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FIXED POINT ALGEBRAS 

BY C. SMORYIsfSKI 

Although self-reference in arithmetic was used to impressive effect by Gödel 
in 1930 (published in 1931) when he noted the sentence asserting its own 
unprovability to be unprovable, and although this use immediately appealed to 
philosophers and philosophical logicians, it has largely been ignored by 
mathematical logicians. Indeed, it is only in the 1970s that arithmetic self-
reference has begun to be systematically studied and applied. One aspect of 
this study is algebraic. 

In simplest terms one can distinguish two types of self-reference—extensional 
and nonextensional. Extensional self-reference lends itself quite readily to 
algebraic description and modelling, with some types of extensional self-
reference even being amenable to algebraic study. The purpose of the present 
paper is to expound upon this algebraic modelling, touching briefly on its 
successes and delineating roughly the limits to this success. The central notion 
of this exposition is that of a fixed point algebra. This notion is a new one—it 
is untested and, hence, of only provisional interest. But it does appear useful: 
It makes the present discussion cohere reasonably well; it provides a conve­
nient framework in which to find and formulate questions about extensional 
self-reference; and it has allowed me to prove a theorem on the limitations of 
the use of finite algebras in studying such self-reference. Moreover, the algebra 
is fairly pleasant and provides a philosophically neutral framework in which to 
discuss arithmetic self-reference. 

While the basic context from which the notion of a fixed point algebra arises 
is logical, the concept itself is algebraic and the following treatment is almost 
entirely algebraic. I have included logical material, including references to 
some rather arcane results of mathematical logic, in the discussion; but I have 
tried to keep this at a minimum. As a consequence, I declare most of the 
present paper accessible to the general mathematician who possesses only a 
small knowledge of boolean algebras. Only the logical asides (on background, 
motivation, and occasional applications) and the section on infinite fixed point 
algebras (for which I possess no nontrivial nonlogical examples) should be 
meaningless to the nonspecialist. [On the other hand, I must admit that, as I 
introduced fixed point algebras to serve as a vehicle for briefly surveying some 
of the algebraic aspects of self-reference in arithmetic, there isn't much left to 
the paper when the logic has been excised.] 

Received by the editors September 15, 1981. 
1980 Mathematics Subject Classification. Primary 03-02, 03GO5; Secondary 03B45, 03F30. 

© 1982 American Mathematical Society 
0273-0979/81/0000-0275/$! 1.00 

317 



318 C. SMORYtiSKI 

In the immediately following section I discuss the logical background to this 
paper and present a formal definition of fixed point algebras. The ensuing 
sections (§§2-5) devote themselves mainly to the study of finite fixed point 
algebras. This study begins with a review of diagonalisable algebras and their 
use in giving a successful analysis of arithmetic provability and ends with the 
Fundamental Theorem of Finite Fixed Point Algebras, which asserts vaguely 
that one cannot do much better. In the final section I make a few remarks 
about infinite fixed point algebras. 

I have benefited both in the research behind and the exposition of the 
present paper by several discussions with D. H. J. de Jongh and D. Myers. 

1. Fixed point algebras. One of the central concerns of logic is the use of 
language in mathematics. Now, languages are given by alphabets, words 
constructed over the alphabets, formulae or sentences constructed from these 
words, etc. In short, languages are largely matters of finite strings of symbols 
and these strings can be put in one-one correspondence with the natural 
numbers—to each formula <p of a given language there corresponds a natural 
number T <pT. It happens that this correspondence can usually be accomplished 
in such a way that natural syntactic properties of qp, \p9 etc., transform to 
natural arithmetic properties of r cp1 , r xp1 , etc. Thus, as Gödel observed, if the 
language contains arithmetic, it is capable of discussing itself. 

As mathematics concerns itself with proofs, mathematical logic concerns 
itself with formal representations of proofs in formal languages. Formal 
theories in languages containing arithmetic which are strong enough to prove 
some basic arithmetic propositions will be strong enough to discuss and 
provably discuss their own syntax. This is what Gödel [9] observed: If T is a 
formal theory containing a sufficient amount of arithmetic (e.g. the logicians' 
favourites: PA (Peano arithmetic), ZF (Zermelo-Fraenkel set theory), GB 
(Gödel-Bernays class theory), and KM (Kelley-Morse class theory)), there is a 
representation Pr r(-) of provability in T, i.e. a formula Prr(t;) with only the 
variable v free such that, for all sentences <p of the language of T, 

(1) 7 > < p = > 7 > P r r ( V ) , 

where the turnstile, I-, denotes provability. 
One further observation yields incompleteness. A basic syntactic operation is 

the substitution of terms for variables. This means that the function taking one 
from rq>v1 and r t1 to r<p/1 can be simulated in the theory T. In particular, 
one can toy with the diagonal function r c p v 1 i -» T y( r yv 1 ) 1 and obtain the 

1.1. DIAGONALISATION LEMMA. Let \pv have only v free. There is a sentence <p 
such that T \- <p «-> *p(r cp1 ). 

PROOF. Let A be the diagonal function and, for Bv — \p(hv), let n = r Ov1 

and <p = On. Then 

Tvy^O^Bv1) ~i//(A( r0ün)) ^xp^Oi'Ov1)1) ^xpi'On1) ~ ; / / ( V ) . 

Q.E.D. 
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1.2. COROLLARY (FIRST INCOMPLETENESS THEOREM). If T is consistent, there 
is a true sentence <p which is not provable in T. In particular, if T is a true theory, 
—,<p is also not provable', i.e. (p is formally undecidable in T. 

PROOF. Choose cp as in the proof of the Diagonalisation Lemma so that 
7> <p «_> -1Pr r(

r cp1 ). Since (p asserts its own unprovability, it suffices to show (p 
to be unprovable. To see this, note 

r h ( p = * r h P r r ( V ) , by( l ) , 

=> T h —i <p, by definition of <p, 

=> T is inconsistent, 

contrary to assumption. Q.E.D. 
Assuming the representation Pr r of provability in T to be especially nice, 

one gets two further interesting corollaries. 

1.3. COROLLARY (SECOND INCOMPLETENESS THEOREM). If T is consistent, 
then T/ConT, where Con r is the assertion, - iPr r (

r0 = l1), that T is consistent. 

1.4. COROLLARY (FIXED POINT CALCULATION). Let Tup *-> - ,Pr r(
r (p"1 ). 

Then T\- q? <-> Con r . 

The particular niceties necessary beyond assumption (1) above are the 
assumptions (2) and (3). 

(2) r h P r r ( r ^ ) A P r r ( r c p - ^ ) - P r r ( r ^ ) , 

(3) r h P r r ( V ) - . P r r ( r P r r ( V ) n ) . 

[Condition (2) is trivially built into a representation; (3), the formalisation of 
(1), requires some strength to establish.] 

PROOF OF 1.3. It suffices to show Tv Con r -* cp for any sentence cp such that 
jThcp *-» - ,Pr r (

r cp1 ). To this end, note that a few applications of (1) and (2) 
yield 

(4) 7 > - ^ < p ~ P r r ( V ) = > 7 > P r r ( r - V ) ~ Pr r(
 r Pr r (

r (p 1 ) 1 ) 

and 

(5) T\-<p A - , ( p - > 0 = 1 ^ r i - P r r ( r ( p 1 ) APr r (
r - 1 (p 1 ) - ^ P r r ( r O = l 1 ) . 

But, by (3), 

which with (4) yields 

7>Pr r (V) -Pr r ( r -V) , 
whence Tv Piy( >" ' ) -* Pr r (

r (p1 ) A Pr r (
r ^cp1 ). But then (5) yields 

2 > P r r ( V ) - , P r r ( r 0 = r ) , 

the contraposition of which yields the Corollary. Q.E.D. 
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PROOF OF 1.4. Again (1) and (2) yield 

7>0 = 1 ^ < p = > r h P r r ( r 0 = r ) - > P r r ( V ) 

for any sentence <p. Thus, Tv - iPr r(
r cp1 ) -» Con r . If one now assumes 7> cp <-> 

- ,Pr r (
r cp1 ), the proof of 1.3 yields the Corollary. Q.E.D. 

The thing to notice about these proofs is that, modulo the derivations of the 
Diagonalisation Lemma and the Derivability Conditions (l)-(3), they are 
fairly algebraic. I don't mean this in a merely heuristic sense—a few simple 
definitions transform these questions and proofs into purely algebraic matters. 

1.5. DEFINITION. Let T be a formal theory. The Lindenbaum algebra of T is 
the algebra AT of equivalence classes of sentences (i.e. formulae with no free 
variables) under the relation of provable equivalence. More precisely, the 
elements of AT are the classes 

[<p] ~ (sentences \p in the language of T: 7> <p <-*\p) 

and the boolean operations are the induced ones, e.g. 

M A [+1 = [<P A * ] , 0 = [<p A _,<p], i = [<p v -.«p]. 

(Note that T is consistent iff 0 ¥= 1 in AT.) 
Using the first two derivability conditions, (1) and (2), we see that Pr r(-) 

preserves equivalence, i.e. 

n - < p ~ ^ 7 > P r r ( r < p n ) ~ P r r ( r f ), 

and so induces an operation T: A T -> AT defined by 

T[<p]=[Prr(V)]. 
The derivability conditions themselves assume an algebraic flavour: 

(1') Tl = 1, 

(2') TX A T(JC -> y) < ry, 

(3') TX < TTX. 

Finally, the Diagonalisation Lemma becomes an assertion about the existence 
of fixed points to special polynomials in T: 

1.6. LEMMA. Every polynomial a(x) over AT in r in which the variable x occurs 
only within the scope of a r possesses a fixed point a E AT: aa = a. 

The notion of polynomial used here is simply that from universal algebra: 
Polynomials are functions arising from constant functions and the identity 
function (represented by the variable x) by means of the boolean operations 
and T. Replacing the identity function as a generator by all polynomials of the 
form r(f$x), where /? is a polynomial, one obtains from the above the subclass 
of all polynomials mentioned in the Lemma. 

The validity of Lemma 1.6 follows from that of the Diagonalisation Lemma 
because occurrences of x inside the scopes of r 's correspond to occurrences of 
<p in contexts of the form Pr r (

r • • • cp • • •1 ), i.e. of the form Pr r( ƒ( r cp1 )). One 
simply pulls the equation x = ax back to an equivalence <p *+ i//(r cp1 ) . 
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Finally, I note the algebraic formulations of Corollaries 1.2-1.4. 

1.2'. COROLLARY. Let a — -^Ta. 

(i)IfO¥= 1 in AT, thenar 1. 
(ii) /ƒ, for all b E AT, rb = 1 implies b = 1, f/*e« -no ^ 1. 

PROOF, (i). Assume a = 1. By (1'), TO = 1. But then a = -,TÛ = -,1 = 0, a 
contradiction, 

(ii) Note 

-,a = 1 = > T O = 1 = * Û = 1 , 

again a contradiction. Q.E.D. 

1.3'. COROLLARY. /ƒ 0 ^ 1 in AT, r0 ^ 0. 

PROOF. Let a — -^ia. Then -,a = Ta and T(-,a) = rra. But -,a = a -» 0 and 
ra ^ TTÖ = T ^ a ) = T(Ö -> 0), whence Ta = ra A T(a -* 0). But Ta A T(a -» 0) 
< T0, i.e. TO < T0. If T0 = 0, then a = -.ra = 1, which fails by 1.2'. Q.E.D. 

1.4'. COROLLARY. 7H ^4r, *ƒ a = -,Ta, then a = -ITO. 

The reader can supply the details. He might also wish to try his hand with 
the following result from [17]. 

1.7. EXERCISE (LOB'S THEOREM). Show that, for all a E AT, r(ra -> a) < ra. 
[HINT. Let b = r(b -» a). Alternatively, use b = rb -* a to show: If Ta < a, 

then a = 1.] 
I do not expect the reader to applaud this as a great algebraic success. 

Indeed, it is not very impressive. But it does raise a few questions—most 
significantly: How far can such simple elementary methods go? Put differently: 
Is there a genuine algebraic aspect to arithmetic self-reference? What types of 
self-reference fall into the algebraic sphere? And, what can or cannot an 
algebraic analysis tell us about self-reference? These are the types of questions 
I would like to address here. At the moment, however, the most fruitful 
question to ask is: What kind of algebra arises from the study of self-reference? 
Or even: What kinds of algebras arise from this study? 

One such type of algebra is a diagonalised algebra: 
1.8. DEFINITION. A structure (A; T), where A is a boolean algebra (whose 

boolean operations we have notationally suppressed), is a diagonalised algebra 
if it satisfies 

( i ) T l = l , 
(ii) for all x9y E A, TX A T(X -* y) < ry, 
(iii) for all x E A,TX < TTX, and 
(iv) every polynomial a(x) in which the variable x occurs only inside the 

scopes of T 's possesses a fixed point a E A : aa — a. 
Diagonalised algebras, introduced by Magari and his followers, largely 

capture the essence of Pr r. It turns out that the diagonalised algebras form an 
equational variety for which both the class of finite algebras and the Linden-
baum algebra (APA; r) are equationally generic. Thus, arithmetic provability is 
amenable to study by finite algebras. 
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The success doesn't end here. Other structures equationally generic for the 
variety of diagonalised algebras are (AZ¥\ T), (AGB\ T), and (AZF; a), where T 
denotes the respective provability operators of AZF and AGB, and a the 
operator 

°[<P] — ["<P is true in all co-models of ZF"]. 

