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THE DETERMINATION OF GAUSS SUMS 

BY BRUCE C. BERNDT1 AND RONALD J. EVANS2 

1. Introduction. Almost every student with a modicum of knowledge about 
geometric series can show that 

P-\ 

2 e2™/p - 0, 

where/? is any integer exceeding one. Suppose that we replace n by nk in the 
sum, where k is an integer greater than one. The task of determining the sum 
then becomes considerably more difficult. In fact, for k = 2, it took Gauss 
several years to accomplish this. Define the Gauss sums § (k, p) = § (k) by 

S(*)-2«2"*,V'> 
n 

where k is a positive integer, p is a prime with p = 1 (mod k\ and 2W 

indicates that the sum on n is over an arbitrary complete residue system 
(mod/?). Closely connected with § (k) is the sum 

G(x)-2x(*)«2"*,/', 
n 

where x is a character (mod/?) of order k. Both S (A:) and G(x) are called 
Gauss sums of order k and are intimately linked by the equalities 

g(k) = 2^ V / , {i + xOO + • • • +x*"1(i)} - s'cGcO- (l.i) 

The first equality in (1.1) is a simple consequence of the fact that the 
sequence {nk}9 1 < n < p — 1, runs through the set of kth power residues 
(mod/?) exactly k times. 

The primary purpose of this paper is to survey the present knowledge on 
the values of the Gauss sums §(k) and G(x), and to convey some of the 
principal ideas used in their determinations. We also briefly discuss more 
general Gauss sums. 

We begin by making some elementary remarks about the values of Gauss 
sums. It is easily verified by direct multiplication that, for nonprincipal x> 

G(x)G(x) - x(-i)/>; (1.2) 
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see, e.g. [80, p. 91]. It follows that for such x, 

| G ( x ) | = V 7 - (1.3) 
Hence, (1.1) implies that 

| 8 ( * ) | < ( * - 1 ) V 7 . (1.4) 
1.1. Quadratic Gauss sums. Let us now look at the case k = 2 considered by 

Gauss. By (1.1), 

Ö(2) = | ( j ) e 2 ^ = G ( x ) , (1.5) 

where here x(n) — (n/p) denotes the Legendre symbol. Replacing n by -n in 
(1.5), we see that §(2) is real or purely imaginary according as p = 1 or 3 
(mod 4). Therefore, from (1.3) and (1.5), 

g ( 2 ) = ( ± V ^ if/> = l (mod4), ( 1 6 ) 

[ ±iVp , if/? = 3 (mod 4). 

In late May of 1801, Gauss conjectured that, in fact, 

8 ( 2 ) - f ^ ' */>sBl(mod4), ( 1 7 ) 

1 iVp , if p = 3 (mod 4). 

On August 30, 1805, Gauss wrote in his diary [63, pp. 37, 57], "Demonstrate 
theorematis venustissimi supra 1801 Mai commemorati, quam per 4 annos et 
ultra omni contentione quaesiveramus, tandem perfecimus." (At length we 
achieved a demonstration of the very elegant theorem mentioned before in 
May, 1801, which we had sought for more than four years with all efforts.) 
Gauss's proof, which is elementary, was published in 1811 [64], [66, pp. 9-45, 
155-158]. In §2, we discuss this proof and a variety of other proofs of (1.7). 

1.2. Jacobi sums. Jacobi sums play a central role in the determination of 
§(k) and G(x) for k > 2. For characters x and \p (mod/?), the Jacobi sum 
/(x, \p) is defined by 

' ( * * ) - 2 x 0 0 * 0 - « ) • (1-8) 
n 

For brevity, set J(x) = Ax> x)- Jacobi sums are related to Gauss sums by the 
basic formula [80, p. 92] 

J(x^) = G(x)G(xP)/G()0P)9 (1.9) 
where x^ is nonprincipal. By the definition (1.8), J(x) lies in Q(e2"i/k). Not 
surprisingly then, it is considerably easier, in general, to determine the 
algebraic shape of J(x) than of G(x). From (1.3) and (1.9), |/(x)|2 — P for 
characters x of order k > 2. This leads to a representation of p as a quadratic 
form. For example, if p = 1 (mod 4) and x n a s order 4, then by (1.8), 
J(x) = a + bi, where a and b are certain rational integers; thus, p = 
\a + bi\2 = a1 + b2, a well-known result of Fermât. As we shall see later, the 

determinations of § (k) and G(x) for k > 2 are effected in terms of parame­
ters of quadratic forms corresponding to Jacobi sums J(\p) for characters \p 
whose orders divide k. 
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13. The central problem. It follows directly from (1.2) and (1.9) that 

G(x)k = <o(X), (1.10) 
where 

k-2 

"(x) = X(~1)P I I /(x, XJ) e Q(e2^k). 

The central problem in evaluating G(x) is to find a simple criterion for 
determining which kth root of <o(x) equals G(x). We have noted that it took 
Gauss over four years to find such a criterion (1.7) in the case k = 2. 
(Observe that (1.6) and (1.10) are equivalent when k = 2.) The problem is 
considerably deeper for k > 2, and it is unsolved for k > 4. The evaluations 
of G(x) and § (k) that are known are generally ambiguous in the sense that 
they involve undetermined kth roots of unity. In some cases, e.g., k = 5, the 
irreducible polynomial P(z) of § (k) over Q can be explicitly given, but no 
procedure is known to identify the root of P(z) = 0 that is equal to % (k). 
(The equation P(z) = 0 is called the period equation, and its k distinct roots, 
called periods, are given by 2w^27r/gw //?, 0 < r < k — 1, where g is any 
primitive root (mod/?).) 

The interesting and important Gauss sums of orders 3 and 4 are investi­
gated in §§3 and 4, respectively. The sums of orders 5, 6, 8, 12, 16, and 24 are 
briefly discussed in §§5-9. At present, little is known about the evaluations of 
Gauss sums of other orders. However, a famous conjecture on the uniform 
distribution of the arguments of Gauss sums (of any order) has now been 
settled; see §10. 

