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DIFFERENTIABLE DYNAMICAL SYSTEMS 
AND THE PROBLEM OF TURBULENCE 

BY DAVID RUELLE 

1. Conservative and dissipative dynamical systems. The mathematical study 
of differentiable dynamical systems has its origin in the desire to understand 
the time evolutions which occur in nature. This relation to physical reality has 
exercised a strong influence on the progress of the subject. Other strong 
influences resulted from the internal development of mathematics and 
physics. 

The time evolutions which one observes in nature yield two large classes of 
dynamical systems. On one hand we have frictionless mechanical systems, or 
conservative systems. On the other hand we have all kinds of natural systems 
where some "noble" form of energy is converted to heat; these are the 
dissipative systems. 

Classical mechanics-the study of conservative systems-was initiated by 
Isaac Newton and has played a central role in the development of Natural 
Philosophy. In particular it led to the Méthodes nouvelles de la mécanique 
céleste of Henri Poincaré, and later to the solution of small denominator 
problems by Kolmogorov, Arnold and Moser. The importance of classical 
mechanics is due to the existence of nontrivial conservative systems-those of 
celestal mechanics-which can be investigated with extreme precision both 
observationally and theoretically. 

The dissipative systems have a priori no less interest than the conservative 
ones. Mathematically they are more general; physically they have widespread 
occurrence, and display a great variety of phenomena. Unfortunately, dissipa­
tive systems do not obey, with great precision, laws as simple as those of 
celestial mechanics. They are usually continuous systems, requiring an infinite 
number of parameters for their description. Because of these and other 
difficulties, a detailed dynamical study of dissipative systems is taking place 
only now. 

2. Viscous flows. Diffusion of heat, chemical reactions, heating of an 
electrical resistor, are examples of dissipative phenomena. So is the flow of a 
viscous fluid, where internal friction dissipates mechanical energy into heat. 

Viscous flows are among the most remarkable natural phenomena. 
Whirlpools of the river, waves of the sea, dancing flames of the fire, twisting 
shapes of the clouds have enchanted poets and fascinated philosophers. To 
the scientist also viscous flows have something to offer, since understanding 
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hydrodynamic turbulence is a major unsolved problem of theoretical physics. 
For historical reasons, however, hydrodynamics has fared rather differently 
from celestial mechanics. 

The flow of viscous fluids is described with reasonable precision by the 
Navier-Stokes equation. This equation has been known for some time, but the 
mathematical tools and the experimental techniques needed for a detailed 
study of viscous flows are relatively recent. The mathematical theory of the 
Navier-Stokes equation begins only in the 1930s with the work of Jean Leray. 
The experimental study of viscous flow (in particular turbulent flow) is very 
difficult, and adequate techniques like laser anemometry are only a few years 
old. 

Since the time of Newton it has become progressively more difficult for the 
same person to be a good mathematician and a good physicist. One man who 
showed extended competence was G. I. Taylor, who made a remarkable 
theoretical and experimental study of the flow between rotating concentric 
cylinders [69]. In general, however, the divorce between physics and mathe­
matics has been unfavorable to the progress of hydrodynamics. At the same 
time, mathematicians were attracted by the more fundamental aspects of their 
science, and all the available energies of physicists were drawn by the 
development of quantum mechanics. Of course, major steps forward have 
been made by such high class scientists as J. Leray, A. N. Kolmogorov, or E. 
Hopf, but hydrodynamics has otherwise remained somewhat in the back­
waters of the scientific storm of this century. 

3. The Navier-Stokes equation. The components of the Navier-Stokes 
equation are 

dvt * dvÉ dp 

!i+2M~-^ + VVi + gi (1) 

f or i = 1, . . . , d. Here d is the number of space dimensions {d = 3 usually, 
but d = 2 has been much studied). The vt are the components of the velocity 
field, depending on position x 6 R r f and time t. The left-hand side of the 
equation is the acceleration of a particle of fluid. The right-hand side contains 
the gradient of the pressure/?, a "dissipative term" with the Laplace operator 
multiplied by a constant v (the viscosity) and an external force g.1 We 
supplement (1) by the incompressibility condition 

The fluid is enclosed in a region Q c Rd, and its velocity is imposed on 312; 
this is the boundary condition 

vt = at for i = 1,. . . , d on 3Î2. (3) 

