more than one proof is given and in one 
instance three are given. In order to help the student, the necessary tools from 
functional analysis have been carefully explained, either by giving them as 
lemmas with proofs or by giving references to books containing their proofs. 
Theorems are amplified and clarified by copious remarks and examples which 
are usually worked out in detail. In each section, open questions in the theory 
are displayed as problems. At the end of the book is a large, valuable section 
entitled Notes and remarks. The Notes and remarks section gives the author or 
authors of each theorem, remark, example, and problem, except in the numer­
ous cases when the result is due to Singer himself and has not been elsewhere 
published. The Notes and remarks section is used also to present recent results, 
together with their proofs, not included in the text or in numerous cases to 
mention important results which are to be developed in BBS III—promissory 
notes as it were. 

BBS II contains essentially everything known on each subject at the time of 
writing and each of its sections could be made the basis of a special topics 
seminar or course. However, encyclopedias are not good textbooks. A begin­
ning student of basis theory, its generalizations and applications, should have 
access not only to BBS I and BBS II but also to Classical Banach Spaces I 
(CBS I) by Lindenstrauss and Tzafriri ([25], 1977). In CBS I there is an 
excellent, concise selection and presentation of main results on bases and their 
generalizations together with some of their applications. The books BBS (I and 
II) and CBS I nicely supplement each other. The first is complete with respect 
to subject matter, and the proofs are truly accessible to graduate students and 
nonexperts. The second is selective and concise, but the proofs are often 
sketches. 

It is this reviewer's opinion that BBS I and BBS II are a major, even 
monumental, contribution to basis theory and its generalizations. In this 
review it is pointed out how Banach's open questions of fifty years ago have 
directed research and continue to do so. Singer, in taking all basis theory, its 
generalizations, and its applications as his province has achieved an overview 
and understanding of the theory which enables him to see the gaps. He has 
filled in many of these himself and has stimulated other researchers to do 
likewise. In his unique role as scribe for the whole theory he has faithfully 
recorded in BBS I and BBS II open questions that remain. Ivan Singer's efforts 
in the writing of BBS I and BBS II have been a big factor in the acceleration of 
research in this field and the books with their open questions will influence 
research in basis theory for years to come. 
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