2. Quadratic Gauss sums. 
2.1. Proof of (1.7). We begin by presenting, in essence, Gauss's proof of 

(1.7). For each integer n > 0, define 

(<?)„ = (1 - <?)(! - q1) • • • O " q"), 

where if n = 0, the empty product is understood to equal 1. For 0 < m < n, 
the Gaussian coefficient [n

m] is defined by 

(q)n 
[ 1 ] - (<Ùm{q)n-n 

The Gaussian coefficient [n
m] approaches the binomial coefficient (n

m) as q 
tends to 1. It can be easily shown that [n

m] is a polynomial in q, with the use of 
the following analogue of Pascal's formula 

[:]-
n — 
m -

1 " 
1 . 

+ qm ' n- 1" 
m 

See, for example, Andrews' book [2, §3.3]. 
Gauss defined the polynomials 

ƒ„(<?) = E (-iy 
y-o 

1 < m < n. (2.1) 

n > 0, (2.2) 
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which are related to % (2) by the formula 

g (2) = (-\)(p-l)(p-3)/s^2-l^fp_l(/3)9 (2.3) 

where ft = exp(27ri/p). To prove (2.3), first note that, from the definition of 

Setting a = (p — l)/2, we find that 

J J 

./' 7 

= ^-(^-0/8/ ^W(2), 

where the last equality follows easily from (1.5). Since (a/p) = (~2/p) = 
(_!)(/> - I X P - 3 ) / ^ f o r m u i a (2.3) follows. 

Using (2.1), Gauss established the recursion formula fn(q) = 
(1 - qn~l)fn-2(<l)> n > 2, which immediately implies the product formula 

ƒ*(*)- n o - * * - 1 ) . (2.4) 

Putting n = (p - l ) /2 and # = fi in (2.4), we find that 
O - 0 / 2 (/>-l)/2 

^-i(is)- n (\-^-i)= n o-r2-), 
where y was replaced by (p + l ) /2 - r. Thus, 

( />-l) /2 

/P_i(^)= n p-r(Pr-p-r) 

= pO-**)/*(2i)<'-l>'2 I I rin(2«-//i). 
r - l 

Combining (2.3) and (2.5), we deduce that 
0 - i ) / 2 

§(2) = ( - i ) ^ - 1 ^ - 3 ) / ^ / ) ^ " 0 7 2 I I sin(2w/p). (2.6) 

Since the product of sine functions in (2.6) is positive, (1.7) follows from (1.6). 
2.2. Extensions of (1.7) to composite moduli. By further use of (2.4), Gauss 

proved the following generalization of (1.7) 

M-\ 
^ e2mn2/M _ J 

« = 0 

VM , if M = 1 (mod 4), 
0, if M = 2 (mod 4), 

i VÂf , if M = 3 (mod 4), 

(1 + 0 ^ ? > if M = 0 (mod 4), 

(2.7) 
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where M is any natural number. For complete details of his proof, consult the 
book of Nagell [133]. 

The left side of (2.7) can be viewed as the trace of an M X M finite 
Fourier transform matrix. An interesting discussion of the equivalence of 
(2.7) with the solution of the problem on multiplicity of eigenvalues of finite 
Fourier transforms is given by Auslander and Tolimieri [4, p. 856]. 

Let x be a real, primitive character (mod M). Then 

i -o I A / M , if x(—1) = — 1, 

which is another generalization of (1.7). A proof of this result may be found, 
for example, in the books of Ayoub [5, pp. 317-319], Hasse [73, p. 471], 
Narkiewicz [134, pp. 256-260], and Borevich and Shafarevich [16, pp. 349-
353]. 

Since Gauss's initial determination of § (2), many others have been found. 
We shall now briefly indicate some of these, beginning with the more analytic 
ones. 

23. Analytic proofs of (1.7) and generalizations. The first proof given after 
that of Gauss was discovered in 1835 by Dirichlet [43]-[45], [46, pp. 239-256, 
259-270, 473-496], [47, pp. 287-292]. Dirichlet employed a version of the 
Poisson summation formula, 

2 ' An) = f bf(x) dx + 2 f f bf(x) cos(27rnx) dx, 
a<n<b <* n~\Ja 

where ƒ is continuous and of bounded variation on [a, b], and where the 
prime on the summation sign at the left indicates that if a or b is an integer, 
then only \ f(a) or \ f(b), respectively, is counted. As one would suspect, 
Dirichlet applied this formula with a = 0, b = /?, and f(x) = exp(2mx2/p). 
Dirichlet's method was also later discussed by Kronecker [70]. The books of 
Lang [99, pp. 88-90], Landau [98, pp. 197-199], and Davenport [37, pp. 
14-17] contain nice presentations of Dirichlet's proof. 

In a series of three papers [146]-[148] circa 1850, Schaar used the Poisson 
summation formula to prove and generalize Gauss's result (1.7). In [146], 
Schaar proved (1.7). In [147], he established a reciprocity formula for 
quadratic Gauss sums which generalizes (2.7). This reciprocity formula is now 
known as "Schaar's identity" and is the case b = 0 in (2.8). In [148], another 
generalization of (2.7) is given, but the formulation appears to be incorrect. In 
1852, Genocchi [69] claimed to have given a proof and generalization of 
Schaar's identity, but in Lindelöf's book [112, p. 75], it is pointed out that 
Genocchi's proof is not rigorous. 