Moreover, other structures are known equationally generic for special subvari-
eties of the variety of diagonalised algebras. Any equationally expressible 
question about these structures is directly algebraically decidable. 

However, the list of known examples of r-operators on Lindenbaum alge­
bras is quite small. A systematic enumeration has yet to be started. Moreover, 
the question of what varieties emerge when such operators are taken two or 
three at a time has not even been addressed. For example, aside from copying 
the T-axioms for each a and r in (AZF; a, T), with a, r as above, and 
strengthening the diagonalisation to allow for fixed points to polynomials in 
which the occurrences of x are split among the scopes of o and T, what new 
equations must be added? The only relation between a and r that comes to 
mind is: TX ^ ox. Is this sufficient? 

In addition to accomplishing all this, one must analyse operators other than 
T-operators. A good candidate for analysis is the operator p on AGB given by 

p[<p] = ["GB + <p is relatively interprétable in GB"]. 

As with any finitely axiomatised theory, over GB relative interpretability is 
something like an infinite disjunction of provability assertions. Can the study 
of (AGB; p) be reduced to the study of finite "multiply diagonalised" algebras 
(A;Tl9...,Tn)by interpreting p as a disjunction of some of the T-operators? 

Finally, there are algebraically meaningful operators on Lindenbaum alge­
bras which are demonstrably not amenable to study by finite algebras. It 
follows for PA, ZF and KM by a result of Orey (cf. [6] and [32]) and for GB by 
a result of Solovay [51] that there are homomorphisms of the Lindenbaum 
algebras definable in the given languages. As we shall see, the corresponding 
algebras, say (AT; JU), are not adequately modelled by any finite algebras. 

The positive approach to the question of delineating the extent of possible 
algebraic success in studying self-reference, in establishing lower bounds to the 
limit of this success as it were, promises to be rather pedestrian in pace: First 
one studies this; then one studies that;... And the list is not short. In any 
event, this success has not yet got very far and there is little, at this point in 
time, to report on about these lower bounds. The opposite question of upper 
bounds brings us back to the question: What algebras arise from the study of 
self-reference? 

1.9. DEFINITIONS. Let Tbe a formal theory. A formula x^ of the language of 
T which possesses only the variable v free is extensional if, for all sentences 

rhcp~^rhX (v)~x( r^). 
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Two extensional formulae X\v> Xiv a r e equivalent if, for each sentence <p, 
T± Xi(T<PT) ** X2C ÇPT)- The equivalence class of an extensional formula x^ is 
denoted [xvY The Lindenbaum formula algebra of T, BT, is the collection of 
these equivalence classes under the induced boolean operations. The Linden­
baum fixed point algebra of T is the structure (BT, AT), with the obvious 
boolean operations and with the application operation: for [x^] S BT and 

M(M)=[x(V)]. 
[A TINY REMARK. A logically more natural equivalence between formulae \\v 

and X2V *s giy e n by simple provable equivalence: Tt-Vv [X\v ^ X2V]- Alge­
braically, however, the weaker pointwise equivalence is more natural. For one 
thing, it yields [X\V] = [Xi°\ iff t n e functions induced by these classes under 
the above definition are identical.] 

Bearing in mind that one might wish to consider subalgebras of the full 
Lindenbaum fixed point algebras of various theories, the concept to be 
abstracted from the algebras (BT, AT) is that following: 

1.10. DEFINITION. A fixed point algebra (FPA) is a pair (B, A) of boolean 
algebras such that 

(i) each a G B is a function a: A -> A, 
(ii) B contains the constant functions Xx.a for each a G A, 
(iii) the boolean operations on B are pointwise on A9 

(iv) B is closed under composition, and 
(v) each a G B has a fixed point a G A : aa — a. 
While diagonalised algebras are not FPA's they can easily be transformed 

into FPA's: Given a diagonalised algebra (A\ T), let B be the set of polynomi­
als a(x) over (A', T) in which all occurrences of x lie within the scopes of T'S. 
By Lemma 1.6, under the obvious choice of operations, (B, A) is an FPA. Due 
to the inter-reducibility of problems about the structures (A; T) and (B, A), I 
declare it harmless to ambiguously call both structures diagonalised algebras 
and shall do so. An algebra (2?0, A)9 where B0 C B and (B, A) is diagonalised, 
will be called subdiagonalisable. (The change in suffix will become self-
explanatory early in the next section.) 

The rest of the paper is divided into two parts. The first, longer, part is 
devoted to finite FPA's. This begins with a review of (finite and infinite) 
diagonalisable algebras (the equational reformulation of diagonalised algebras), 
including their applications and representation theory, and continue through 
some lemmas on finite FPA's to the introduction of closed FPA's—FPA's 
satisfying an additional closure condition—and the proof that all finite closed 
FPA's are subdiagonalisable. As the additional closure condition is logically 
quite natural, this result puts a severe limitation on any further use of finite 
FPA's in studying self-reference. The final, rather anticlimactic, section con­
stitutes the second part of the paper. It contains a few observations on infinite 
FPA's, mostly on Lindenbaum FPA's. 

Before proceeding, I should make some conventions to kill the ambiguity 
among boolean and both formal logical and informal logical notations. Rather 
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than using -,, A, V, -> , and <-» in all three contexts, I shall adopt the 
following trinity: 

informal logical 

& 

or 

=> 

<=» 

V 

3 

formal logical 
— i 

A 

V 

D 

= 

V 

3 

boolean 
(•y 

+ 
-
«-> 

Moreover, given an FPA (2?, A), I use greek letters a, /?, y, . . . for elements of 
Z?, and roman letters a, b, c,.. . ,x, y9 z for elements of A, with letters early in 
the alphabet usually denoting fixed elements and letters late in the alphabet 
indicating greater variability. 

2. Diagonalisable algebras. As mentioned in the last section, the family of 
diagonalised algebras forms an equational variety. 

2.1. DEFINITION. A structure (A; r), where A is a boolean algebra is a 
diagonalisable algebra (DA) if it satisfies 

(i)rl = l, 
(ii) Vx, y E A,rx • T(X -» y) < ry, 
(iii) Vx E A, TX < TTX, and 
(iv) Vx E v4, T(TX -> x) < TX. 

2.2. THEOREM. The classes of diagonalised and diagonalisable algebras coin­
cide. 

Half of this—the diagonalisable nature of diagonalised algebras—follows 
immediately from Löb's Theorem (Exercise 1.7, above). The other half was 
proven independently by de Jongh (cf. [42] or [43]) and Sambin [36]. While the 
exposition of this proof takes us a bit off course, it is simple enough not to 
cause too great a digression. Moreover, it is a nice application of algebra to 
logic. 

We first need a definition and a couple of lemmas 
2.3. DEFINITION. Let (A; T) be a DA. A subset F Q A is a r-filter if it 

satisfies 
(i)0 £ F, 
(ii) Vx, yÇzA9x9yEF=*X'yE:F9 

(iii) Vx, y E A, x E F Sex ^y =* y ET7, and 
(iv) Vx E A, x E F => TX E F. 
2.4. EXAMPLES. Let (A; r)bcàDA9a GA. Then each of the intervals 

[ra, 1] = (x E A: ra < x} and [a • TÖ, 1] = (x E ,4: Ö • TO < x} 

is a T-filter. 
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2.5. LEMMA. Let (A; r ) be a DA and F C A a r-filter. Define (A/F; r/F) by 
(i)x/F= [y ELA\ x^y G F } , 
(ii) x/F.y/F=(x>y)/F9 

(m)(x/Fy = (xyF9 
(iv) (T/F)(X/F) = (TX)/F 

Then (A/F; r/F) is a DA. 

Since the DA's form an equational variety and equations are preserved 
under quotients, it suffices to show the operations of A/F to be well defined. 
This is routine. 

With this, the proof of Theorem 2.2 becomes simply a computation, albeit 
an inspired one: The fact is that the Fixed Point Calculation (Corollary 1.4) of 
the previous section was not an isolated observation, but a prototype—every 
such instance of self-reference has explicitly definable fixed points. One has 
but to find them. 

2.6. THEOREM (DE JONGH-SAMBIN THEOREM). Let a(x9 xl9...9xn) be a 

T-polynomial in several variables in which each occurrence of x lies within the 
scope of a r. There is a polynomial 8(xl9... 9xn) such that, in all DA's (A; r ) , 

« ( * ! , . . . , x j = a(8(xl9...9xn)9xl9...9xn). 

PROOF. The proof is an inductive one. 

Pre-basis. Let ax = T(JX) for a polynomial yx9 where mention of the 
variables xl9...9xn is supressed. Then S = a\. To see this, let F = [al , 1] = 
[ ry l , 1] be the principal r-filter generated by cri. Note 

a l G F ^ (OL\)/F = \/F => (a/F)(a\/F) = (a/F)(l/F) 

=> (aal)/F = ( a l ) / F = > aa l E F=> al < a a l . 

The converse inequality depends on Lob's Theorem. 

al G F => al/F = l/F => (yal)/F = yl/F => yal -> yl E F 

=> al < yal -> yl => yal < al -> yl => T(yal) < T(al -> y l ) 

=> aa l < Tyl = a l , by Lob's Theorem. 

Basis. Write ax = p[r(yx)]. Then 8 = a£( l ) . To see this, look at ryp(x): 

ryP(l) = TYj8(TyjB(l)) - / ? [ r y / * ( l ) ] = J8[T Y J8(T Y JB(1)) ] 

=*ajB(l) = ot[aj8(l)]. 

Induction step. Write ax = fi[ryxx9.. .9ryk+lx]. Letting xn+x be a new 
variable, we have, by induction hypothesis, a fixed point 8k(xn+x) to 
P[ryxx9.. .,rykx9 ryk+xxn+x]. The fixed point 8 to a is just the fixed point 8 to 
^ ( * „ + i ) . For, 

**(«) = P[ryi(8k{8))>- ••,ryk(8k(S))9ryk+l(8)]. 

But 8 = 8k(8), so we can substitute 8 for 8,(8) to get 

8 = 0 , (8) = | 6 [ T Y I ( S ) , . ..,ryk(8), ryk+l(8)] = a(8). Q.E.D. 
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Another aspect of the Fixed Point Calculation (1.4) of the preceding section 
is the uniqueness of the fixed point a — (ray. As Bernardi [5] and de Jongh 
(cf. [42]) showed, this too generalises. 

2.7. EXERCISE (UNIQUENESS OF FIXED POINTS). Let (A\ r) be a DA, a(x) a 

polynomial over (A; T) in which each occurrence of x lies within the scope of a 
T. Then a has a unique fixed point in A. 

Both Bernardi and de Jongh actually proved an equationally expressible 
form of the Uniqueness Theorem: Letting r+ x = x • TX, they show 

(1) r+ (x <-> ax) - T + (y <-» ay) < x <^y. 

[Bernardi's proof is a clever application of Löb's Theorem and Lemma 2.5, and 
the reader might like to try his hand at reconstructing the argument. De 
Jongh's proof is based on the representation theory for DA's, which we shall 
shortly describe. To see the equivalence of (1) with uniqueness, (i) assume (1) 
and note the equivalence, for z = x9 y of z = az with z <-> az — 1, and so with 
T+(z<H>az)=l, to conclude uniqueness; and (ii) appeal to uniqueness in 
(A/F; T/F), where F is the principal T-filter generated by r+(x <-» ax) • 
T + (y *~* ay)>t0 conclude (1).] 

The most natural proof of Exercise 2.7 for the present paper is the following: 
§4, below, contains two proofs of the uniqueness of fixed points for finite 
FPA's, hence for finite DA's. Since for DA's this uniqueness is equationally 
expressible, and since the finite DA's are equationally generic for the class of 
all DA's, uniqueness holds for DA's in general. 

3. Representation theory for diagonalisable algebras. As noted by Magari 
[22], one can read a representation theory for DA's directly off Halmos' 
representation theory [15] for monadic algebras—this representation theory 
itself being reducible to Stone's representation theory [53] for boolean algebras. 
As this representaton theory is vital both in establishing the equational 
genericity of (^4PA; T) in the variety of DA's and in proving the main theorem 
of the present paper, it merits some review here. 

3.1. DEFINITION. Let A be a boolean algebra. A subset F C A is an ultrafilter 
of A if it satisfies 

( i ) 0 £ F , 
(ii) Vx, yGA,x9yE:F=*X'yE:F, 
(iii) Vx, y Ev4,x £ F&x <y =>y 6 F , and 
(iv) V x G ^ , i E F o r x ' GF . 
The basic existence result is the following. 

3.2. LEMMA. Let A be a boolean algebra and F0 QA a filter (i.e. a subset of A 
satisfying 3.1(i)-(iii)). Then A possesses an ultrafilter F D F0. 