If Ü is bounded, we assume of course that the total flux of a through dQ 
vanishes. Usually there is no flow through the boundaries and, since a viscous 

1 To be more precise, p and g are the pressure and force divided by the density of the fluid 
(which will be constant in view of (2)); v is the kinematic viscosity. 
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fluid "sticks" to the wall, (2) will just express that the velocity of the fluid at 
the boundary is equal to the velocity of the wall (e.g. zero if the wall is fixed). 
Finally there is an initial condition 

vt = vi0 for t = 0. (4) 

The Navier-Stokes equation contains partial derivatives and products 
which, a priori, make sense only if v is sufficiently smooth. If one multiplies 
(1) by a smooth function <&(*)> sums over i and integrates over x, one obtains 
an equation (1) .̂ The various terms of (1)^ are linear or bilinear in v, and can 
be extended by continuity to functional spaces of not necessarily very 
differentiable functions. If an element of such a functional space verifies all 
equations (1)^, in the sense of distributions in ty it is called a weak solution of 
(1). It is advantageous to look first for weak solutions of the Navier-Stokes 
equations, and later to try to prove their regularity. 

For definiteness we assume from now on that Q, is bounded. To handle the 
boundary condition (3), one extends a to a divergence-free vector field in £2, 
and inserts v = a + u in (1), thus obtaining a new equation for w, with u = 0 
on 3fi. Let H, resp. V, be the completion of the space of smooth divergence-
free vector fields with compact support in 12, with respect to the L2-norm 

H -

resp. the Dirichlet norm 

u = 

J dx 2 w ? , 

The condition u = 0 on 3Œ is expressed by M G V. 
One shows that H is the orthogonal complement of the subspace of 

gradients in L2(£2)3. If one takes the projection of (1) orthogonal to gradients, 
the pressure term disappears and one is left with a functional equation of the 
form 

du/dt - F^u) (5) 

for u e V. We have left a parameter fx to describe the intensity of the action 
exerted on the fluid via the force g and the boundary conditions. A parameter 
of this sort is usually present in experimental situations (Reynolds number). 
We have assumed that the action on the fluid is time independent, so that the 
right-hand side of (5) does not depend on t. 

We indicate now the main results known on the existence and uniqueness 
of solutions of the Navier-Stokes equation2 for d — 2 or 3. We assume that 312 
and a are sufficiently smooth, and that g is square-integrable. 

3.1. THEOREM (EXISTENCE). Given u0 E H there corresponds to it a weak 
solution u e £^((0, oo), V). Furthermore u is weakly continuous [0, oo) H-> H, 
so that the initial condition w(0) = u0 makes sense. 

2 For details, see the monographs by Ladyzhenskaya [30), Lions [36], Temam [70], Girault and 
Raviart [16], and a paper by Foia§ and Temam [13]. 
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3.2. THEOREM (UNIQUENESS). If d = 2 the weak solution is unique; further-
more it is continuous [0, oo) h* H, (0, oo) H> V. 

Ifd = 2 and u0 G V the solution is continuous [0, oo) \-> V. 
If d = 3 a«</ w0 G V f/iere w *(w0) > 0 such that the weak solution is unique 

on [0, t(u0)) and continuous [0, t(u0)) H» V. 

In general, we say that a solution is regular on an interval if it is continuous 
from that interval to V. There can be only one regular solution u on an 
interval [0, T] with t/(0) = u0. We write the solution as u(t) = fu0. The maps 
(ƒ'), as far as they are defined, satisfy the semigroup property / ' + ' ' = ƒ' ° ƒ ' . 
In order to state some analyticity properties of the family (ƒ'), we introduce 
the space D of elements of V with square-integrable second derivatives. We 
consider D as Hubert space with the norm 

•"•-[£*?(?W\ • 
Notice that the inclusion D °-> V is compact. 

3.3. THEOREM (ANALYTICITY).3 For each R > 0 there is T(R) > 0 such that 
the map (w, t)h>fu is defined and real-analytic 

{wG V: \\u\\ <R) X(0, T(R))t->D. 

For t G (0, T(R)), f maps {u G V: ||w|| < R} to a bounded subset of D, and 
the derivative Df is an infective linear map VI-» D. 