Prior to Dirichlet's papers, an alleged proof of Gauss's result (1.7) was 
published by Libri [109]. However, it was pointed out by Liouville [112] that 
Libri's arguments were deficient. This evidently led to a bitter dispute which 
the two men waged in a series of letters [113], [110]. (See Smith's Report 
[165, article 20].) 
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In 1840, Cauchy [28], [29], [30, pp. 152-156] gave a proof based on the 
transformation formula 0(\/z) = Vz 9(z) for the classical theta-f unction 

00 

9{z) = 2 ^nl\ Re z > 0, 
n = -oo 

which can be thought of as an "infinite analogue" of the quadratic Gauss sum 
§ (2). Later proofs and generalizations which use the same idea can be found 
in Kronecker's paper [85] and the books of Krazer [83, pp. 183-193], Bellman 
[10, pp. 38-39], and Eichler [48, pp. 46-48]. In 1919, Hecke [75], [76], 
[77, Chapter 8] generalized Cauchy's method by using multi-variable theta-
functions to establish a reciprocity formula for quadratic Gauss sums over an 
arbitrary algebraic number field. Consult a paper of Barner [8] for references 
to further proofs and generalizations of Hecke's formula. 

Another analytic tool used to determine S (2) is contour integration. The 
first proof by this technique is due to Kronecker [86] and can be found in the 
books of Landau [98, pp. 203-206] and Ayoub [5, pp. 315-317], An especially 
elegant and simple use of the residue theorem to evaluate § (2) has been given 
by Mordell [127], [128]. A similar approach has been given by Siegel [160], 
[163, vol. Ill, pp. 334-349], and is presented in the books of Apostol [3, pp. 
195-200] and Chandrasekharan [34, pp. 34-39]. In fact, these books contain 
special cases of the following reciprocity formula [160] for generalized 
quadratic Gauss sums 

kl-i M-i 
Y e*i(an2 + bn)/c _. | c / all/2em(\ac\-b2)/(4ac) ^ e~m(cn2 + bn)/a QS) 

where a, b, and c are integers with ac =£ 0 and ac + b even. Observe that 
(2.8) yields (2.7) when a = 2, b = 0, and c = M. As we previously indicated, 
the case b = 0 of (2.8) is Schaar's formula. 

The last analytic proofs that we mention are those of Genocchi [68] and 
Weber [176] which utilize the Abel-Plana summation formula ,79, p. 274] 

2 A.) - ±M * ƒ "/M * + ,}"*»-*•-*> •, 
„=o 2 Jo A) elmy - 1 

where ƒ is suitably restricted. An account of Weber's proof appears in 
Lindelof s book [111, pp. 73-75]. 

2.4. Trigonometric proofs of (1.7). We turn to a class of determinations of 
§ (2) that depends upon properties of trigonometric functions and sums. Most 
of the proofs are fairly elementary in nature. The principal idea in these 
proofs is to deduce (1.7) from (1.6) by using trigonometric inequalities to 
show that the real and imaginary parts of S (2) exceed -V/? in, respectively, 
the cases/? = 1 and 3 (mod 4). The first proof of this type was given in 1896 
by Mertens [125] and can be found in Landau's book [98, pp. 213-218]. 
Landau himself [97] gave a very short, but less elementary proof based upon 
trigonometric sums. By approximating S (2) by an integral, van der Corput 
[36] offered a fairly elementary determination. Bambah and Chowla [7] 
simplified van der Corput's work. An elegant proof by trigonometric methods 
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was found by Estermann [51]; an account of this proof appears in Chowla's 
book [35]. 

2.5. Algebraic proofs of (1.7) and generalizations. We now indicate some 
elementary algebraic proofs. One was given in 1840 by Cauchy in the same 
paper [28] that contains his analytic proof. Cauchy's idea is to show that 

8(2) = /w2v7 (mod(l - £)V7 ), 
where fi = exp(27ri/p) and m = (p — l)/2, by using (1.5) together with 
Euler's criterion, the binomial theorem, and elementary product formulas 
such as 

m 

n{(^-^)//}=v7. 
y - l 

It is interesting to note that both of Cauchy's proofs in [28] have inspired 
far-reaching generalizations of considerable significance. We have already 
pointed out that Cauchy's analytic proof led to Hecke's reciprocity law for 
Gauss sums over algebraic number fields. Cauchy's algebraic proof has led to 
the evaluation of the cubic Gauss sum (discussed in the next section). 

An algebraic proof in the same spirit as Cauchy's was given in 1856 by 
Kronecker [84]. A remark of Dedekind [39] produced a slight simplification. 
The Cauchy-Kronecker proof can be found in the books of Bachmann [6, 
pp. 107-111], Weber [177, pp. 622-626], and Hasse [73, pp. 473-477]. Proofs 
along the same lines are given in papers of Mordell [129] and Carlitz [23]. 

Schur [150], [151, pp. 327-333] obtained an elementary proof using de­
terminants of matrices whose elements are roots of unity. This proof is also in 
Landau's text [98, pp. 207-212]. Waterhouse [175], [134, pp. 256-258] sub­
stantially simplified Schur's work. Carlitz [22] gave another proof that em­
ploys determinants. 

Shanks [153] has given a very short, elementary determination of S (2). His 
proof is based on the ingenious identity 

In n-\ p 
y xJ(J-i)/2 = y lnxjX2n+\)9 

7 - 1 y - 0 Pj 

where Pn - 11%^(1 - x2s)/(\ - x2s~1)). 
Finally, we mention the recent work of Bressoud [18], [19] in the area of 

basic hypergeometric series, which takes us full circle back to Gauss's original 
proof. Bressoud [18, Corollary 2.1] has found a multiple sum analogue of (2.4) 
for which (2.4) is a special case. He has also found a formula [18, Corollary 
1.1] which equates a certain y-fold sum with a finite product; the case j = 1 
leads [19] to another evaluation of §(2) by an argument similar to that of 
Gauss. 