The proof is a routine application of Zorn's Lemma. 
One often applies Lemma 3.2 to sets with the finite intersection property— 

subsets G QA such that, for any x0,...9xn G G, x0 • . . . -xn ¥" 0. Each such G 
generates a filter, F0 = {y G A: 3x0. ..xnE. G(x0 • . . . •*„ <}>)}> which ex­
tends by 3.2 to an ultrafilter. 

In simplest terms, the Stone Representation Theorem is the following. 
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3.3. THEOREM (STONE REPRESENTATION THEOREM). Let A be a boolean 
algebra and X — {F: Fis an ultrafilter of A). The function 

f:x»{F:F<EX&x 6 F } 

is an isomorphic embedding of A into P(X), i.e. f is one-one and 
&f(x'y)=fxnfy9 

(ii)f(x') = X-fx. 

PROOF. Let us first see that ƒ is a homomorphism. 
(i) f(x • y) = {F: x • y E F) C {F: x E F} H {F: y E F}9 by 3.1(iii) since 

x • y < x, y. The converse inclusion follows from 3.1(ii). 
(ii) By 3.1.iv, fx U fx' = X. By 3.1(i)-(ii), fx H fx' = 0 . It follows that 

fx' = X-fx. 
Finally, to see that ƒ is an isomorphic embedding, note that, if x =£ 0, then 

[x, 1] = {y E A: x < 7} is a filter. By Lemma 3.2, there is some [JC, 1] Ç f G I , 
i.e. some F E fx. Thus, the kernel of ƒ is {0} and ƒ is one-one. Q.E.D. 

How does this representation treat r—i.e. what is the relation between ƒ (TX) 
and fxl Well, it turns out that this relation is clarified by a special type of 
binary relation on X dual to T. Why a binary relation? To be honest, I don't 
know how to motivate this fact algebraically. Logically, I can explain it in 
terms of modal logic: As far back as Kant mathematical truth, which equals 
mathematical provability, was hailed as necessary truth. Thus arises the idea of 
interpreting arithmetic provability, Prp^cp1) , i.e. TX, as necessity, i.e. the 
modal logician's Dp. If we think of the elements a E A as sentences <p about 
the world, the ultrafilters F of A constitute "possible worlds" insofar as they, 
by exhaustively deciding all assertions, give all complete possible descriptions 
of the world. Now, depending on one's exact notion of necessity, the matter of 
what worlds are possible might depend on the given world one is in. (Think, 
e.g., of future possible worlds.) Thus, one has an accessibility relation R 
determining which worlds are accessible to which: FRG means G is a possible 
world as far as F is concerned. As to the relation between JR and D, note that 
D p is to assert the truth oîp in all possible worlds: 

F makes Dp true **VG[FRG =» G makes/? true]. 

Thus, T will be dual to a binary relation R. 
3.4. DEFINITIONS. Let A be a boolean algebra and X the set of its ultrafilters. 
(i) For T: A -* A, define RT by 

FRTG**\fx <EA(TX GF=>X E G). 

(ii) For R C X X X, define rR by 

f(rRx)= {F:\fG(FRG=->xGG)} =X-R-\fx')9 

where ƒ is the embedding of Theorem 3.3. 
These explain the connections we will establish between the accessibility 

relation R and the modal operator T. We already know the key properties of 
the T-operators. What are the key properties of the accessibility relations Rl 



328 C. SMORYIsfSKI 

3.5. DEFINITIONS. Let A be a boolean algebra, X the set of its ultrafilters, 
and R C X X X a binary relation on X. 

(i) R is boolean if the inverse function R~x: P(X) -* P(X), defined by 
i ^ F = { F E I : 3 G G F(FJR G)} for F ç l , maps elements of A (i.e., their 
images fx) to elements of yl (again, their images fy). 

(ii) # is relatively reverse well-founded if, for each 0 ^ x G A, fx contains an 
/^-maximal element. 

(iii) R is brrwft if R is a boolean, relatively reverse well-founded, transitive 
relation. 

Now that we have the crucial brrwft property, we can state the representa­
tion theorem. 

3.6. THEOREM. Let A be a boolean algebra and X its set of ultrafilters. Let 
further r: A -> A and R Q X X X. 

(i) If T is a r-operator, RT is brrwft. 
(ii) If R is brrwft, rR is a r-operator. 

Moreover, under the assumptions that r is a r-operator and R is brrwft, 
(iii) T = r(R) and R c R(TR). 

The mere inclusion of the relation R in its second dual R(TR) is a bit 
disappointing. In [15] Halmos obtains true duality by imposing another 
condition on R. This condition is topological and lies beyond the scope of the 
present paper. Happily, we won't need this additional information in the 
sequel and can safely ignore it. 

PROOF OF 3.6. The category theoretic duality works more smoothly if one 
considers the algebraic dual o to r: OX = (TX')'. While we won't discuss the 
categorical dual to a, we will meet a quite often in the proof. 

(i) Let (A; T) be diagonalisable. Define RT in accordance with 3.4. 
RT is boolean. Let x G A. Then R~l(fx) = f(ox), i.e. R~T

l{G: x G G) = {F: 
ox G F). 

Half of this is trivial: Let FRT G with x G G. Then Vy(ry G F ^y G G). If 
ox = (rxj £ F, then rx' G F. But then x' G G and so 0 = x • x' G G, a 
contradiction. Thus ox G F and R~l(fx) C f (ox). 

For the converse inclusion, suppose ax = (TX') ' G F. Let G0 = (x • y: ry G 
T7}. It is easily seen that G0 has the finite intersection property. If G D G0 is an 
ultrafilter, then FRT G and x G G, whence F G R~\fx). 

RT is relatively reverse well founded. Let 0 ^ x 6 ^ 1 and suppose fx has no 
^-maximal element. Thus R~\fx) D fx. But R~l(fx) = f (ox) = (G: ox G G) 
and s o x < ax, i.e. rx' < x'. Löb's Theorem then yields x' — 1, i.e. x = 0, a 
contradiction. 

i£T /s transitive. Let FRTGRTH. Suppose TX G F. Since TX < TTX, TTX G i7. 
But then TX G G, whence x E H. Hence FRTH. 

(ii) Let i? be brrwft and T^ defined in accordance with 3.4. Note first that, 
since R is boolean, rR is indeed defined via 3.4. 

f(rRx) = {F: V G ( F ^ G ^ G G / x ) } = X - R~l( fx'). 

In terms of oR, this reads f(oRx) = R~\fx). 
rR\ = 1, i.e. oR0 = 0. Clearly fl^G: 0 G G} = 0 . 
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TRX ' TR(X ~* y) ^ TR y> *'e' °RX' + °R(X ' y') ^ °Ry'' Note that 

oRx' = R~l{G:x & G}, oR(x • y') = R~l{G: x ->y &G}, 

oRy' = R-l{G:y<£G}, 

where I ignore the ƒ's. Now {G: y & G) C {G: x & G or x -> ƒ £ G} by 
modus ponens. But inverse image respects inclusion and union, whence 

R~l{G:y & G) C R~l{G: x & G} U R~l{G: x -*y & G). 

TRX < TRTRX, i.e. oRx' > oRoRx'. Dropping the complements, this reads 
oRx > oRoRx. But 

f(oRx) = R~l{G: x G G}, f(o&Rx) = RlR~l{G: x G G } , 

and # is transitive: R'lR~\G: x G G} Ç #_1{G: x G G}. 
TR(TRX ~* x) ^ TR*- AS t n e reader can easily verify, it suffices to show 

TRX < x =» x = 1. In terms of a^ this reads o^x > A: => x = 0. Suppose x < aRx, 
i.e. {F: x G F} Ç /^{G: x G G}. If JC ̂  0, (F: x G F) is not empty and, by 
relative reverse well-foundedness, contains a maximal element F0. By this 
maximality, F0 £ R~l{G: x G G}, a contradiction. Thus x = 0. 

(iii) I am getting tired of this proof and so shall only prove one of the two 
remaining assertions, namely r = T ( / ? ) . Note that it suffices to show: VF G 
X[TX G F « * T ( / ? T ) ; C G F ] . 

Let F G f(rx). Let G be given such that x' G G. Then ~ (FRTG) and so 
FG^-^C/xO-ZCr^x). 

Let F £ f(rx). As earlier, let G G X extend G0 = {x' • y : ry G F}. Clearly 
F # T G, i.e. F G R-\fx'). Thus F g f(r(Rr)x). Q.E.D. 

Now that we have completed all of this, let us see where it got us. It seems to 
have led us astray from FPA's in general (Remember them?) and seems also to 
have given the lie to my promise to discuss finite algebras in these opening 
sections. Well, appearances are often deceiving. I have discussed the represen­
tation theory with the finite algebras in mind: For one thing, we can read the 
finite representation theory off the general one and apply it. For another, we 
can use the general representation theory to show the class of finite DA's to be 
equationally generic for the full variety of diagonalisable algebras. Since 
expounding the general representation theory does not require significantly 
more effort than expounding the finite theory, this last application justifies our 
infinitary digression. 

Our first task is to draw conclusions about the finite representation theory. 

3.7 THEOREM. Let A be a finite boolean algebra, X = {a0,... ,an] the set of 
atoms of A. There is a canonical one-one correspondence between maps T: A -» A 
making (A; r) diagonalisable and strict partial orderings < of X. Moreover, the 
correspondence ofi with < satisfies 

at < aj <=> Vx G A(at < rx => Û • < x) , 

TX = 2 {ai e X- Vaj e X(at < aj ^ aj ^ x)} 

where the ordering < is that of the boolean algebra. 
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PROOF. But for the fact that the correspondence is one-one (verification of 
which I leave to the reader), this follows directly from Theorem 3.6. For, (i) the 
ultrafilters F of a finite boolean algebra A are exactly the principal ultrafilters 
[ai9\] generated by the atoms at G A; and, consequently, (ii) the function ƒ of 
that Theorem is onto: If Y — {Ft;,... ,Ft } is a set of ultrafilters Ft generated 
by atoms ax,., then Y = f(aio + • • • + fl//k). The former fact allows us to identify 
the present set X of atoms with the earlier set X of ultrafilters. The second fact 
tells us that all binary relations R on X are boolean. It only remains to note 
that the relatively reverse well-founded transitive relations on a finite set are 
just the strict partial orderings of that set. Q.E.D. 

This representation theory, known as Kripke semantics to modal logicians, is 
of supreme importance in understanding diagonalisable algebras. The transi­
tion from the algebra to the partial ordering logarithmically reduces the 
cardinality of the structure (that is, in the finite case). Moreover, basic 
operations on structures tend to be simpler and more easily visualisable in 
terms of the partial orderings. (Consider, e.g., the fact that the dual in Stone's 
theory to the cartesian product is the disjoint union of the spaces of ultrafilters.) 
Thus, Kripke's semantics tend to be more easily exploited and the best results 
are usually proven via the representation theory rather than directly via the 
algebras. 

As a first application of the representation theory, I shall present a proof 
that the finite DA's are equationally generic in the variety of DA's, i.e. that the 
finite DA's make no new equations valid. This is an oft-proven result. It was 
proven by modal logicians before the connection with self-reference was 
emphasised (e.g. [39]); it was reproven by a universal algebraist unaware of the 
earlier work on the modal logic [4]; and it was reproven by other logicians 
when they too became interested in the modal logic (e.g. [50]). The method of 
proof is routine modal-logically speaking; algebraically it might appear clever. 
There are two versions of the proof. In the version to be given here, one starts 
with an infinite DA in which an equation is invalid and "extracts" a finite DA 
from it in which the equation is also invalid. In the other version, one builds 
the finite representation directly. [The second proof does not depend on one's 
having made a successful analysis of the infinite representation theory (in 
logical terms: It doesn't presuppose completeness of the modal logic) and this 
fact might be useful. I refer the reader to [50] for this proof and to [42] for a 
modification and additional application.] 

ONE LAST POINT. I shall prove a somewhat stronger result than mere 
equational genericity. 

3.8. THEOREM. The universal theory of the class of finite DA's coincides with 
that of all DA's. Moreover, this common universal fragment of the two theories is 
decidable. 

I will comment on disagreement and undecidability after having proven the 
theorem. The task of proving this theorem requires us to think logically—or, at 
least, linguistically. That is, it is most convenient to formally view polynomials 
as syntactic objects to be semantically interpreted. 
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Formally, polynomials are terms constructed according to the following 
rules: 

(i) variables xl9 x2,... are terms; 
(ii) if 5, t are terms, so are (s • /), (s') and (rs). A term s is a subterm of / if s 

appears during the above generation of t. In other words, the relation "s is a 
subterm of t " is inductively defined by 

(i) s is a subterm of s, 
(ii) if s is a subterm of t or of w, then s is a subterm of (t • w), 
(iii) if 5 is a subterm of r, then s is a subterm of (f') and (T*). The excessive 

use of parentheses in the first of these inductive definitions, an excess in which 
wë shall not indulge, guarantees the unique readability of terms. Thus, func­
tions on terms can be inductively defined. In particular, their valuations in 
DA's are well-defined: Let (A; T) be a DA and let g be any assignment of 
values in A to the variables. The g-valuation in A of a term t, written [t]A (g is 
suppressed), is inductively defined by 

Ui)A = £*/> Is ' *]A = U]A ' [*]A> U']A = (U]A)', 

[™]A = T([S]A). 