A dynamical system can be obtained by restricting the maps ƒ to a suitable 
subset of V. We shall say that an open set M c V is an admissible set (of 
initial conditions) if every u G M determines a regular solution on [0, oo) and 
there is T0 > 0 such that the set fM is relatively compact in Mfort > T0.

4 In 
particular, if d = 2, one can show that the ball {u G V: ||u|| < R} is admissi­
ble for sufficiently large R.5 

3.4. COROLLARY. Let M be an admissible set of initial conditions. For t > T0i 

the maps f: M -> M are defined, injective, and real-analytic. The semigroup 
property f of = ƒ'"*"'' holds. The maps (w, t)\-*fu, Df%u) are continuous 
M X ( r 0 , +oo) H > M , 33(F). 

The intersection A = C\ t>T f M is compact. If u G A, t > T0, the operator 
DfXu) is compact and infective. 

4. The problem of turbulence. While turbulence is often, in practical terms, 
a well-defined phenomenon, its fundamental nature is still controversial. Call 

3 These analyticity properties are explicit or implicit in Fujita and Kato [15], Iooss [25], Foia§ 
and Temam [13]. 

4 These conditions are satisfied if there is Tx > 0 such that every u E M determines a regular 
solution on [0, Tx] and fTlM is relatively compact in M. 

5 There is S > 0 such that lim =̂ sup^^H fu\\ < S for all u G V (see Foia§ and Temam 
[13, §2]). Take R > Rx > S and write M - {u e V: ||u|| < R}. If t0=±T(R), the set f°M is 
bounded in D, hence has compact closure in V. There is thus tx > 0 such that ftl(f'°M) c { « 6 
V: ||«|| < Ri). Taking Tx - t0 + /„ we see that fTiM is relatively compact in M. 
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/A the Reynolds number describing the level of "excitation" of a hydrodynami-
cal system (see equation (5)). When /x, = 0, the system is at rest (asymptoti­
cally). When ix is small, steady states and time periodic motions are observed. 
When fi is larger we have the onset of turbulence: the fluid motion becomes 
nonperiodic in time. 

When [i is sufficiently large, one says that fully developed turbulence is 
present. The motion is very chaotic and appears to conform to statistical laws 
of some universality. Such laws have been proposed by Kolmogorov [29]: his 
"five-thirds law" on the spatial frequency distribution of velocities is well 
supported by observations. Kolmogorov's theory can be derived from dimen­
sional arguments, and is thus of a somewhat superficial nature. It neglects in 
particular the phenomenon of intermittency : the fact that much of the velocity 
gradient dvt/dxj is concentrated on a small part of physical space. Intermit­
tency has received, at this time, only sketchy theoretical treatment (see Frisch, 
Sulem and Nelkin [14]). Fully developed turbulence is a three-dimensional 
phenomenon. For d = 2, chaotic flow is also observed (by numerical simula­
tion) but the details are rather different. 

In his early studies, Leray [34] proposed that turbulence was related to the 
possible nonuniqueness of weak solutions of the Navier-Stokes equation. A 
weak solution t —> u(t) corresponding to a smooth initial condition may at 
some time /* develop singularities and nonuniqueness. The blowing up of the 
velocity gradient at singularities may be interpreted as turbulent intermit­
tency. It remains to be seen if nonuniqueness and singularities are really 
present. Singularities, if they exist, will be on a "small" set6 as shown by 
Scheffer [64], [65] and therefore difficult to detect experimentally. 

Leaving the difficult domain of fully developed turbulence, we shall now 
turn to the onset of turbulence: how does nonperiodicity develop? Here we 
take the point of view, corroborated by experiment, that the Navier-Stokes 
equation defines a dynamical system (no breakdown of uniqueness occurs). 
For fi = 0 the dynamical system has an attracting fixed point corresponding 
to the state of rest. For small /A the existence of an attracting fixed point 
corresponding to a steady motion is ensured by the implicit function theorem. 
When fi is increased the Hopf bifurcation may give rise to an attracting 
periodic orbit corresponding to a time-periodic motion.7 One may think that 
further bifurcations will produce attracting tori of increasing dimension k, 
corresponding to quasi-periodic motions with an increasing number k of 
basic frequencies. When k is large enough, the quasi-periodic motion is 
interpreted as turbulent. This point of view was proposed by Landau [32] in 
1944, and independently by Hopf [23] in 1948. Looking at things more 
carefully, one finds that the bifurcation from a periodic solution (1-torus) to a 
2-torus takes place according to expectations.8 But the further bifurcations do 
not usually take place in a simple manner. If a quasi-periodic motion on a 

