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Vector bundles on complex projective spaces, Progress in Mathematics, vol. 3, 
by Christian Okonek, Michael Schneider and Heinz Spindler, Birkhâuser, 
Boston, 1980, vii + 389 pp., $18.00 paperback. 

This book is an introduction to the basic theory and classification of 
holomorphic vector bundles on complex projective spaces. A holomorphic 
vector bundle on a complex manifold M is just what you would expect: It is a 
locally trivial fibre space E over M with fibre C and with transition functions 
which are holomorphic on the base. The dimension r of the fibre is called the 
rank of the bundle. 

Smooth vector bundles (that is, with C00 transition functions) have been 
known for a long time in differential geometry. They can in principle be 
classified by certain characteristic classes (in the case of C-bundles their 
Chern classes) and some homotopy invariants. The study of holomorphic 
vector bundles is more recent, and the classification problem is of an 
essentially different nature because of the extra structure imposed by holo
morphic functions. Once the topological type of the underlying smooth vector 
bundle has been fixed, one finds in general continuous families of nonisomor-
phic holomorphic bundles. The parameter spaces of these families are called 
moduli spaces. The classification problem thus consists of determining which 
smooth C-bundles carry a holomorphic structure, and then describing the 
moduli space of the possible holomorphic bundles. 

Holomorphic vector bundles on compact Riemann surfaces were studied 
extensively beginning in the 1960's. Then attention turned to higher-dimen
sional manifolds and in particular, there has been a big spurt of recent 
activity concerning holomorphic vector bundles on complex projective spaces, 
the subject of this book. The extent of this activity can be judged from the 
bibliography of this volume, which contains 138 items, about half of which 
date since 1977. 

Why is this subject suddenly so popular? I see three principal reasons. One 
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is the ties with classical algebraic geometry of varieties in projective space. 
Note first, by a well-known theorem of Serre ("géométrie algébrique et 
géométrie analytique") that every holomorphic vector bundle on complex 
projective space carries a unique algebraic structure. Thus the classification 
problem is equivalent to the classification of algebraic vector bundles, so can 
be regarded as a problem in algebraic geometry. The connection with 
classical algebraic geometry can be illustrated best in the special case of rank 
2 bundles on P3. In general, a global section of such a bundle will vanish 
along a subset of P3 of codimension 2, namely a curve. Thus the study of 
such bundles is intimately related to the late 19th century problem of 
classifying all algebraic curves in P3-a problem, by the way, which in many 
respects is still open. 

A second reason for current interest in vector bundles on complex projec
tive spaces is the connection with physics. The so-called gauge theories are 
essentially the study of certain (smooth) vector bundles on complex manifolds 
associated with the real world, and thanks to the Penrose twistor program, 
some of the partial differential equations which arise from mathematical 
physics can be translated into questions about holomorphic vector bundles on 
Pc. This connection is explained for example in Atiyah's talk at the Interna
tional Congress of Mathematicians in Helsinki. While I cannot speak about 
the significance of this connection for physicists, there is no doubt that it has 
raised many interesting questions for mathematicians, and as such has pro
vided a great stimulus to the theory. 

A third reason for current interest in this subject (a reason which is indeed 
necessary for the vitality of any discipline) is the presence of intriguing 
unsolved problems. Just to mention two, it is not known whether there are 
any indecomposable rank 2 bundles on P" f or n > 5, and it is not known 
whether the moduli space of rank 2 mathematical instanton bundles on P3 

with fixed Chern classes is connected. 
One of the authors of this volume (M. Schneider) gave a report in the 

Séminaire Bourbaki (1978/79, exposé 520) on the current state of knowledge 
concerning vector bundles on projective spaces. Indeed, that report could 
profitably be read as an introduction to this book. The book arose out of a 
series of subsequent lectures by Schneider. It gives necessary background and 
many of the basic results of the subject, assuming only a standard knowledge 
of complex manifolds or algebraic geometry with sheaf theory and cohomol-
ogy. In particular, it contains extensive discussion of the splitting type of a 
bundle restricted to a line (a P1) in P", uniform bundles (those for which the 
splitting type is the same on all lines), stable bundles and their variety of 
moduli, and the monads introduced by Horrocks. One particularly nice 
feature of the book is that every section ends with historical comments, 
further results, and open questions. This brings the reader up to date and 
provides a guide for further work. There are practically no new results in this 
book. On the other hand, the authors have gathered their material from many 
sources, which is a great service to the reader. Unfortunately, they sometimes 
omit part of a proof (for example in Vogelaar's theorem, p. 136) so that the 
reader will have to consult the original paper anyway. My only other 
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complaint is that the authors always use the language of complex manifolds 
and holomorphic sheaves, and do not point out that everything they say 
makes sense in abstract algebraic geometry over an algebraically closed 
groundfield k. In fact, with the exception of Chapter II §2 on the generic 
splitting type of a semistable bundle, there is no need even to suppose the 
groundfield of characteristic 0. 
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Elements of soliton theory, by G. L. Lamb, Jr., Wiley, New York, 1980, 
xii + 289 pp., $29.95. 

Until comparatively recently in the history of science, mathematics and 
physics lived in close relation. The advance of physics suggested the develop
ment of new mathematics, and conversely the progress of mathematics fed 
into the way physicists thought about nature. This contact remained strong 
until the 1920's, when it began to ebb, reaching a low in the 1950's. What is 
beginning to bring us together again are two striking developments of science 
in the 1960's-the successful application of Lie group theory and differential 
geometry to elementary particle physics and the theory of solitons. 

The first topic was the result of efforts by a thundering herd. In contrast to 
this 'big science', the theory of solitons was the remarkable creation of a small 
group-Kruskal, Zabusky, Gardner, Greene and Miura-working at Princeton 
(but not in the mathematics or physics department!). That the roots of the 
theory lie in the 19th century work on hydrodynamics of Scott Russell and 
computer studies of solutions of nonlinear differential equations by Fermi, 
Pasta and Ulam in the 1950's has been recounted many times, [1, 2], and will 
not be repeated here. 

The Princeton group produced a complex of original ideas that has had a 
remarkable success and influence in contemporary science. Their theory was 
developed with the traditional tools of the physicaUy-minded applied 
mathematician: classical differential equation theory, the mathematics of 
quantum mechanics, scattering theory, etc. A remarkable quality of their 
work is that it linked 19th century analysis and geometry with some of the 
most modern parts of functional analysis, differential, and algebraic geome
try. 

This book is an admirable attempt by a physicist-applied mathematician to 
present an introductory account of the theory of solitons from some inter
mediate point on the scale of mathematical sophistication. Lamb explicitly 
excludes an attempt to describe the geometric or Lie theoretic side of the 
theory, although his own research work is in this direction. Since a mathema
tician who comes to the subject cold and tries to read this book or the original 
literature [3, 4] will probably have difficulty seeing the forest for the trees, and 
the 'geometric' point of view is valuable precisely for the overall perspective it 