3. Cubic Gauss sums. 
3.1. Irreducible polynomial of S (3). In his monumental Disquisitiones Arith-

meticae [67, article 358], Gauss exhibited the irreducible cubic polynomial of 
§ (3) over the rational numbers. He obtained this polynomial by studying the 
cubic periods. We now indicate a simpler approach based on Jacobi sums. 
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Throughout this section, let x b e a character (mod/?) of order 3, where 
p = 1 (mod 3). It can be shown that (see, e.g., [13, Theorem 3.4]) 

2/(x) = r + 3fiV3 , (3.1) 

where r and \t\ are integers uniquely determined by 

4p « r2 + 271\ r = 1 (mod 3). (3.2) 

We will show that the irreducible polynomial of % (3) is 

x3 — 3px — pr, (3.3) 

where r is defined by (3.2). 
From (1.1), 

g ( 3 ) = G ( X ) + G(x). (3.4) 
Thus, by (1.2), 

§3(3) - G3(x) + G 5 ^ + 3pS(3). (3.5) 

From (1.10), 

^3(x)=Mx), (3.6) 
and so by (3.1) and (3.5), 

g3(3)=/>r + 3pg(3). 

Therefore, (3.3) is the irreducible polynomial of S (3). 
This derivation of (3.3) is similar to that given in Hasse's book [73, p. 488]. 

Other derivations are presented in the papers of Lebesgue [102], Cayley [31], 
Sylvester [168], Pellet [145], and Carey [21], and in the books of Legendre 
[105, pp. 196-198], Bachmann [6, pp. 209-213], Mathews [118, pp. 219-228], 
Weber [177, pp. 628-631], and Fricke [60, pp. 438-440]. _ 

From (3.4) and (1.4), we see that S (3) lies in the interval [-2V/? , 2\Tp ], 
and it can be similarly shown that the other two zeros of x3 — 3px — pr also 
lie in this interval. In fact, it is not difficult to see that each of the intervals 
(-l\Tp , ~Vp), ( - V ^ , V/? ), and (\fp , l\Tp ) contains exactly one zero 
of x3 — 3px — pr. In the early 1840's, Lebesgue [103, p. 70] and Kummer [93] 
raised the following question: Which of these three intervals contains ê(3)? 
An equivalent question, in view of (3.4) and (3.6) is: Which of the three cube 
roots of pJ(x) equals G(x)? While criteria have been put forth [118, 
pp. 224-228], [24] to resolve the ambiguity, none have yet been found which 
are comparable in elegance or simplicity to Gauss's criterion (1.7) for §(2). 
Nevertheless, in the last decade, some remarkable progress, which we next 
describe, has been made. 

3.2. Location of cubic Gauss sums via elliptic functions. Let &(z) be a 
Weierstrass ^-function with^ r(z)2 = 4$>(z)3 — 1. Thus, 

ZZ 0 ^ G ( / \ ( Z - W ) « / 

where U = {9m + 0ne2™/3: m, n G Z} is the lattice of periods of p9 with 0 
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equal to the least positive period. Let R be any "third-set" of residues (mod/?) 
chosen such that Jlr&Rr = -1 (mod/?). (A third-set S (modp) is a set of 
(/? — l ) /3 residues (modp) such that S \J Su \J Su2 is a reduced residue 
system (mod/?), where <o is a primitive cube root of 1 (mod/?).) Cassels [25] 
constructed the product 

H(x) = - II tp(rO/J(X)), 

which does not depend upon the choice of R. He observed that H3(x) = 
/~2(x). Thus, in view of (3.6), G3(X) = (p1/3J(x)H(x)?- Cassels [25, equation 
(4.2)] conjectured that, indeed, 

G(X) = Pl/3J(X)H(X), (3.7) 

where /?1 / 3 > 0. Equivalent conjectures are discussed in [27]. Using some 
ideas of Cassels, Matthews [119], [120] proved Cassels' conjectures in 1978. 
The proof combines a variety of ingredients such as Stickelberger's computa­
tion of the first term in the local expansion of G(x), the theory of elliptic 
curves and complex multiplication, Weil pairings, and Lubin-Tate theory. 
Note that Gauss connected the quadratic Gauss sum with a product of 
(/? — l) /2 values of a trigonometric function in (2.6), while in (3.7), Cassels 
and Matthews connected the cubic Gauss sum with a product of (/? - l ) /3 
values of an elliptic function #>(z). 

A completely elementary algorithm for computing the right side of (3.7) has 
been devised by McGettrick [123], [25, §4]. This algorithm involves little more 
than the counting of lattice points within a triangle whose vertices are quite 
simply determined from the value of /(x). 

Formula (3.7) does not appear to shed any light on the famous statistical 
question of how the arguments of G(x) are distributed. We next turn to this 
problem. 