6 The Hausdorff dimension of this set is small. 
7 See Hopf [22], Iooss [24], and for a general discussion Marsden and McCracken [41] which 

contains an English translation of Hopf s article. 
8 See Naimark [43], Sacker [63], Ruelle and Takens [62], and again Marsden and McCracken 

for a general discussion. 
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A>torus does occur, it is unstable to perturbations, yielding periodic or (for 
k > 3) nonperiodic motions of all kinds. 

In 1971, Takens and myself proposed that nonperiodic motions which are 
not quasi-periodic describe turbulence. We shall later discuss what is implied. 
Careful experiments have been made in the past few years. They show that 
real fluids may be in a steady state, or perform periodic motions, or quasi-
periodic motions with commonly two (rarely three) basic frequencies. Fur­
thermore non-quasi-periodic motions are seen as soon as the Reynolds 
number is large enough. All kinds of bifurcations are observed. The general 
lesson seems to be that hydrodynamical systems at the onset of turbulence 
behave very much as generic differentiable dynamical systems in finite dimen­
sion. Simple systems of differential equations with arbitrarily chosen coeffi­
cients, when studied by digital or analog computer, yield data so analogous to 
those of hydrodynamical experiments that it is not possible to tell them apart. 

5. Sensitive dependence on initial condition and strange attractors. We have 
stated that a fluid at the onset of turbulence behaves very much like a generic 
differentiable dynamical system. This assertion is based in part on our 
mathematical understanding of dynamical systems, in part on the computer 
study of a number of simple examples. Our mathematical understanding 
includes the theory of simple bifurcations, and the theory of Smale's Axiom A 
diffeomorphisms. Computer studies have shown the existence of several new 
"mathematical phenomena" which would have been very difficult to guess 
otherwise, and which are in part not understood. 

Of particular interest to us is the widespread phenomenon of sensitive 
dependence on initial condition. This means that a small change in initial 
condition produces an orbit which deviates exponentially (at least for a while) 
from the unperturbed orbit. If (ƒ') defines a dynamical system on the 
manifold M (with discrete or continuous time t), we call attractor a compact 
set A c M such that ƒtx -» A f or x in some neighborhood of A. We assume 
that A satisfies some indecomposability condition (like topological transitiv­
ity). We shall say that A is a strange attractor if there is sensitive dependence 
on initial condition for orbits starting near A. This is not meant as a precise 
mathematical definition, but rather as a description (subject to revision) of 
various objects known either mathematically or from computer work.9 

Reasonably well understood mathematically are the hyperbolic 
attractors:10 the tangent bundle TAM has a continuous splitting into a 
contracting subbundle which contracts exponentially under Tf and an expan­
ding subbundle which contracts under Tf~' (in the continuous time case there 
is also a one-dimensional neutral subbundle in the flow direction). If the 
expanding subbundle is nontrivial, we have sensitive dependence on initial 
condition, and thus a strange hyperbolic attractor. 

9 Notice that Hamiltonian systems may exhibit sensitive dependence on initial conditions, but 
cannot have strange attractors because of Liouville's theorem. 

10 On hyperbolic attractors (and more generally Axiom A dynamical systems) see Smale [67] 
and Bowen [2]. 
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A system of differential equations first considered by Lorenz [37] has 
suggested a mathematical model which is "almost hyperbolic" and fairly well 
understood.11 Nothing has actually been proved, however, about the equa­
tions which suggested the model. 

A , B 

FIGURE 1. 