With all of this, we are in position to prove the theorem. 
PROOF OF THEOREM 3.8. Note that any universal assertion true in all DA's is 

true in all finite DA's. The converse is proven contrapositively. 
Note first that any equation s = t can be rewritten s +* t = 1, any inequation 

s ¥" t can be rewritten s *-> t ̂  1, and inequalities can similarly be rewritten 
(e.g. s < t as s -» t = 1). Combining this observation with our ability to put 
boolean formulae into conjunctive normal form, we see that a universal 
assertion can be put into the form 

(1) VJC0 . . .JC, M(W^1VW/,^I] 
I V j k * 

(where the / 's, y"s and /e's range over disjoint finite sets). Since universal 
quantifiers distribute over conjunction, (1) can be rewritten as 

(2) / y \ V x 0 . . . x i w ^ = l V W ï ^ l ) . 
i X j k > 

As such a conjunction is valid in either class of algebras (i.e. finite vs. general) 
iff each conjunct is, we finally see that it suffices to show the preservation from 
the finite to the general case of the validity of assertions of the form 

(3) to0...JW((=lVWl^l). 

Now we can begin the proof in earnest. Suppose (A; r) is a DA in which (3) 
fails. Then there is an interpretation [x0]A,... ,[xn]A of the variables x 0 , . . . ,xn 

such that 
(i) for each ti there is an ultrafliter Fi on A with [ti]A £ Ft and 
(ii) for each tj and each ultrafilter F on A [tj]A E F. 
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While both of these facts will be used later, at the moment we will only use the 
first. We use the filters Ft to generate a finite rootless tree (Y,<), which will in 
turn generate a finite DA. 

We begin the construction of (7, -<) by putting the unit sequences (Ft) into 
Y. This is stage 1. 

Let X be the set of ultrafilters on A, R the binary relation on X dual to T. 
Define 

S — {s: s is a sub term of some tt or f.}. 

Stage k + 1 of the construction is now simple: We let p = (F0 , . ..,Fk_x) 
arise at stage k. The one-step extensions q = (F 0 , . . . 9Fk_l9 Fk) of p added to 
Y at stage k -f 1 are determined as follows. For each TS G S such that 
[rs]A & F^_ !, choose an ultrafilter F G I such that 

(i)Fk__xRFtma 
(ii)[Ts]AGF8t[s}AZF 

[This can be done by Lob's Theorem. Note that F is an .R-maximal element of 
{G: [s]A £ G&F^^G}.] For the chosen F, we put 4 = <F0,.. .9Fk_X9 F) 
into 7. 

We continue this procedure until it can no longer be followed. Note first 
that at any stage only finitely many new sequences are added to Y—basically 
because we add at most one sequence q for each pair (p9rs)9 where p is 
already given and TS G S. Second, note that the process stops after at most 
card(S') stages. For, when TS G S is considered for;? at stage /c, one extends to 
q = (F09... 9Fk) for which [TS]A G Fk. Thus, for any G G X satisfying Fk R G9 

[TS]A G G and TS will not be considered relative to any extension of p. After 
card(S) steps we will have run out of terms TS to consider. Thus, if we order Y 
by proper extension, i.e. p < q if f p is a proper initial segment of q9 then Claim 
1 holds: 

CLAIM 1. (Y9 <) is a finite strictly partially ordered set. 
By Theorem 3.7, this means that there is a T-operator defined on the power 

set algebra P(Y). We define a valuation on this algebra—call it C—as follows: 

[*]< 

{p^Y:[x]AGFk}9 whercp=(FO9...9Fk)9k>09 

andx G {xQ9. ..9xn}9 

0 , if x £{x09...9xn}. 

CLAIM 2. For all s G S and all/? = <F0, ...9Fk)(k> 0), 

P G [*]<?** [*L ^Fk-

The proof of this claim is an induction on the generation of s. For variables 
xi9 the claim holds by definition. 

If s is t • u9 then 

/ > £ [ / • u]c^pG[t]c&pG[u]c 

~ [t]A G i^& [t/L ^ Fk ~ [/ • wL G F*. 
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If s is t\ Lemma 3.2 applies. 

p G [t'\c~p £ [t]c <* [t]A & Fk**[t']A E Fk. 

Finally, suppose s is rt; 

pe[Tt]c~Vq>p(qE[t]c)~Vq>p([t]AGFk+l), 

writing q — (F09... 9Fk, Fk+l). Continuing, 

=>[rt]AEFk9 

or else we would have chosen a q = (F0,..., Fk, Fk+ {> at stage k + 2 such that 
F , * F , + 1 a n d [ ^ £ F , + 1. 

Conversely, 

p$[Tt]c**3q>p(qG[t]c) 

^lFk+x(FkR Fk+l&[t]A £ Fk+l) ^[rt]A £ Fk. 

This completes the proof of the claim. As immediate consequences, we note 
(i) {Ft)& [tt]c for the initially mentioned Ft and 
(ii) p E. [tj]c for all/7 G Y and all tj. Thus, the universal assertion (3) fails in 

the finite DA (C; r). 
All that remains is the observation that the cardinalities of Y and C are 

effectively bounded by knowledge of the terms tt and f.. Hence, to test the 
validity of (3) in all DA's it suffices to test this validity in an effectively 
determined finite set of finite structures. The universal fragment of the theory 
is, thus, decidable. Q.E.D. 

After any proof it is always a good idea to relax among simple considera­
tions, such as e.g. remarks on how good the result is. 

3.9. REMARKS. Theorem 3.8 is best possible in one sense and pretty good in 
another. 

(i) The agreement of the theories of finite and of all DA's doesn't go much 
further. The finite algebras satisfy new existential assertions. It is not hard, for 
example, to see that 3x(x ¥= 1 & rx — 1) is valid in all finite DA's, but not in 
all DA's (in particular, not in the Lindenbaum DA (APA; r)). [SUBREMARK. If 
we restrict our attention to the purely boolean language, the agreement goes a 
bit further. Since finitely generated boolean algebras are finite, the V3 frag­
ments of the boolean theories coincide. The 3V fragments, however, do not as 
the ordering of a finite boolean algebra is never dense while that of an infinite 
one (e.g. any atomless boolean algebra) can be—and nondensity is 3V-
expressible: 

3xyVz(x <y&-,(x<z&z <y)).] 

(ii) The decidability result does not extend to the full language for either the 
theory of all DA's (as shown by Montagna in [31]) or the theory of finite DA's 
(as shown by the author in [49]—for the specialist I note that I prove finite 
inseparability). [SUBREMARK. For the boolean language this is false. Both the 
theories of boolean algebras and of finite boolean algebras have long been 
known decidable.] 
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Now that we are rested, it is time to discuss another result on equational 
genericity—namely, that of the structure (AFA; r). 

3.10. THEOREM (SOLOVAY'S COMPLETENESS THEOREM). The DA (^4PA; T) is 
equationally generic for the variety of DA's. 

Before commenting on the proof, I note that this result is best possible: 
(ylPA; T) satisfies variable-free inequations not valid in all DA's. A simple 
example is T0 ^ 1. Additional examples are TTO ¥^ 1, TTTO ^ 1, etc. Even 
discounting these, i.e. even restricting our attention to those DA's in which 
these inequations are true, we find additional universal assertions true in 
(AFA; T)—e.g. \/X(TX = 1 D x = 1). 

Solovay's proof (in [50]) of Theorem 3.10 requires a bit too much logic to be 
presented here; so I shall merely describe an example of the use of his method 
and thereby give something of the flavour of the proof. Let us take an equation 
which is not valid in all DA's, say 

(4) r(x+y) -*(rx + Ty) = 1. 

We search for a finite DA in which this is not valid and look at its 
representation. For example, there is the simple tree 

What this indicates is that we have the 8-element boolean algebra A with atoms 
a0, ax, a2 ordered as shown, and x, y coincide with the atoms al9 a2, respec­
tively. Now x + y = {al9 a2} and T(X + y) — [ax, a2, a3} — 1. But rx — 
{ax, a2} and ry = {ax, a2), whence rx + ry = {ax, a2} ^ r(x + y). Solovay 
next proceeds to simulate this representation within PA by constructing 
sentences (by self-reference—but, alas, nonextensional self-reference) i/>0> ^I» ^2 
such that 

( O P A n f o V ^ V i f c , 
(ii) PAi- ̂  D M f l . « a.PrPA( r -1*/), for each i = 0, 1, 2, 
(iii) PAh^. D Mj^ û . - 1PrP A( r- 1 i / / / ) , for each i = 0, 1, 2. 

Solovay shows that, with these relations, the sentences \pi simulate the atoms 
exactly. In particular, from the fact that a0 4 f(ax + #2) "* (Tai + Tai)> ü 
follows that 

(5) PA/^ 0 D P r P A ( r ^ V ^ ) D PrPA( r ^ ) V P r P A ( r ^ ) . 

In particular, 

PA/PrP A( r*i V ^ ) D PrPA( r ^ ) V P r P A ( r ^ ) , 

and the equation (4) is not valid in (^4PA; T). [Exercise. Use properties (i)-(iii) 
to derive (5) directly.] 

For the complete proof of Theorem 3.10 I refer the reader to [50]. Modifica­
tions of the proof and refinements of the result can be found in [1, 29, and 57] 
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(and, in the study of nonextensional self-reference, Guaspari and Solovay have 
also applied the above technique in [11]). 

As I remarked earler, Solovay's Theorem is best possible with respect to 
agreement between the theory of all DA's and the theory of the single structure 
(AFA; T). It says nothing, however, about other possible connections. Far more 
useful than Theorem 3.10 is another result Solovay proved along with this 
Theorem. 

3.11. THEOREM (SOLOVAY'S SECOND COMPLETENESS THEOREM). Let t be a 

term, S = {s: rs is a subterm oft). The following are equivalent. 
(i) Every interpretation of t within the language of arithmetic is true. 
(ii) I l^^TS -> s) < t is valid in (AFA; T) and hence in all DA's. 

To illustrate what (i) means, I offer the term 

t0{X0, Xx)\ TXQ ' ( T X J -» Xl). 

Assertion (i) about t0 then claims that, for every choice of arithmetic sentences 
<p0, <p„ the sentence t0(q>0, <px) (i.e. P ^ O o 1 ) A (PrPA(r<Pin) => <Pi)) is true in 
the nonnegative integers (as opposed to being provable in PA—which reads 
"/ = 1 is valid in (APA; r)"). For the term t0 cited, this assertion is false; for 
the term *,, 

t{(x0, x{): rx0 + (TX, -> x{), 

however, the corresponding assertion is true. Thus, by (ii), for some <p0, <p,, 

PA/[PrPA(r(p0^) D cpo] A[Pr P A ( r
9 l ) 3 V,1] 3 P r P A (> 0

1 ) 

AfPrpA^cp! 1 ) : )^] , 

but, for all <p0, <pl5 

PAh[PrPA(rcp0^) D cp0] A [ P r P A ( > / ) D V l ] D P r P A ( r V ) 

v [ P r P A ( r ( p 1
1 ) D ( p 1 ] . 

I will not discuss the proof of Theorem 3.11 here. I note simply that (i) the 
proof is a modification (better: an extension) of that of Theorem 3.10; (ii) this 
theorem is far and away more useful than Theorem 3.10, for example, in that it 
allows one to draw many refined conclusions about the nature of undecidabil-
ity in PA by simple considerations of propositional modal logic; and (iii) this 
theorem has as an immediate corollary the following: 

3.12. COROLLARY. The universal theory of the structure (APA; T) is decidable. 

PROOF. Consider the old universal assertion (3), rewritten here in the form 

(6) Vx 0 . . .x n ( /Y\ / y= 1 D W ^ = l ) . 
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Suppose first that (6) is true in (AFA; T). Then, for any choice of sentences 

<Po>-••><&,» 

^ /APr P A ( r / . ( ( P o , . . . , ( 3 pJ 1 )^NWPrp A ( r / / ( (p ( ) , . . . , (pJ 1 ) , 
j i 

where "»= " denotes truth in the natural numbers. Since we are dealing with 
truth rather than provability, this implication yields 

^/Y\PrPA(r^.(<p0,...,(p„)1) D W P r p ^ ^ o * - - - . ? , , ) 1 ) -
j * 

Since <p0,... ,<p„ are arbitrary, Theorem 3.11 and a little algebra apply to yield 
the validity in all DA's of 

I K « ^ ^ ) - I I K ) < 2 ( T O (7) Vx0...x, 

for suitable terms sk. 
Conversely, the validity of (7) in all DA's entails that of (6) in (AFA; T): Pick 

<p0,... ,<prt arbitrarily. Suppose, for eachy, tj(<p09... ,<p„) = 1 in (APA; r), i.e. 