33. Distribution of cubic Gauss sums: Rummer's conjecture. The first 
mathematician to extensively examine the values of Arg G(x) was Kummer 
[93], [94], [96, pp. 143-163]. He found that the 45 values of |Arg G(x>\ 
corresponding to the 45 primes p < 500 with /? = 1 (mod 3) fall in the 
intervals / , = (2IT/3, TT), I2 = (?r/3, 2TT/3), and 73 = (0, TT/3), respectively, 
7, 14, and 24 times. Kummer described his findings as follows [94, p. 353], 
[96, p. 157], "Omnes numeri primi, formae 6n + 1, talimodo in tres classes 
dividunter, atque ex 45 numeris primis infra 500 ad classem primam pertinent 
7, ad classem secundam 14, ed ad classem tertiam 24, quorum numerorum 
ratio proxime exprimitur per 1:2:3; nee improbabile est, eandem rationem 
etiam pro majore numero semper servatum iri." (All prime numbers of the 
form 6« + 1 are divided into three classes such that of 45 prime numbers 
below 500, seven belong to the first class, 14 to the second class, and 24 to the 
third class. The ratios of these numbers are expressed approximately as 1:2:3, 
and it is not improbable that the same ratios will always hold with respect to 
a larger number as well.) Kummer's tenuous speculation has been elevated to 
what is now called "Kummer's conjecture". Because of the prominence of 
this conjecture, the cubic Gauss sum is often referred to as Kummer's sum. 
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3.4. Resolution of Rummer's conjecture. Von Neumann and Goldstine 
[135] extended Kummer's investigations by considering primes p with p < 
10,000 and p = 1 (mod 3). Their calculations showed that the ratios of the 
number of occurrences of |Arg G(x)| in the intervals Iv I2, and 73, respec­
tively, are nearly 2:3:4 in contrast to 1:2:3. Still further calculations of Beyer 
[15], E. Lehmer [107], Cassels [24], Fröberg [61], and Tabakova [169] suggest 
that perhaps the values of G(x)p~l/2 are uniformly distributed on the unit 
circle, despite the apparent tendency of the initial values to he in the right 
half-plane. (Shanks [154] and Cassels [26] have written interesting reviews of, 
respectively, the calculations of Fröberg and Tabakova.) An unsuccessful 
attempt to prove the uniform distribution of Arg G(x) was made by 
Vinogradov [174] in 1967. In 1974, using Hecke's theory of Grössencharaktere 
and L-functions, Moreno [130] proved the weaker result that the values of 
G3(x)p~3/2 are uniformly distributed on the unit circle. In [140]-[142], Patter­
son developed the pioneering work of Kubota [90]-[92] and established a 
cubic analogue of the classical theta-function. This enabled Patterson [143] to 
prove that the arguments of more general cubic Gauss sums (mod a) are 
uniformly distributed, where a runs through the squarefree algebraic integers 
in Q(e2™/3) that are congruent to 1 (mod 3). (These sums are defined by 
(10.1) with K = Q(e2™/3)91 = 0Ka, a = a~\ and v// equal to the cubic residue 
symbol (mod a) in K.) By combining the techniques of Patterson with a 
powerful new method of Vaughan [173] for estimating certain trigonometric 
sums, Heath-Brown and Patterson [74] proved in 1979 that the values of 
G(x)P"l/2 are, indeed, uniformly distributed on the unit circle. Thus, 
Kummer's conjecture has finally been disproved after more than 130 years. 

Despite the equidistribution of the values of G(x)p~l/2 on the unit circle, it 
is likely that the average value of Re{G(x)P~l/2} f or p < x is positive for 
large x. Indeed, a conjecture of Patterson [143, p. 127] supported by numeri­
cal evidence implies that 

as x tends to oo. It is then perhaps not surprising that the calculations of 
Kummer and later mathematicians showed a tendency for G(x)p~1/2 to lie in 
the right half-plane. 

4. Quartic Gauss sums. 
4.1. Irreducible polynomial of S (4). The irreducible polynomial for S (4) 

over the rational numbers was essentially determined in 1828 by Gauss 
[65, articles 15-22], [66, pp. 65-92], although the polynomial was not ex­
plicitly exhibited. This polynomial can, however, be found in Legendre's 
textbook [105, pp. 199-205], published just two years later. The polynomial 
also appears in later papers of Lebesgue [102], [104], Cayley [31], Sylvester 
[168], Scott [152], Pellet [145], and Carey [21]. 

We now show how Jacobi sums can be used to determine % (4) up to one 
sign ambiguity. Throughout this section, let x denote a character (mod/?) of 
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order 4, where/? = 1 (mod 4). The quartic Jacobi sum J(x) has the value (see, 
e.g., [13, Theorem 3.9]) 

J(X) = a + bi, (4.1) 

where a and \b\ are integers completely determined by 

p = a2 + b\ a=-\ (mod 4). (4.2) 

By (1.1) and (1.7), 

g ( 4 ) = V 7 + G(x)+G(x) . (4.3) 
By (1.9), 

G2(X) =^P J(X)< (4.4) 

Using (1.2), (4.4), and (4.1), we find that 

(G(X) + G(x)}2 = 2a V 7 + 2X(-l)/>. (4.5) 

Since -1 is a quartic residue (mod/?) if and only if p = 1 (mod 8), x ( - l ) = 

(2//?). Thus, by (4.3) and (4.5), 

8(4) = V 7 ±^2(2/p)p + 2aV^ 

= j Vp ±^2/? + 2a V 7 , if/? = 1 (mod 8), . 

[ V]p ± i\J2p - 2aVp , if p = 5 (mod 8). 

Note that S (4) is real or nonreal, according as p = 1 or 5 (mod 8). This 
derivation of (4.6) is similar to that found in Hasse's book [73, pp. 489-494]. 
Special cases of (4.6) have been simply derived in [108] and in [12]. 

Mathematicians have attempted for over a century to discover a simple 
criterion for determining the ambiguous sign in (4.6), or equivalently, by (4.3) 
and (4.4), for determining which square root of pl//2J(x) equals G(x). The past 
few years have witnessed spectacular progress leading to a complete solution 
of this problem. 

4.2. Location of quartic Gauss sums via elliptic functions. Let p(z) be a 
Weierstrass ^-function with $>'(z)2 = 4p(z)3 — p(z), with period lattice 
{$(m + ni): m, n G Z}, where 0 is the least positive period. Matthews [121] 
constructed the product 

G P - 1 ) / 2 

*(X)- II v'WJià) 
r— 1 

and observed that h\x) = -^~3(x)- Thus, from (4.4), 

G\X) = {^-5-2fr)/V1/4/»(x)/2(x)}2, 
since it is easily deduced from (4.2) that (p — 5 — 2b)/A is odd. Matthews 
[121] proved that, in fact, 

G(x) = Bi<*-s-2Wy/*h(x)J2(x), (4.7) 
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where p1/4 > O and B = B(x) is defined by 

B=±l, u = £(£-^-L)! (modp). 

Note that (4.7) is the quartic analogue of (3.7). An equivalent version of (4.7), 
expressed in terms of the elliptic sn function instead of the ^-function, was 
conjectured by McGettrick [124] in 1972. 

4.3. Explicit elementary formulae for quartic Gauss sums. Loxton [114], 
[115, §§3C, 4B], [116] has formulated conjectures relating cubic and quartic 
Gauss sums to elementary products of sums of roots of unity. Such products 
are analogous to the one in (2.5) connected with § (2). 