There are strange hyperbolic attractors for diffeomorphisms of R2, as 
discovered by Plykin [50], but they are complicated and unobvious. On the 
other hand very simple folding maps (sending a rectangle A BCD to a 
horseshoe AlBlClDl c ABCD; see Figure l12) are found to produce sensitive 
dependence on initial condition. For instance the map ƒ: (x, >>) -» (.V + 1 ~~ 
ax2, bx) has been much studied numerically, and yields for a «• 1.4, b » 3 the 
Hénon attractor P The computer results suggest that sensitive dependence on 
initial condition is present for a set of positive Lebesgue measure of values of 
(a, b), but may be absent for a dense open set (where only periodic orbits 
would be attracting; see Feit [11]). Mathematically, little is known, but 
Newhouse14 has shown that there is a residual subset of an open (nonempty) 
set of values of (a, b), for which an infinite number of attracting periodic 
orbits are present. If a strange attractor A is thus accompanied by infinitely 
many periodic attractors, there may be no neighborhood of A consisting of 
points x such that ƒ'x -» A. 

We shall not try to improve on our previous definition of a strange 
attractor to accommodate possible pathologies. It seems preferable to wait for 
a better mathematical understanding of the Hénon attractor (and other 
strange attractors known from computer work). What is important is that 
sensitive dependence on initial condition happens frequently in simple dy­
namical systems. These systems have a continuous frequency spectrum15 by 

11 See Guckenheimer [18], Guckenheimer and Williams [19], Williams [72]. 
12 This is not Smale's horseshoe (which is not an attractor). 
13 See Hénon [20], Feit [11], Curry [7]. 
14 Newhouse [44], [45], and private communication. 
15 The frequency spectrum is obtained by frequency analysis of tv+fx. This is much more 

accessible experimentally than dependence on initial condition. 
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contrast with the discrete frequency spectrum observed in quasi-periodic 
systems. The quasi-periodic theory of Landau and Hopf had relied on a torus 
of large dimension to produce a continuous spectrum by accumulation of 
many different frequencies. It came somewhat as a surprise to hydrodynami-
cists that a continuous spectrum would already be produced by a strange 
attractor in three dimensions (see Monin [42] for an expression of this 
surprise). Recent experiments by Ahlers [1], Gollub and Swinney [17], and 
others are in favor of the "strange attractor" theory (first proposed in [62]) 
rather than that of Landau and Hopf.16 

The above discussion suggests to call turbulent a hydrodynamical flow with 
sensitive dependence on initial condition. A quasi-periodic flow would then 
be nonturbulent (laminar). 

6. Ergodic theory of differentiable dynamical systems. The idea of strange 
attractors has proved physically relevant and fruitful, but their direct geomet­
rical study is discouragingly difficult. Ergodic theory has provided a more 
rewarding approach, which yields however only "almost everywhere" rather 
than "everywhere" statements. The first and fundamental result is the multi­
plicative ergodic theorem of Oseledec.17 Consider a differentiable dynamical 
system ( f ), i.e., a semiflow or semigroup of differentiable maps M »-» M 
where M is a compact manifold. The multiplicative ergodic theorem (or 
rather a corollary of it) asserts that there is an ( f')-invariant Borel set T, such 
that p(T) = I for every (ƒ ')-invariant probability measure p on T, and 

lim \\Df\x)u\\ = X(*, u) 
/-»+00 

exists for every x 6 T . Given x, x(*> ") takes only a finite number of values 
for u ¥* 0. These values \^ < • • • < Xx

s^ are called characteristic exponents. 
More precisely, there is a filtration of TXM by linear subspaces: 

0 - F<°> c V<P C • • • C Vx
s) - TXM 

such that 

lim \\Df (x)u\\ = Xx
r) if u e Vx

r) \ Vx
r~l\ 

We call m^ = dim V^ - dim V^~1} the multiplicity of Xx
r\ With respect to 

an ergodic measure p, the characteristic exponents and their multiplicities are 
almost everywhere constant. 

The second fundamental result in the ergodic theory of differentiable 
dynamical systems is a stable manifold theorem. Taking for simplicity the case 
of a diffeomorphism, it is asserted that one can choose T as above and such 
that, if x e T and Xx

r) <X< min(0, Xx
r+l)), then 

<¥* = ( y G M: lim sup \ log </(ƒ'*, fy) < x) 

is contained in T, and is the image of Fx
(r) by an injective immersion tangent 

16 See Swinney and Gollub [68] for a review. 
17 See Oseledec [46] and Raghunathan [53]. 
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to the identity at x9 and as smooth as the diffeomorphism/.18 In other words, 
there are manifolds ^ defined for almost all x, as smooth as/, and tangent 
at x to Vjp. For \ = 0, we shall call 

%- = ( y e M: lim sup - log d{f%fy) < o ] 

the stable manifold of x. The stable manifold for f~l is called unstable 
manifold. 