(8) ^MPrP A( r ; ,(<p0 , . . . ,<p„)7). 
j 

But it is evident that 

(9) N / V \ [ P r P A ( r ^ 0 ft^D^o %)]• 
k 

Now the validity of (7) in (A?A; T) means the provability of its interpretations 
in PA, whence the truth of this interpretation in the natural numbers. With (8) 
and (9), this yields 

i 

Pick a true disjunct PrPA(r ff- (<p0>• • • >%y )• T r u s t r u e statement asserts simply 
that 

'/0(<Po>---><)Ü = 1 
in (APA; T). As <p0,... ,<pw were arbitrary, we conclude (6). 

The equivalence between the validity of (6) in (APA; r ) and the validity of its 
effectively obtained equational equivalent (7) in (^4PA; r) and hence in all 
DA's reduces the decision problem for universal sentences over (^4PA; T) to the 
decidable corresponding problem over all DA's. Q.E.D. 

I note that it is an open problem whether or not the full first-order theory of 
the structure (^4PA; T) is decidable. 

I will let the reader draw his own conclusions about the sorts of applications 
to the study of formal arithmetic that these completeness and decidability 
results offer. 

I close this section with a couple of direct applications of the finite 
representation theory to the study of DA's. 

3.13. EXERCISE. Give de Jongh's proof of the uniqueness of fixed points: 
Given a finite partially ordered set (P9<)9 show by induction from the top 
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down that, for any appropriate polynomial a(x), there is a unique way of 
deciding a < x (in the boolean sense) for atoms a E P so that a < (x <-* ax) • 
T(X <-> ax). 

3.14. EXERCISE. Show the class of equations valid in all DA's to be closed 
under the following rules of inference: 

(i)rt= 1 =>f = 1; 
(ii) TS < Tt => s - TS < t\ 
(iii) T(S + t) = 1 =* TS = 1 or Tf = 1, for any terms 5, /. [HINT. Consider, for 

example, (i). Let (P <) be a representation for a finite algebra in which t = 1 
is not valid. Let (P', < ') arise from (P,<) by the adjunction of a new 
minimum element. Show TX = 1 fails to be valid in the corresponding algebra.] 

4. Finite fixed point algebras. As the reader who hasn't completely forgot 
about FPA's has doubtlessly gathered, the DA's form a very important class of 
FPA's. As we shall see, the finite DA's constitute the very core of the class of 
finite FPA's. The present section is devoted to studying a few basic properties 
of finite FPA's. Among other things, it will include 

(i) examples of finite FPA's (B, A\ including complete catalogues of the B's 
for A — 2 and 4, and a few bounds on card(i?) f or A = 8 (where 2, 4, and 8 
are, respectively, the 2-element, 4-element, and 8-element boolean algebras); 

(ii) proofs of the uniqueness of fixed points in finite FPA's; and, 
(iii) a minor structural lemma that will be useful later in proving the main 

theorem of the present paper. 
For the sake of the examples, we label the elements of 2, 4, and 8. 

A, 
2: 1 X 8: 

K ,e x / 

JX.X 
0 ^ 

4.1. EXAMPLE. The only algebra B making (B,2) an FPA is the trivial one 
B= {XJC.O, XJC.1}. 

[A word about \-notation. The distinction between the f unction ƒ given by an 
expression fx and its value at an argument x denoted by fx often has to be 
made. One way of doing this is to let Xx.fx denote the function. A constant 
function Xx.a will occasionally be denoted a—i.e. we identify A with the 
subalgebra of B of constant functions.] 

4.2. EXAMPLES. The only algebras B for which (B,4) is an FPA are the 
following: 

(i)*o = 4; 
(ii) Bx — 4 U (TJ, XX.(T}X)\ Xx.(af • TXX\ Xx.(a + (TJX)')}; 

(iii) B2 = 4 U {T2, XX.(T2X)\ Xx.(a • T2X), Xx.(a' 4- (T 2X)')}, 

where T,, T2 are the T-operators 
X 

TXX 

T2X 

0 

a 

a' 

a 

1 

a' 

a' 

a 

1 

1 

1 

1 

file:///-notation


338 C. SMORYÜSKI 

with respective dual orderings 

- < i : < i 

[Note that B0 has the T-operator T0 = XxA determined by the empty ordering.] 
The assertion of Example 4.1 is trivial. The positive assertions in Example 

4.2 that B0, Bu and B2 yield FPA's on A = 4 are simple matters of (i) checking 
each of the given functions to have a fixed point, and (ii) checking each list Bt 

of functions to be closed under the boolean operations and composition. The 
fact that the functions T0, T,, and T2 exhaust all T-operators on 4 (and thus that 
B0, Bl9 and B2 yield all FPA's (B,4) that are DA's) follows quickly from the 
representation theory. The fact that the algebras B0, Bx, and B2 are the only 
algebras B for which (#, 4) is an FPA can be verified computationally in a few 
pages. Shortly we will be in position to see this with a minimal amount of 
computation. 

4.3. EXAMPLES. There are 19 T-operators on 8 corresponding to the assign­
ments of the atoms a, b, c of 8 to nodes of the following partial order types 

A 

V A 
[There are 1, 6, 6, 3, and 3 orderings of types P,, P2, P3, P4, and P5, 
respectively.] 

A complete catalogue of FPA's on 8 is within the grasp of anyone with 
access to a computer, but is too complicated (as far as I am concerned) for 
mere hand calculation. Three things complicate the picture. 

(i) Viewed as FPA's, distinct DA's can coincide. 
(ii) Proper subalgebras of DA's, which are not themselves DA's, can be 

FPA's. 
(iii) The FPA's can be rather large for paper and pencil. 
4.3. EXAMPLES (CONTINUED), (i) The FPA's given by polynomials in the 

r-operators of the following partial orderings coincide 

PM- Psv c 

A 
a b To verify this, note first that the corresponding T-operators are defined by 

X 

T31X 

T32X 

T5lX 

0, a, b, d 

e 

f 
c 

c, e, ƒ, 1 

1 

1 

1 

These operators are interdefinable, e.g. 

T32 = \ X . ( ƒ + T51X), T51 =\X.(C' T3XX). 
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If a: A -> A and a G Z? for some FPA (2?, A), we let A[a] denote the 
smallest algebra B such that (Z?, A) is an FPA and a G B\ i.e. A[a] is the 
algebra generated from a and the constants in A by composition and the 
boolean operations. [Note. We only need the initial assumption that a G B for 
some FPA (2?, 4̂) to conclude that (^4[a], A) is an FPA, not to define A[a].] 

4.3. EXAMPLES (CONTINUED FURTHER). Let A — 8. 

(i) Let r21 be the T-operator 

X 

T2lX 

0, öf, fr, d 

c 

c, e 

/ 

/ , i 
ï 

determined by the ordering 

The algebra A[T21] is a proper subalgebra of the DA generated by r21, as is the 
algebra A[\X.T2XX'\. 

(ii) The operator a0 defined by 

X 

a0x 

0, a 

1 

6 , C, öf, £>, ƒ , 1 

ƒ 

is of the form \X.T41X' for some r-operator T41 on P4. Thus, (yl[a0], yl) is a 
subdiagonalisable FPA. However, this algebra contains no nonconstant r-
operator. 

Part (i) is easily verified: Note that every a G A[r2l] maps 0, a, b, d to the 
same element; but AJC.T21;C' maps a to 1 and b to ƒ. Thus XX.T21X' £ ^4[T21]. 

Similarly, T21 S V4[XX.T21X']. Each of these algebras contains nonconstant T-

operators (exercise). That the algebra of part (ii) contains no nonconstant 
r-operator is seen by inspection—the algebra has only 16 elements, which the 
reader can easily generate. 

If one picks an a and simply tries to generate A[a] an element at a time, he 
will usually get frustrated. A systematic approach is time-consuming and 
boring; while an "inspired" approach can quickly lead to conjectures on the 
forms of the functions fi G A[a\ but also to minor difficulty in obtaining a 
specific desired /?. The reader is urged to judge for himself by generating the 64 
elements of A[\x.r2lx% the 64 elements of ^4[T21], and the 128 elements of the 
full DA (B, A) generated by T21. [Of course, the job is not finished until all 
functions have been tested for fixed points and all closure conditions have 
been verified!] 

I said earlier that the cardinality of the algebra B can be quite large and I 
have just noted an example of a B making (B, 8) an FPA with the cardinality 
of B being 128. For 4̂ = 8 this is the largest example I have—roughly my limit 
for paper and pencil. Moreover, for reasons to appear in the next section, this 
example and its 5 isomorphs (corresponding to the other 5 orderings on P2) are 
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the largest such IT s that I expect to exist. [Similarly, there are 24 i?'s of 
cardinality 32, 768 (which I suspect to be of maximum cardinality) on A = 16.] 

Let me give some upper bounds on the cardinality of an algebra B making 
(5,8) an FPA. These give useful measures of our knowledge—the lower the 
bound, the better our grasp of the situation. 

For convenience, from here on I will denote the cardinality of B, formerly 
card(£), by | B | . 

The grossest bound is given by noting only that B CAA. 
4.4. FIRST BOUND. Let (B, 8) be an FPA. Then | B |< 16,777,216. 
F o r | £ | < 8 8 = 16,777,216. 
If we bother to note that the definition of a fixed point algebra requires each 

a G B to have a fixed point, we can ignore those a G AA having no fixed 
points. There are 78 = 5,764,801 of these. 

4.5. SECOND BOUND. Let (B, 8) be an FPA. Then \B\< 11,012,415. 
If we recall that, B being a boolean algebra, | B | must be a power of 2, we 

can reduce this a bit by taking the greatest power of 2 not exceeding the cited 
bound. 

4.6. IMPROVED SECOND BOUND. Let (B, 8) be an FPA. Then \B\< 8,388,608. 
Compared with the expected | B |< 128, this shows we don't know much yet 

other than the definition. Let's see—I have already announced that I will show 
every a G B to have a unique fixed point. Does this knowledge help? Note 
that | {a: 8 -> 8: a has a unique fixed point} | = 8 • 77 = 6,588,344. Looking at 
the greatest power of 2 not exceeding this yields a third bound. 

4.7. THIRD BOUND. Let (B, 8) be an FPA. Then \B\< 4,194,304. 
This is still abysmal. It is time to introduce some machinery. 

4.8. LEMMA. Let Abe a boolean algebra, a, b G A with a < b. The interval 

[a,b] = {x <EA:a ^ x ^ b) 

is a boolean algebra in its own right, where 
(i) the 0 and \of[a,b] are a and b, respectively, 
(ii) the lattice operations (i.e. + , •) of [a, b] are those inherited from A, and 
(iii) the complement is relativised, vx — b • (a + x'). 

The only portion of this lemma needing verification is that v defines a 
complement in [a, b], i.e. that 

x -f vx — b, x - vx = a, 

for x G [a, b]. These are simple calculations which the reader can either carry 
out or look up in any text on boolean algebras. 

4.9. DEFINITION. Let (B, A) be an FPA, and a, b G A with a < b. For each 
a G B, define its "retraction" ar to [a, b] by 

arx = b - (a + ax). 

We ambiguously denote both the function from B to [a, b] just defined and its 
restriction mapping [a, b] to [a, b] by ar. In terms of these restrictions, we 
define 

Br= {<xr:a EB}. 
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Further, we define operations + , •, ' pointwise (using v for ') and call the 
resulting structure (B\ [a, b]) the algebra induced on [a, b] by (2?, A\ or more 
simply the induced algebra. 

4.10. THEOREM. Let (B, A) be an FPA, a, b G A with a<b. The induced 
algebra (Br,[a, b]) is an FPA. 

PROOF. The fact that the map xv-* b • (a + x) is a homomorphism of A onto 
the algebra [a, b] readily yields the closure of Br under the boolean operations 
—hence the fact that Br is a boolean algebra. 

If c G [a, b] then b • (a -f c) = c and {\x.c)r is the constant function c on 
[a, b]. 

Further, Br is closed under composition 

Pr(arx) = * • ( « + P(arx)) = (\x.p(arx))r G B\ 

since ar £ B and Z? is closed under composition. 
Finally, we must see that each ar G Br possesses a fixed point in [a, b]. 

Viewed as an element of B, ar has a fixed point, say, c G A. But c = arc G 
range(ar) Ç [a9b]. Q.E.D. 

This simple construction is a matter of some consequence—it connects the 
algebra B operating on A with an algebra Br operating on a smaller algebra 
[a, b]. This construction allows for an inductive understanding of finite FPA's. 
For example, analysing which functions from A to A can induce those of Br 

allows us to bound | B | in terms of | Br | . 

4.11. THEOREM. Let (B, A) be a finite FPA, a EL A an atom, and (Br,[a, 1]) 
an induced algebra. Then \B\^ \\Br\ -(2 - \A \)W2. 