In 1977, Loxton [115, §4A], [116] conjectured the following explicit formula 
for the quartic Gauss sum G(x) (in a slightly different form): 

G(x) - c(g)(-i)(é2+2»>/y/v'/*(x), (4.8) 

where/?1/4 > 0, Re / 1 / 2 (x) > 0, (|&|/|a|) denotes the Legendre-Jacobi sym­
bol, and C is defined by 

C = ± 1, C = ^ ( £ y - ^ ) ï (modp). (4.9) 

Since i{-J(x)}x/1 = (sgn b)Jl/2(x)> where both square roots have positive real 
parts, it follows from (4.3) and (4.6) that (4.8) is equivalent to the remarkably 
elegant formula 

v ^ + c ( H ) ( - i ) ( * 2 + 2 | 6 | ) / V 2 / ' + 2aVp • i fp =l (m o d 8>> 

V7 + c( |^ |V-l)<* 2 + 2 |* l> / 8^p-2aV7 , Up = 5 (mod 8), 

(4.10) 

where C is defined by (4.9). (We are grateful to E. Bender for simplifying our 
original version of (4.10).) Using the theory of modular forms, Matthews [121] 
proved Loxton's conjecture (4.8) by deriving it from (4.7). Thus, almost 175 
years after Gauss's determination of S (2), there has at last been found a 
formula for a nonquadratic Gauss sum which compares with Gauss's formula 
in simplicity and elegance. 

Those interested in computing numerical values of § (4) for large primes p 
may be disappointed with (4.10), since it requires O(p) operations to compute 
C from (4.9), whereas it requires O(p) operations to evaluate the sum S (4) 
directly. 

4.4. Distribution of quartic Gauss sums. Calculations of E. Lehmer [107] in 
1956 tended to support the conjecture that the values of G(x)p~l/2 are 
uniformly distributed on the unit circle. (See also Hasse's book [73, article 20, 
§6].) This conjecture has recently been proved, as we indicate in §10. 

Some conjectures of Yamamoto [182, p. 212] on the distribution of 
G(x)p~1/2 appear to be still open. However, Heath-Brown and Patterson 
(personal communication) have pointed out that most of them amount to 

8(4) -
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assertions of the type "Re L(l, x) > 0 for all quartic characters x (mod/?)" 
and are hence false. 

5. Quintic Gauss sums. In this section, we exhibit the irreducible quintic 
polynomial P(z) of § (5) over the rational number field. 

Let x b e a character (mod/?) of order 5, where p = 1 (mod 5). It was 
essentially known to Dickson [41, p. 402] that 

4/(x) = x + 5wV5 + Ü/V50 - 10V5 + Î//V50 + 10V5 , 

where x9 w9 w, and v are integers such that 

16/? = x2 + \25w2 + 50Ü2 + 50w2, xw = v2 - u2 - 4uv9 (5.1) 

and x = 1 (mod 5). For a fixed prime p, a solution (x, w9 v9 u) to (5.1) is 
"essentially unique" in that there is a simple prescription for obtaining the 
other solutions from it. Thus, there are eight solutions altogether, given by 
±(x, w, v, w), ±(x9 w, -t>, -w), ±(x9 -w, w, -t)), and ±(x9 -w9 -w, v). Given 
any solution (x9 w9 v9 ü) to (5.1) with x = 1 (mod 5), the irreducible poly­
nomial of § (5) is 

P(z) = z5 - lOpz3 - 5pxz2 + ^p(4p - x2 + \25w2)z 

+ f {8pjc - x3 + 625W(D2 - u2)}. (5.2) 

This formula for P{z) can be established by using cyclotomy, as Gauss did in 
the cubic case. Various forms of (5.2), associated with different parameteriza-
tions, appear in the literature. The form given here was given by Lehmer 
[106, equation (10)] (where a factor/? was inadvertently omitted). 

Legendre [105, pp. 205-213] and Cayley [32], [33] initially made progress in 
determining P(z). In 1886, Scott [152] found all of the coefficients of P(z) 
except the constant term. In 1887, Tanner [170] calculated the constant term, 
and therefore P(z) was finally determined. Carey [21], Glashan [70], and 
Burnside [20] also derived various forms of P(z). 

With the aid of (1.10) and the formulae for quintic Jacobi sums found in 
[53], G5(x) c a n b e evaluated in terms of the parameters in (5.1). Ishimura [81] 
evaluated G5(x) m terms of parameters in a partition of p that is more 
complicated than that in (5.1). 

6. Sextic Gauss sums. The irreducible polynomial of § (6) over the rational 
numbers was first exhibited by Smith [164] in 1880 with no proof. A proof 
was given somewhat later by Carey [21]. A short discussion of sextic Gauss 
sums appears in Hasse's text [73, pp. 489-490]. We now describe an explicit 
evaluation of § (6) given in [13, Theorem 3.8] by means of Jacobi sums. 

Let x denote a character (mod/?) of order 3, where /? = 1 (mod 6). Then 
[13, Theorem 3.3] 

x(2)/(x) - x + /rV3 , 
where X and \Y\ are integers uniquely determined by the conditions 
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X s -1 (mod 3) and/? = X2 + 3 72. If 3+ y, define e, Ô e { ± 1} by 

e = I y | (mod 3) and ô - sgn{(82(3) - p)(X + e| Y\)}. 

Then 

8(6) = 

g( 3 ) + l f î l { g 2 ( 3 ) _ i p } , i f 3 |y , 

0(3) + - ^ {4/> - 02(3) + Ô§(3)y/l2p - 3S2(3) }, if 3-J-7. 
2/? 

We remark that 3| Y if and only if 2 is a cubic residue (mod/?). This is a result 
of Gauss. 

7. Octavic Gauss sums. We describe next an explicit evaluation of §(8) 
given by the authors [13, Theorem 3.18]. 

Let x b e a character (mod/?) of order 8, where /? = 8 / + 1. From 
[13, Theorem 3.12], 

x(4)/(x) - * + uNî, 
where c and \d\ are integers uniquely determined by the conditions c = -1 
(mod 4) and/? = c2 + 2</2. Then 

8(8) = 0(4) ± { 2 ( - l / ( V ? + c)(2V? + (- l)J / 2{8(4) - V ^ })} 1 / 2 . 