PROOF. Pick ar G Br, c G A. There are two elements d0, dx G A for which 
a + dt — arc — a + ac. Hence, there are 2^/2 possible choices of fi\ [a, 1] -» 
[a, 1] for which pr = ar. This gives the factor | Br | - 2 ^ / 2 . The factor | A \^2 

comes from the arbitrary complementary functions ft: [0, a'] -» [0, a']. 
However, we can reduce this bound to the next lower power of 2 by 

exhibiting a function counted among our possibilities that is definitely not in 
B. Given a \ define /? by 

fix — some^y ^ x such that a -f y = arx. 

Note that fir = ar, but that ft has no fixed point and hence ƒ? ÇÉ B. Q.E.D. 
As a corollary, we get an improved bound for the case ̂ 4 = 8. 
4.12. FOURTH BOUND. Let (£, 8) be an FPA. Then \B\< 262,144. 
PROOF. First note that, for any atom g, (Br, [g, 1]) is essentially of the form 

(2^,4). But I have already remarked (albeit not proven) that B^ must be one 
of the three algebras of Examples 4.2. The largest of these have cardinality 8. 
Thus, | B |< \ • 8 • (2 • 8)8 /2 = 262,144. Q.E.D. 

Two things are to be noted about this proof. First, it gives a better bound 
than that achieved by appeal to the uniqueness of fixed points—which 
uniqueness we have not yet proved. Second, using the same technique to bound 
| B | when (5,4) is an FPA would yield | B |< 128—not | B |< 8 as we used. 
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So, by analogy, the bound given for A = 8 is likely still to be too large. Indeed, 
later in the section we will lower this bound to 1024. 

Using the induced algebra, we can do more than estimate the cardinalities of 
algebras. For one thing, we can prove the uniqueness theorem I have long since 
promised. 

4.13. THEOREM (UNIQUENESS OF FIXED POINTS). Let (B, A) be a finite FPA. 
Then every a E B possesses a unique fixed point a G A. 

PROOF. By induction on | A | . 
For A — 2, B consists only of constant functions and the result is true. 
Let | A | > 2. Suppose, by way of contradiction, that a G 5 has two distinct 

fixed points a, b. 
Case I. b ¥= a'. Then | [a • b, a + b] \<\ A | and we can apply the induction 

hypothesis to (Br, [a • b, a + b]): 

a = aa => a — ara, b = ab => b — arb, 
whence ar has two distinct fixed points, a contradiction. 

Case 2. b — a'. Since | A | is finite, there is some n such that an \ range(an) is 
the identity. 

If range(aw) = {a, b), then fl — \x.(anx)' has no fixed point. Thus, there is 
some c G range(a")with c ^ a, b. Then an E B has fixed points a, b, and c. 
Considering a and c, we are in Case 1 relative to an—hence in another 
contradictory state. Q.E.D. 

4.14. COROLLARY. Let (B, A) be a finite FPA. 
(i) Va G 5 3 « E co[an is constant]. 
(ii) Va E B, a is not a homomorphism of A. 

I remark that 4.14(h) shows finite FPA's cannot adequately model the 
structure (AVA\ jut) where jut is a definable homomorphism of A?A. 

With these applications, we see that the induced algebra constitutes a nice 
piece of machinery. But it is not enough. We need an additional tool—a group 
operation. Fortunately, every boolean algebra comes equipped with such— 
define 

x + y = (x -f y) - (x' + y') = x • yf + yx''. 

(This notation is truly old-fashioned. Modernists would call 4- the symmetric 
difference and write xày. Since our use of this operation will be group 
theoretic, it seems more appropriate to use an addition symbol of some kind.) 

When we realise we have a group B acting on a group A in an FPA (Z?, A), 
we can apply known tools of finite group theory—particularly counting 
arguments—to our study of FPA's. One such tool for counting is the Burnside 
Counting Theorem (cf. e.g. [7]) from which the uniqueness theorem im­
mediately follows. I won't present the Burnside Counting Theorem here, but I 
will derive the uniqueness theorem group theoretically—both to illustrate the 
technique and to establish a useful lemma. 

4.15. DEFINITION. Let (B, A) be an FPA and a G A. Define 

<$a= {a <EB\aa = a). 
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It is probably worth remarking that (%a is always a sublattice of B, and (%x is a 
filter and % an ideal of B. The fact about the sets ®ïa that is of greatest 
immediate interest, however, is the following: 

4.16. LEMMA. Let (B, A) be a finite FPA and a, b G A. Then \($a\ = \%\ 
( = \B\/\A\). 

PROOF. Define, for each pair c, d G A, 

%d = {a(EB:ac^d}. 

CLAIM. For each c, d9\%d\ = \ 9c0 | . 
To see this, note simply that, for fixed a0, the map «i-> a + a0 maps B 

one-one onto itself and, if a0c = d (as does, e.g., the constant function Xx.d), 
it maps 9cd one-one onto 9c0 (since x 4- x = 0 for all x G A). 

But, for fixed c, B is the disjoint union of {9cd: d G A). Thus, 

|9U=(1/WH*I and \%\ = \%c\=\B\/\A\. Q.E.D. 
The uniqueness theorem is an easy corollary to Lemma 4.16. 
SECOND PROOF OF THEOREM 4.13. Since every a G B has a fixed point, 

B = Uû(Ey4 ^ Thus, | 5 | < 2a€EA | ̂  | . Clearly we can have equality only if the 
^Js are disjoint. But we have equality, 

2 \%\= 2 {\B\/\A\)=\A\{\B\/\A\)=\B\. Q.E.D. 

I remark that this proof is conceptually simpler than the earlier one and uses 
a bit less of the structure of FPA's. 

Lemma 4.16 has another application—the characterisation of FPA's on 4. 

4.17. COROLLARY. The only algebras B for which (B, 4) is an FPA are those of 
Examples 4.2. 

PROOF. We first use Lemma 4.16 to reduce this result to the following 
corollary to uniqueness. 

4.18. LEMMA. Let (B, 4) be an FPA and a G B such that cc\ — 1. Then a is 
one of the r-operators: 

X 

T0X 

TXX 

T2X 

0 

1 

a 

a' 

a 

1 

1 

a' 

a' 

1 

a 

1 

1 

1 

1 

1 

Let (B, 4) be an FPA. By the lemma, the only functions a G B with a\ — 1 
are T0, T1? and/or T2, i.e. ^ Ç (T0, T{9 T2}. NOW, by Lemma 4.16, | B \ — 4 | ̂  | . 
Since | B | is a power of 2, | ̂  | ^ 3 and ^ ^ (r0, T15 T2). But T0 is in 2?, whence 
^i ~ (To} o r (To> Ti) o r (To> 7i}- ^n t n e fifst c a s e | ̂  | — 4 and i? is the algebra 
B0 of constant functions of Example 4.2(i); in the second case | B | = 8 and B 
(contains and hence) is the algebra Bx of 4.2(h); and in the third case B is the 
algebra B2 of 4.2(iii). 
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It remains only to prove the lemma. 
PROOF OF LEMMA 4.18. Let a E B with <x\ — 1. 
Case 1. aO = 0. Impossible by the uniqueness of fixed points. 
Case 2. aO = 1. Again uniqueness yields aa ¥= a and aa' ¥" a'. The unique­

ness of the fixed point of a' similarly yields aa¥= a' and aa' ¥= a. Thus 
aa, aa' E (0,1}. 

Suppose aa — 0. Then 0,a are both fixed points of Xx.(a • a'x). Thus, 
aa — 1. Similarly, aa' = 1. This yields a — r0. 

Case 3. aO = a. Now a# £ (0, a) since (by 4.14(i)) \imn_^00a
n(a) = 1. Thus 

aa E (a', 1}. 
Suppose aa = a'. By 4.14(f), aa' £ (0, a, a'}. Thus, a has the table 

X 

ax 

0 

a 

a 

a' 

a' 

1 

1 

1 

But P = Xx.(a' - ax) has fixed points 0 and a', a contradiction. Thus aa — 1. 
Now a' has the partial table 

X 

a'x 

0 

a' 

a 

0 

a' 

? 

1 

0 

For a' to have a fixed point, we must have a'a' — a\ i.e. aa' — a. The function 
just determined is a — Tj. 

Case 4. aO = a'. By a symmetric argument, a = r2. Q.E.D. 
The final result of this section is really out of place here—it properly 

belongs in the beginning of the next section. I put it here, however, because it 
concerns finite FPA's in general and the next section is devoted to finite closed 
FPA's. By way of motivation, I first digress to note the following: 

4.19. LEMMA. Let (B, A) be a finite diagonalisable FPA and let T be any 
r-operator such that B consists of polynomials in r. Then: If an atom a E A is 
minimal in the dual ordering < on the atoms of A, then, for all x E A and all 
a E B, ax — a{x + a). 

This fact is quickly discovered empirically. A proof is by induction on the 
generation of a as a polynomial in T and is left to the reader as an exercise. The 
result is important insofar as it gives us a special choice of atom a to which to 
apply the induced algebra apparatus: If a satisfies the conclusion of Lemma 
4.19, the induced algebra (Br, [a, 1]) preserves an optimal amount of the 
structure of (B, A). We will see this in the next section. For the moment, our 
goal is to come as close to constructing such atoms as possible without 
assuming any additional closure condition on an FPA. In this endeavour, I 
have not been very successful and the result (Lemma 4.21) is quite weak. 

4.20. DEFINITION. Let (B, A) be an FPA. Define an equivalence relation ~ on 
A by: for a, b E A 

a ~ b:\fa E. B(aa = ab). 

4.21. LEMMA. Let (B, A) be a finite FPA. For each a G A there is an element 
b E A with a =£ b, but a ~ b\ i.e. the ~ -equivalence classes all have cardinality 
at least 2. 

file://b:/fa
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PROOF. By contradiction. Suppose a G A is such that, for each b G A, there 
is an ab G B with aba ^ abb. 

CLAIM. We can assume aba — 0, abb > 0. 
To prove the claim let aba = c,abb = d, and consider the various cases: 
c < d. Let fi = \x.(c' • afrjc). Then fia = 0, /ta > 0. 
c > d. Let fi = \x.(c • a^x). 
c || J, i.e. c and d are incomparable. Again define ft = Ax.(cr • afex). 
This proves the claim. 
Now define /? = Xx.2{ouc: a E B&aa = 0}, where 2, being undotted, 

denotes the supremum. Then fia = 0 and, for all b ^ a, fib =£ 0. Now let 

y = \x. (a 4- /3x). 

The function y has the peculiar property of mapping a to a and nothing else to 
a—which property conflicts with Corollary 4.14(i) whereby lim^ooY"^ = a 
for all b G.A. Q.E.D. 

Our most important application of Lemma 4.21 will be given in the next 
section. Before turning to this, let me quickly exploit it to improve some 
bounds. 

4.22. COROLLARY. Let (B, A) be an FPA with \A\=2n. Then \B\<\A\-
{\A\-2f\A^2-\ 

PROOF. A decomposes into a disjoint union of ~ -equivalence classes. Since 
each class has at least 2 elements, there are at most \ \ A \ such classes. Now, 
how many a G B can there be? 

Case 1. There are ?\A\ classes. Then each class consists of exactly 2 
elements and a G B is determined by (i) choosing one of j\A\ classes to 
contain the fixed point, (ii) choosing one of 2 elements of this class to be the 
fixed point, and (iii) choosing, for each of the {\ A \ — 1 other classes, one of 
| A | — 2 elements outside the class to map the class onto. Put together, these 
factors yield the stated bound. 

Case 2. There are fewer than \\A\ classes. Then, corresponding to the list 
above, one has (i) a factor less than \ \ A \, (ii) a factor less than or equal to 
\A\> so less than 2(\A\ —2) (ignoring trivial A)9 and (iii) at most j\A \ — 2 
factors less than or equal to | A \ —2. Q.E.D. 

For A = 8, this yields 
4.23. FIFTH BOUND. Let (£, 8) be an FPA. Then \B\< 1024. 
In the next section, we will combine application of Lemma 4.21 and the 

induced algebra construction to, among other things, reduce this bound to 128 
—for algebras (J9,8) which are closed. 

5. Finite closed fixed point algebras. Let me straightaway define what I mean 
by a closed FPA. 

5.1. DEFINITION. An FPA (B, A) is closed if, in addition to satisfying 
conditions (i)-(v) of Definition 1.10, (B, A) satisfies the closure condition: 

(vi) for alla G A and a £ 5 , Xx.a(x 4- a) G B and Xx.a(a • x) G B. 
Note that condition (vi) is equivalent to 
(vi') for all a G B and any boolean polynomialp(x) over A, Kx.ap(x) G B. 
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The choice of (vi) over (vi') is both a matter of economy and heuristic—the 
latter since it is the form in which we apply the closure. 

We have already seen examples of FPA's that are not closed—cf. the third 
incarnation of Examples 4.3—and shall shortly see another (5.5, below). What 
about examples of closed FPA's? It happens that the logically interesting ones 
—the Lindenbaum FPA's—are closed. So, too, are the diagonalisable ones. 
Indeed, from a logical point of view, since they more closely model the 
Lindenbaum FPA's, closed FPA's are more central objects than FPA's in 
general. Be that as it may, our present interest in them is in that the finite 
closed FPA's have the special atoms found, according to Lemma 4.19, in finite 
DA's. 

5.2. DEFINITION. Let (B, A) be an FPA. An atom a G A is a fundamental 
atom for (2?, A) if \fx G AVa G B(ax = a(x + a)). 

In terms of the relation ~ of Definition 4.20, an atom a G A is fundamental 
if Vx G A(x ~ x + a). Note that this is equivalent to Vx G A(x ~ x 4- a). 

5.3. THEOREM. Let (B, A) be a finite closed FPA. Then (2?, A) possesses a 
fundamental atom. 

The proof is given via two simple lemmas. 

5.4. LEMMA. Let (#, A) be an FPA closed under 

a G B ^\x.a(x + c) G B 

for all c G A. Then: For any a,b G A, 

a~b^a + b~0. 

PROOF. Suppose a ~ b. Let a G B be given and ft — Xx.a(x 4- b). Now 

a ~ b => Pa = fib => <x(a + b) = a(b + b) => a(a + b) = <x0. 

Conversely, suppose a + b ~ 0. Let a be given and again define ft = 
\x.a(x 4- b). As before 

a + b~0=>p(a + b) = $0 

^>a(a + b + b) = «(0 4- b) => aa = ab. Q.E.D. 

Let me quickly remark that the stated closure condition is necessary for the 
general truth of the lemma. 

5.5. COUNTEREXAMPLE. Let 4̂ = 8 and, for the labelling of the elements of 8 
of the beginning of the last section, let a: A -> A be defined by 

X 

ax 

0,c 

1 

a, b, d, e, ƒ, 1 

d 

Then, in (A[a]9 A) (which is a subdiagonahsable FPA), we have a ~ b ~ d ~ e 
- ƒ ~ 1 and 0 ~ c, but a 4- b = d *- 0. 

Continuing our proof that finite closed FPA's have fundamental atoms, we 
now see how the second new closure property is used. 
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5.6. LEMMA. Let (B, A) be an FPA closed under 

a EB ^\x.a(c • x) G B 

for all c G A. Then: For any a,b G A9 

a ~ 0 = > a - 6 ~ 0 . 

PROOF. Suppose a ~ 0 and a G J?. Let fi — \x.a{b • x). Note 

a ~ 0 => fia = pO => a(a • b) = a(0 • b) => a(a • 6) = aO. Q.E.D. 

PROOF OF THEOREM 5.3. Let (5 , 4̂) be a finite closed FPA. By Lemma 4.21, 
there is an element a E A such that a ~ 0. Let & < <z be any atom. By Lemma 
5.6, Z> — 0. By Lemma 5.4, for any x E A,x + b ~ x. Q.E.D. 

I said on introducing them that our present interest in finite closed FPA's 
lay in their possession of fundamental atoms. Basically this is true, but we need 
an hereditary possession of fundamental atoms. Recall our first proof, in the 
last section, of the uniqueness of fixed points. This was an induction involving 
the induced algebra. To carry out such an induction for a subclass of finite 
FPA's, we must know the subclass to be closed under the operation of 
inducing the algebras. The subclass of finite FPA's possessing fundamental 
atoms does not have this closure property unless all finite FPA's possess 
fundamental atoms. But the class of closed FPA's does. 

5.7. LEMMA. Let (B, A) be a closed FPA, a, b G A with a < b. Then the 
induced algebra (Br,[a, b]) is closed. 

The proof is trivial. 
Lemma 5.7 allows us to use the induced algebra construction to give an 

inductive proof of the following: 

5.8. THEOREM (FUNDAMENTAL THEOREM). Let (2?, A) be a finite closed FPA. 
Then (B, A) is subdiagonalisable. 

The assertion of subdiagonalisability means, again, that there is a r-operator 
r on A such that every a G B is a polynomial in r of the proper sort over A. 

Simultaneously with Theorem 5.8 we prove the following: 

5.9. THEOREM. Let (B, A) be a closed FPA with | A \ = 2n. Then 

Moreover, equality holds in exactly n\ cases. 

Theorems 5.8 and 5.9 are proven simultaneously by induction on \A \= 2n, 
i.e. by induction on n. The case n — 1 is trivial and the case n — 2 was proven 
in the last section. For the case n — 3, i.e. 4̂ = 8, let us conclude from 5.9 our 
final bound. 

5.10. SIXTH BOUND. Let (B, 8) be a closed FPA. Then \B\< 128. 
We have already encountered a DA on 8 of this cardinality and so can 

conclude the bound to be best possible. [That is, it is best possible numerically. 
For A = 8, we do not need to assume the closedness of (5,8) to conclude 
Lemma 5.7, whence the succeeding proofs, when specialised to A = 8, yield the 
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Sixth Bound under the weaker assumption that (2?, 8) possesses a fundamental 
atom.] 

There are two steps to proving 5.8 and 5.9. First, we let (B, A) be a finite 
closed FPA with A of cardinality 2n+l and show B to be a subset of one of at 
most (n + 1)! boolean algebras B0 such that (B0, A) is a closed FPA with 
| # o l ~ 2 r + _ 1 . Second, we exhibit (n + 1)! distinct such algebras (1?0, A)— 
each of which is diagonalisable. When these two steps are completed, the 
theorems immediately follow. 

The first step is fairly simple. First we prove a little lemma. 

5.11. LEMMA. Let (B, A) be a finite closed FPA with a fundamental atom 
a G A. Let (Br, [a, 1]) be the induced algebra and C D Br an algebra such that 
(C,[a,\]) is a closed FPA. Define 

B0 = {a: A -* A: ctr G C&Vx G A[ax = a(x + a)]}. 

Then 
®BCB0, 
(ii) (B09 A) is a closed FPA with fundamental atom a, 
(iii) |fl |<|2*0 | = |C|-2W/ 2 . 

PROOF. Note first that we can define ar for any a: A -> A, not merely for 
a G B. Note too that, by Lemma 5.7, some such C exists. Thus, the definition 
of B0 makes sense. 

Assertion (i) is immediate. Assertion (iii) is a direct calculation: There are 
| C\ choices of ar G C (the first factor). For each such ar, there are 21/4|/2 

possible fi G B0 (the second factor) for which fir = ar. For: (i) for any given 
value arx, there are two possible values for fix—namely, arx and a + arx\ and 
(ii) by the assumption that ax = a{x + a)9 this choice need only be made once 
for each pair x, x + a, and there are | A \/2 such pairs. 

(ii) It remains only to see that (2?0, A) is a closed FPA with fundamental 
atom a. Given the rest, the fact that a is a fundamental atom is trivial. 

B0 is a boolean algebra. Let a, fi G B0 and let y — a 4- fi. Note that 

ar G C&fir G C=>(« + fi)r = ar + fir G C, 

Vx G^4[ax = a(x + a) Si fix — fi(x + Û ) ] = ^ V X G A[yx = y(x + a)]. 

Hence y G B0. Similarly, if a G ^0 , then a' G B0. 
B0 is closed under composition. Let a, /3 G B0, y — Xx.afix. Now, for any 

x G A, 

yrx = a + a/?* = öf + a(a + /£x), since Vy G ^ ( a j = a(y + a)) 

= arfirx, 

and we know C is closed under composition. Thus y r E C . But also, for any 
x G A, 

yx — afix = afi(x + a) = y(x + a), 

since fix — fi(x + of). Thus y G i?0. 
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B0 has fixed points. Let a E BQ. Suppose ô G [Û, 1] is a fixed point of 
ar E C. Now either ab — arb = Z>, and fr is a fixed point of a, or 

a(a + b) — ab — a -\- arb = a + b, 

and « + b is a fixed point. 
It follows that (B0, A) is an FPA. All that remains is the following: 
(2?0, A) is a closed FPA. Let a E B0, b E A, and consider ft = Ax.a(x 4- &). 

A tiny argument shows that, for all x E ^4, a(x + fr) = a(x + (b + a)), whence 
we can assume without loss of generality Z> E [a, 1]. Since C is closed, /?r = 
\x.ar(x + b) E C. But, for any x E A, 

fix = a(x + b) = a((x 4- b) 4- a) = a((x 4- a) 4- b) = fi(x 4- a). 

Since x + fl = x o r x + fl::::x4fl, it follows that fix = fi(x + a) and /3 E i?0. 
Similarly, y = Xx.a(b • x) E 5 0 . Q.E.D. 

Now, what about our cardinal calculation? Suppose 5.9 holds for n and 
|v4|=2"+ 1 .Then 

|^0| = |C | . 2 2 M <2 2 " - 1 . 2 2 " = 22M+1~1, 

with equality only if | C\= 22"~l. By induction hypothesis, Br is contained in 
some C of cardinality 22" -1 , whence 5 is contained in some B0 of cardinality 
22"+l-\ 

As for the number of FPA's on A with \B\= 22"+ _1 , note that there are 
n + 1 choices of a fundamental atom a and, given this choice, there are, by 
induction hypothesis, n\ choices of FPA's (C,[a, 1]), with \C\~ 22""1. Thus, 
there are at most (n + \) - n\= (n + \)l FPA's of maximum cardinality on A. 

Note that I wrote "at most". We must verify that no two of the (n + 1)! 
algebras of maximum cardinality coincide. This is precisely the second step of 
the proof described above—for a given k, we find k\ distinct DA's (B, A) on 
an algebra A of cardinality 2k with | B \= 22* -1. Letting k = n + 1 will, of 
course, complete the induction step in the proof of Theorem 5.9. It will also 
yield Theorem 5.8 since all FPA's of maximum cardinality are diagonalisable. 

5.12. LEMMA. Let k >• 2 be given and A a boolean algebra of cardinality 2k 

with set of atoms P — {a0,.. . ,#£_,}. Given a total ordering < of P, let (2?, A) 
be the corresponding diagonalisable FPA {i.e. the FPA in which B consists of all 
appropriate polynomials in the operator r dual to <). Then 

(i) the k\ distinct total orderings of F yield distinct FPA's 
(iï)\B\=22k-K 

PROOF, (i) Let -< b <2 be distinct total orderings of P and let Tj, T2 be their 
respective T-operators. We will see that T1? T2 are incompatible, i.e. that they 
generate an a : A -» A with two fixed points. In fact, we can take a — TX • T2. 

Suppose < i and < 2 look like 

i a,: , a, < i " " < 9 a,., 
1 'o' Jk-\ l l 7o' 
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and m is minimum such that A, ¥= a,,. Let 6 = A, + • • • + « , = A, 
+ • • • +fl/-wi_I (— 0 if m — 0). Now T,6 = b + A/W and r2b = b + a. , whence 

T ^ • T26 = (b + a,. J(fe + AyJ = 6, 

since a, , Ay are distinct atoms incomparable to b. But we also have TX\ • T21 = 
1 • 1 ="i. 

(ii) By induction on k. For k — 2, cf. Examples 4.2. 
Let (B, A) be the diagonalisable FPA generated by a linear ordering < of P 

with the atom a minimum in < . Consider the induced algebra (Br, [A, 1]). 
Since a is a fundamental atom (by Lemma 4.19) Lemma 5.11 applies and 

|2?o| = | 2 H - 2 2 * - \ 

where B0 is the maximum algebra inducing Br. 
We first observe that B = B0: Let a G 5 0 . There is an a0 G 2? such that 

«Q = a r. Let «! = \x.(a' • a0x) G 5. ĉ  is the minimum function inducing ar. 
Note: For any b G A, 

, fa , 6 = 1 or 6 = 1 + A (i.e. b ~ 1), 
10, otherwise. 

Let b0,...,bmG A enumerate all b G A such that afr = axb + a. Then 

a = \ x . C^X + A 2 T ( X + &+ l) B. 

Thus, |J5| = | B r | -22 ~ , and it suffices to show that (Br, [A, 1]) is (up to 
labelling—i.e. isomorphism) the diagonalisable algebra on the ordering of 
P — {a} induced by < . For, then 

|J5| = 22 ~ l • 22 , by induction hypothesis, 

= 22k~l. 
First note that rr = \x.(a + rx) is a T-operator on [A, 1]: For all x, 

( l ) T r l = f l + Tl = 0 + 1 = 1. 
(2) T

 rx • T
 r(x -> ƒ ) = (A + TX)(Ö + T(X -» )>)) = a -h TX • T(X -̂  J>) < A -f 

(3) T
 rx = öf + rx < a + TTX = a + T(Ö + rx) = T

 rT rx. 
(4) T

 rx < x => a + rx < x => TX < x => x — 1. 
[Note: Given the existence of fixed points, this last verification was unneces­
sary.] 

Second, note that the atoms of [a, 1] are given by Pr = {a + at\ a ^ ai; G P), 
and so are in obvious correspondence with P — {a}. What is the ordering <r 

on Pr dual to T r? Note, for o,., ÜJ G P - {A}, 

A, -< fly => VX G ^ [ A ; < TX => Ay < x ] 

(*) =>V^G ^4[A + A, < A + TX => A + Ay < A + x] 

=> Vx G [A, 1 ] [A + A/ < T
 rx =» A + fly < x] 

=* fl + A; ^ a + fly, 



FIXED POINT ALGEBRAS 351 

where (*) follows since a is an atom disjoint from ai9 aj9 and TX—unless 
TX = 1. Since < is total, so too must -<rbe. 