(7.1) 

Note that S (8) is real for/? = 1 (mod 16) and nonreal for/? = 9 (mod 16). No 
simple criterion for computing the ambiguous sign in (7.1) is known. Note, 
however, that 8(4) can be determined unambiguously by (4.10). 

8. Duodecimic Gauss sums. The sum 8(12) has been determined in 
[13, Theorem 3.20]. Let /? = 1 (mod 12). Let a* = a if 3 | a and a* - -a if 
31 a, where a is defined by (4.1). Then 

8(12) = §(6) + 8(4) - V 7 ± /?"1/28(3){2(2//?)/? + 2a*V^ }1/2.(8.1) 

No simple criterion for resolving the ambiguous sign in (8.1) is known. 

9. Bioctavic and biduodecimic Gauss sums. The sums 8(16) and 8(24) have 
been explicitly evaluated up to several sign ambiguities. The formulae are too 
complicated to present here. Evaluations of 8(16) and 8(24) were accom­
plished by Evans [55] and Berndt and Evans [13, Theorem 3.32], respectively. 

10. General remarks. Formulas (3.7) and (4.7) give unambiguous evalua­
tions of the cubic and quartic Gauss sums G(x) in terms of elliptic functions. 
At the end of [121], Matthews remarks that a paper of Kubota [89] gives a 
hint that similar evaluations for Gauss sums of higher orders might arise from 
the theory of complex multiplication of abelian varieties. 

We indicated in §3 how Heath-Brown and Patterson [74] disproved the 
Kummer conjecture by showing that the values of G(x)p~1/2 are uniformly 
distributed on the unit circle, where G(x) is the cubic Gauss sum. These 
authors [74, §1] state that the theory of Eisenstein series on metaplectic 
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groups has, in fact, led to a proof of the uniform distribution of G(x)P,1//2 f° r 

Gauss sums G(x) of any higher order. See [144] for further details. 
It is well known that the general Gauss sum ^n(modm)^(n)e2vin^m for a 

character \p (mod m) can be expressed, by certain reduction formulas 
[73, §20], [37, pp. 67-69, 148], in terms of the Gauss sums G(x) = 
2„ (mod q)X(n)el7Tin/qi where q is a prime power dividing m and x is a primitive 
character (mod q). The problem of evaluating the Gauss sum G(x) is ex­
tremely deep only when q is a prime. In fact, for composite prime powers q9 

Odoni [139] has given an elementary, unambiguous evaluation of G(x). For 
example, he has shown that G(x) = pe2"i/p when q—p2 and/? is prime. 

The Gauss sums in the preceding paragraph are special cases of the Gauss 
sums in algebraic number fields K9 defined by 

2 \p(x)exp(2m TrK/Q(ax))9 (10.1) 
x (mod / ) 

where I is an ideal of the ring OK of integers of K9 \p is a character on the 
group of reduced residue classes in OK (mod ƒ ) extended so that \p(x) = 0 if x 
is not prime to /, and a E I~lD~\ where D~l is the inverse different of K 
over Q, i.e., 

Dl = {y ŒK:TrK/Q(yOK)cZ). 

Some properties of these sums are given in the book of Narkiewicz [134, 
p. 252]. 

Let q = pr
9 where p is prime and r > 1, and let x be a character on the 

finite field GF(q). The Gauss sum Gr(x) o v e r GF(q) is defined by 

Gr(x) = 2 x(ct)e2"i(aP+«p2+ * ' * + ^ > ^ . 
a G GF(q) 

Of course, GY(x) is the Gauss sum G(x) (mod/?). Stickelberger [167] investi­
gated Gr(x) m 1890, and he gave its prime ideal factorization. See also Lang's 
texts [99], [100]. Jacobi sums over GF(q) had already been factored into prime 
ideals in 1856 by Kummer [95], [96, pp. 583-629]. 

Let K = Q(e27Ti/k) for a prime k > 2, and let P be a prime ideal prime to k 
in the ring of integers OK. Eisenstein in essence discovered in 1850 that the 
A:th power of a Gauss sum of order k (cf. (1.10)) over the finite field OK/P9 

by virtue of its prime ideal factorization, could be extended to act as (in 
modern language) a Hecke character on AT. This was the basis for the 
beautiful Eisenstein reciprocity law (see papers of Eisenstein [49], [50, 
pp. 712-721] and Weil [180, p. 260]). Weil later showed how to extend general 
Jacobi sums over finite fields to act as Hecke characters on arbitrary abelian 
extensions of Q [179], [181]. See also Deligne's notes [40, p. 168]. The 
interpretation of Jacobi sums as Hecke characters provides an important link 
between Gauss and Jacobi sums and the modern theory of L-functions and 
zeta functions [179]-[181]. 

The number of solutions of certain equations in finite fields (and hence 
also the zeta functions of the corresponding varieties) can be explicitly 
computed with the use of Gauss sums. Elementary expositions may be found 
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in the papers of Weil [178] and Joly [82, Chapters 6, 9], in the books of 
Ireland and Rosen [80, Chapters 10, 11], Schmidt [149, Chapter 4], and more 
briefly in the books of Lang [100, Chapter 1] and Borevich and Shafarevich 
[16, Chapter 1]. 