Third, we must see that Br includes all appropriate polynomials in T\ But 
this follows quickly from the facts that Br is closed under boolean operations, 
compositions, and (by Lemma 5.7) the abstractions 

ar E Br =* \x.ar{x + b)9 \x.a\b • x) G B\ 

for all b G [a, 1]. 
Fourth, and last, we must note that Br contains nothing more than the 

appropriate polynomials in r r. There are two possibilities for this proof. We 
can appeal to the induction hypothesis of Theorem 5.9—| Br \ — 22 ~ l and so 
Br cannot be further extended (letting k — n + 1); or, we can simply note that 
the generation of a from r in B induces such a generation of ar from rr in Br. 
Q.E.D. 

As I noted earlier, with the proof of this lemma completed, we have 
completed the proofs of Theorems 5.8 and 5.9. 

Algebraically, there is yet much room for improvement. Aside from needing 
the closedness of (J5, A) to yield hereditarily the existence of fundamental 
atoms, we only needed this closedness to conclude the closedness of the FPA's 
we constructed. Hence all algebras (2?, A) hereditarily possessing fundamental 
atoms are subdiagonalisable and, should all FPA's possess fundamental atoms, 
all FPA's will be subdiagonalisable. Also, it follows that, more efficiently 
applied, the closedness of a finite closed FPA should yield a stronger conclu­
sion, e.g. that the given closed FPA is, in fact, diagonalisable. 

But, if the result can be improved algebraically, it is not in much need of 
logical improvement: It is sufficiently powerful to tell us that the marvellous 
success reported on in §3 in analysing arithmetic via finite algebras cannot be 
much improved—only those operators a G 5 P A which somehow reduce to 
r-operators can be given an adequate finite algebraic modelling. 

6. Infinite fixed point algebras. We have seen that, logically speaking, finite 
FPA's offer no great advance over finite DA's. However, this does not mean 
we should dismiss FPA's as a logical loss—there are still the infinite FPA's to 
consider. The finite and infinite FPA's are vastly different. If the former are 
inadequate for modelling extensional arithmetic self-reference, the latter cer­
tainly are not. Nonetheless, I make no claims of arithmetic applicability of the 
infinite algebraic modelling. The rôle played here by the infinite algebra is 
descriptive rather than instrumental. But this is standard in logic, where many 
a lattice and semilattice has been studied by purely nonalgebraic techniques. 
However, as FPA's may be of some independent algebraic interest, I will first 
briefly discuss some nonarithmetic matters. 

The first thing to do is to formally note the difference between the finite and 
infinite FPA's. 

6.1. REMARKS, (i) The classes of finite and of all FPA's do not even share a 
common universal theory. The finite FPA's all satisfy, e.g., the uniqueness 
assertion, 

Va G B\fx,y S A[ax — x A ay — y ~D x— y\. 

file:///x.a/b
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[One could ask about the equational theories—but, with no function constants 
other than Xx.O and Xx.l, these are likely to be pretty trivial theories.] 

(ii) Both the first-order theories of the finite and of all the FPA's are 
undecidable. [In fact, the proof of finite inseparability for DA's in [49] adapts 
quite easily to FPA's.] 

The next best thing to a finite FPA is an infinite DA. These can be produced 
either via the representation theory for DA's or via the Lindenbaumisation 
process. Let me first discuss the former. Between the rather restrictive require­
ment of relative reverse well-foundedness (most easily satisfied in smaller 
algebras A) and the more inclusive one of booleanness (most easily satisfied in 
larger algebras), the representation theory is not easy to apply directly. A 
simple variant of this representation theory, however, makes possible the easy 
exhibition of many examples. 

6.2. LEMMA. Let X0 be a set, R—< a reverse well-founded partial ordering of 
X0, and A Q P(XQ) any algebra satisfying R~u. A -* A (e.g. A = P(X0)). Then 
the function r: A -> A defined by 

rx = {a G X0: Vb G X0(a < b => b G x)} = X0 - R~](X0 - x) 

is a T-operator making (A; T) a DA. 

Note that this is not a special case of Theorem 3.6 as X0 need not be the set 
X of all ultrafliters of A. The proof, however, is much the same and need not 
be presented here. In any event, it can be found in any number of places in the 
literature. 

6.3. EXAMPLES (EXERCISES), (i) Let X0 — {an: n G co}, Xx — X0 U {<zw} be 

two infinite sets of atoms and let -<0 and -<! order these sets in the types to* 
and (to + 1)*, respectively, i.e. 

• • • <0a2 <0ax <0a0, 

dœ<i <xa2<xax <xa0. 

Let A0 be the algebra of finite and cofinite subsets of X0; and let Ax be the 
algebra of finite subsets of XQ and cofinite subsets of Xx containing aw. Then, 
letting Rt=<hwc havei^1: Ai -> At and we have r-operators rt dual to <t on 
At. On each algebra^,, r, satisfies: For x G At, 

f l , x = l , 
T/ ~~ 1 {a0,...,am), m is minimum such that am & x. 

Moreover (A0; T0) is isomorphic to (Ax\ rx). 
(ii) Let n > 0. Let X0 be as in (i), Yn = {b0,.. .,bn_x}, and Yu — {bn: n G co}. 

Define A* to be the finite-cofinite algebra o n I 0 U Yn for 0 < n < co with -<n* 
on L̂Q U Yn extending -<0 on X0 by defining am<n* bk for all m> k> n. 
Then, if R* = -<„*, we have (R*)~l: A* -> A* and, for T* the dual operator: 

(a) Each (A*; r*) is a DA. 
(b) No (A*; T*) is isomorphic to (A0; T0). 
(c) For m < n ^ to, (A^; T*) is not isomorphic to (A*; r*). 

[Hint for (b), (c). Compare r00, T^O, and r*0. The ambitious reader may wish 
to show that in fact these algebras have distinct equational theories.] 
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Such examples can be multiplied indefinitely and are generally of limited 
interest. One exception is the algebra (A0; r0) of 6.3(i). This is the free DA on 
0 generators. 

Free diagonalisable algebras have been studied a bit—cf. [3, 21, 27, 29 and 
50]. They even have some bearing on arithmetic—most notably: 

(i) In [3], Bernardi made good use of the freedom of (A0; T0) in anticipation 
of the de Jongh-Sambin Theorem (2.6, above); and 

(ii) Artyomov [1], Montagna [29], and Visser (unpublished) have shown the 
free algebra on co generators to be embeddable in (APA; T). 
[I suppose I should mention that (i) my independent proof (in [43]) of 
Bernardi's result used the finite representation theory and yielded a more 
effective result; and (ii) none of the proofs of the embeddability result is 
algebraic—essentially, one combines the effectiveness of Solovay's proof of his 
Completeness Theorem (3.10) with an additional (nonextensional) self-reference 
to uniformise Solovay's result and mention, as it were, the embedding as an 
afterthought.] 

As I said, the second easiest infinite DA's to exhibit are the Lindenbaum 
ones. And here there is some variety (in the nonalgebraic sense of the word). If 
T is any formal theory containing a minimal amount of arithmetic, then, by 
Rosser's Theorem [34], the Lindenbaum sentence algebra AT is atomless—hence 
countable and atomless, i.e. free on co generators (as a boolean algebra). Thus, 
APA, AZF, and AGB are all isomorphic. But does this isomorphism still hold if 
we add the r-operators r[cp] = [P r^O 1 ) ] for 7 = PA, ZF, GB, etc.? Is 
(AZ¥; T) isomorphic to (AZF; a), where a is as in §1? By variants of Solovay's 
Completeness Theorems (3.10 and 3.11), these structures have, not only a 
common equational theory, but also a common universal one. There is no 
particular reason to believe that this agreement extends—nor to believe the 
opposite. However, there are theories T9 with canonical representations Pr r( • ) 
of provability, such that the corresponding Lindenbaum algebras (AT; r) are 
quite definitely distinct from, say, (APA; T): 

(i) Let T0 = PA + -,ConPA. It is easily seen that r 0 h- iCon r , whence in 
(ATQ; T) one has T0 = 1. 

(ii) If Trf-iCon"^ for any w, i.e. 7̂  ƒPr r i(
r P r r { r . . . 1 0 = 1 r . . . 1 )1 ) for any 

finite nesting of the formula Prr(-)> then (by [57]) (AT; T) has the same 
equational theory as (^4PA; T). The universal theories of (AT ; r) and (APA; r) 
can, however, still disagree. 

The situation changes dramatically when we consider the full Lindenbaum 
FPA's of these theories. (Recall Definition 1.9.) In (BT, AT\ the T-operator 
determined by Pr r( • ) is not distinguished. One can express within the language 
of FPA's what it means to be a r-operator, e.g., by the formula 

Tau(a): Vxy E ^ [ a x < aax A ax • a(x -> y) < ay A al = l] ; 

but for many theories T there is a dazzling assortment of T-operators in 
(BT, AT) (cf. [6, 14, 16, and 33] for such an assortment of well-behaved 
T-operators) and no evident way to distinguish the r-operator we consider 
canonically associated with T. In particular, our easy distinction between 
(APA; T) and (ATo; r), for T0 = PA + -,ConPA is no longer easy and perhaps 
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not even possible: BFA contains the trivial r-operator Xx.\ which maps 0 to 1; 
and BT contains r-operators which do not map 0 to 1. Let me thus be 
emboldened to make a conjecture. 

6.4. CONJECTURE. Let T0 = PA + -^Con^. The Lindenbaum FPA's 
(i?PA, APA) and (BTQ, ATQ) are isomorphic. 

A safer conjecture seems to be 
6.5. CONJECTURE. The Lindenbaum FPA's (2?PA, ^4PA) and (BZF, AZF) are 

isomorphic. 
The reason for this conjecture is empirical: All known applications of 

self-reference to the study of PA carry over to that of ZF, and conversely. [Of 
course, it should be noted that there has been no discernible attempt to apply 
self-reference to specifically set theoretic formulae, and hence that the empiri­
cal evidence is superficial.] 

I have one more conjecture—one that might surprise a few readers. 
6.6. CONJECTURE. The Lindenbaum FPA's (BZF, AZF) and (2?GB, ^4GB)

 a r e 

not isomorphic; and, in fact, these structures have distinct first-order theories. 
Why should I expect such disparate types of theories as PA and PA + 

-,ConPA to have identical self-referential structures and such closely related 
theories as ZF and GB to have distinct such structures? Well, as I already 
noted, the easiest distinction between PA and PA + -!ConPA vanishes when 
one looks at all extensional formulae. Moreover, many results initially provable 
only for sound theories like PA (e.g. incompleteness via Gödel's self-referential 
sentence) extend fairly uniformly to unsound theories like PA + -,ConPA 

(here: incompleteness via Rosser's self-referential sentence). While not every 
such result extends (cf. e.g. [44] for some counterexamples), every one expressi­
ble in the language of FPA's that I know of has a proof valid for PA and 
PA + -,ConPA. In other words, every sentence I know true about (#P A , ^4PA) I 
also know true about (BT, AT), for T0 = PA + -,ConPA; moreover, I know 
both truths for a common reason. This is not the case with ZF and GB: For 
T = ZF or GB, there is an element ju E BT such that p: AT-> AT homomorphi-
cally. The original constructions of the functions n were different in the two 
cases—for ZF one applies the Orey Compactness Theorem (for which see 
[6 and 32]), while for GB it is an interesting construction due to Solovay (cf. 
[51]). There was no common construction and the rôles traditionally played by 
the homomorphisms jut in GB and ZF are different—as first realised by Hajek 
in [12], and since refined in [10] (cf. [45 or 46] for an explanation), [13, 51, and 
54]. Of course, Conjecture 6.6 is a conjecture because this difference has yet to 
be expressed in terms of the FPA's. 

[NOTE ADDED IN PROOF. The preceding remarks are insipid at best. Origi­
nally I had overestimated and, thus, strongly overemphasised the role of the 
homomorphisms JU. The original constructions referred to were given by 
relative interpretations. The converse, which I accepted all too hastily, that the 
homomorphisms give rise to relative interpretations is.simply false—as was 
pointed out to me in a letter I received from Petr Hajek as I was correcting the 
galleys. 

At the same time, I received from Robert Solovay an affirmative solution to 
Conjectures 6.4 and 6.5.1 have not had the opportunity to study his proof and 
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see where it fails to refute Conjecture 6.6; but the nature of his solution leads 
me to believe that the full Lindenbaum FPA's offer only an incomplete 
explication of the extensional self-referential structure of theories.] 

B. Bibliography. The following bibliography is lightly padded. It includes, of 
course, all items referred to in the text, as well as my Handbook article [41] for 
logical background, several papers on self-reference, and numerous uncited 
references on diagonalisable algebras. The reader interested in self-reference is 
particularly referred to [44, 46], and their bibliographies. 
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