We now turn to the question of evaluating the Gauss sums Gr(x) over 
GF(q), where, as before, q = p'\ Let A: be a positive divisor of p — 1 and let \p 
denote a character on GF(q) of order q - 1. Then i ^ - 1 ) / * can be viewed as 
a character (mod/?) of order k, by restriction to GF(p). A famous theorem of 
Davenport and Hasse [38, (0.8)], [80, p. 147] states that 

Gr(^-l)/k) = ( - l ) r " 1 G r (^ - 1 >/*) . (10.2) 

(The counterpart of (10.2) for Jacobi sums over GF(q) had already been 
discovered in 1915 by Mitchell [126, p. 176].) Thus, an evaluation of the 
Gauss sum (mod/?) of order k yields an evaluation of the Gauss sum over 
GF(q) of order k. For example, if x has order 2, then by (10.2) and (1.7), 

G ( X ) = | ( - 1 ) r " 1 ^ ' i f / ' s i (mod 4), 
I - (-i)rVq , if/? = 3 (mod 4). 

If x has order k and it happens that k\r, then in view of (1.10) and (10.2), the 
value of the Gauss sum Gr(x) c a n De found in terms of the values of Jacobi 
sums (mod/?). Examples are given in [132] and [122]. 

Suppose now that x has order m, where m^(p — 1). Then (10.2) cannot, in 
general, be used to evaluate Gr(x)- Nevertheless, it is possible to determine 
Gr(x) m some special circumstances. For example, assume that pt = -1 
(mod m) for some positive integer t, which we assume is minimal. Then/? has 
order It (mod m), and so r = Its for some integer s. Stickelberger [167, §§3.6 
and 3.10] showed that 

GÂx)J-^:_x if2K2+G>' + i)M ( 1 0 3 ) 

[ ( - l ) 5 lVq , otherwise. 

See also [9]. Evaluations of Gr(x) m other special cases may be found in 
[122, equation G10], [14, §7], [58], and [52, Theorem 4]. These evaluations, 
unlike those in (10.3), generally contain ambiguities. 

Another beautiful formula of Davenport and Hasse is their product for­
mula for Gauss sums [38, (0.9)] 

Gr{xm) - Xm(m)GXx) n - ^ , 

where x and t// are characters of GF(pr) such that $ has order m. This 
formula has proved useful in many contexts, e.g., in the theory of cyclotomic 
numbers [131, p. 189]. No elementary proof is known (but see [14, §8] for an 
elementary proof in the case that m is a power of 2). Further formulae 
involving products of Gauss sums may be found in the papers of Boyarsky 
[17, p. 368], Evans [59], and Helversen-Pasotto [78]. (On the last line of p. 368 
of [17], there should be no exponent /; in fact, the misprint (Teich l)la(q — 1) 
should be corrected to (Teich l)a(q~l).) 
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Two combinatorial applications of the evaluations of Gauss sums will be 
mentioned. First, Gauss sums over finite fields are useful in computing weight 
distributions of cyclic codes [122], [137]. Secondly, Gauss sums (mod/?) have 
been used to study power residue difference sets (mod/?) [13, §5], [55], [56]. 

We now list a few additional topics in number theory in which Gauss sums 
have played an important part: functional equations for Dirichlet series 
[155, pp. 90-95]; Waring's problem [5, Chapter 4]; evaluation of Gauss sums 
in terms of the p-adic gamma function [17], [72], [101]; cubic and quartic 
reciprocity laws [165, pp. 76-92], [80, Chapter 9]; rational reciprocity laws 
[57]; and criteria for residuacity [54]. See also the lists of references in [54], 
[57]. 

Some interesting generalizations of Gauss sums can be found in the papers 
of Berndt [11], Stark [166], An [1], Siegel [156]-[162], [163, vol. I, pp. 326-
405, 469-548, vol. Ill, pp. 85-91, 239-248, 373-435, 443-458] (Gauss sums 
associated with forms of degree > 2); Niederreiter [136], [138, §8] (Gauss 
sums for linear recurring sequences); Tsao [171], [172, §10] (Gauss sums over 
finite algebras); Martinet [117, pp. 38, 48], Fröhlich [62] (Galois Gauss sums); 
and Kubert and Lang [88] (Gauss sums over Cartan groups). 

A nice exposition detailing advances up to 1977 in the determination of 
cubic and quartic Gauss sums has been presented by Loxton [115]. See [42, p. 
38] for several classical references on Gauss sums of orders 3-6. Of all the 
textbooks on number theory, Hasse's [73] perhaps contains the most informa­
tion on Gauss sums. A thorough treatment of theorems of Stickelberger and 
Hasse-Davenport for Gauss sums over finite fields is presented in Gras's 
exposition [71]. Gauss sums and their generalizations are pervasive in number 
theory, and we have mentioned here only a small fraction of the instances 
where they appear. Further references can be found in the book of Narkie-
wicz [134, p. 291]. 

We are very grateful for several helpful comments supplied by S. J. 
Patterson. 

Note added in proof. In connection with the paragraph following (2.7), it 
may be remarked that eigenvector decompositions for the finite Fourier 
transform (Schur's matrix) have been given by McClellan and Parks [188] and 
by Morton [189]. Regarding §2.3, note that in Eichler's book [184, p. 137], a 
reciprocity formula for Gauss sums attached to quadratic forms is proved 
from the transformation formula for the theta-function. In connection with 
the paragraph preceding (10.1), note that Joris [186] has shown how the 
functional equation for Dirichlet L-series can be used to evaluate imprimitive 
Gauss sums in terms of primitive ones. Regarding the two paragraphs 
following (10.1), note that conductors of Gauss sums as Hecke characters 
have been investigated by Schmidt [190]. To the list of papers near the end of 
§10 giving interesting generalizations of Gauss sums, one should add the 
papers of O'Meara [187] and Jacobowitz [185], which use Gauss sums over 
lattices to classify local integral quadratic (respectively, hermitian) forms. 
Also, Cariitz [183] has evaluated a character sum which generalizes a cubic 
Gauss sum over GF(2n). 

Using an estimate for generalized Kloosterman sums due to De Ligne 
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[40, p. 219], one can easily show that 

X 

as/? tends to oo, where k is an arbitrary, fixed natural number and where the 
sum is over all characters x(mod p). In particular, it follows that the arguments of 
the Gauss sums G(x) are asymptotically uniformly distributed asp tends to °° [191]. 
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