Stable and unstable manifolds have been much studied in the hyperbolic 
case; see Hirsch, Pugh, and Shub [21] and references quoted there. Pesin 
[47]-[49] extended the theory to general diffeomorphisms preserving a smooth 
measure. Neither the smooth measure nor the invertibility are actually neces­
sary (see Ruelle [58], [59], Ruelle and Shub [61]). However, in the absence of 
invertibility, one obtains only local stable manifolds (or one has to make 
some transversality assumption), and the unstable manifold theorem is more 
complicated to formulate (or one has to assume injectivity). 

Let us now leave the technicalities and ask what invariant probability 
measure, is relevant. Clearly the ergodic average T"l^^8jtx (or 
T~1JQ dt 8f,x) reproduces every ergodic measure p for suitable initial x. 
However, in many cases, the computer evaluation of the above ergodic 
average gives a single answer (and the probabilistic behavior of a turbulent 
fluid also often seems uniquely defined). The solution of this paradox is that 
the computer makes roundoff errors (and the time evolution of a fluid is 
affected by small random perturbations). 

In the case of hyperbolic attractors, the occurrence of a single measure in 
the presence of small stochastic perturbations is well understood.19 What 
happens is that a measure which is stationary under small stochastic perturba­
tions yields, in the limit of zero perturbation, a measure "continuous along 
the unstable direction". This means that the conditional measures on unstable 
manifolds are absolutely continuous with respect to the Lebesgue measure on 
the unstable manifolds. There can be only one (ƒ') invariant probability 
measure p with this property on a hyperbolic attractor; it is also characterized 
by the fact that the measure-theoretic entropy h(p) is equal to the sum of the 
positive characteristic exponents S\(o>0 /w

(r)X(r). 
I believe that also for nonhyperbolic strange attractors, the stability under 

small stochastic perturbations drastically reduces the number of relevant 
ergodic measures.20 Counterexamples show that the situation is not as simple 
as in the hyperbolic case, but some positive results are known. The inequality 

h(p)<fp(dx) S m?W 

18 The diffeomorphism ƒ must be at least C 1 + e ; the theorem also holds in the C00 or Cw 

category. 
19 The same measure is also obtained as ergodic average for almost all initial x near the 

attractor with respect to Lebesgue measure. See Sinai [66], Ruelle [54], Bowen and Ruelle [3], 
Kifer [27], [28]. 

20 See Ruelle [56], [57]. 
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holds in general.21 If ƒ is a diffeomorphism and p is continuous along unstable 
manifolds, Walters [71] and Katok [26] have shown that 

h(p)=fp(dx) S rn¥W-
X(O>0 

Furthermore, Pugh and Shub [52] have announced that there is a set of 
positive Lebesgue measure on the manifold M, consisting of points x for 
which the ergodic average is equal to p (one assumes p ergodic, with no 
characteristic exponent equal to zero). It is tempting to believe that such a 
measure lives on the Hénon attractor. This would for instance explain why 
computer estimates of the upper characteristic exponent yields reproducibly a 
single value À ~ 0.42. A priori one would expect a scatter of many different 
values, because the Hénon attractor undoubtedly carries many different 
ergodic measures with different characteristic exponents. 

7. Ergodic theory of the Navier-Stokes equation. We revert to the notation 
of §3, and assume that there exists a nonempty admissible set M c V of 
initial conditions (M always exists if d = 2). Then A = PI t>TofM is com­
pact. It would be most useful if one could prove (even under restrictive 
conditions) that A lies in a finite dimensional (/^-invariant manifold.22 

Weaker results have been obtained by Foia§ and Prodi [12], Ladyzhenskaya 
[31], and Mallet-Paret [38]. 

7.1. THEOREM (MALLET-PARET).23 Let V be a separable Hubert space, and 
suppose that A c M c V where A is compact and M open. Let ƒ: M —» V be 
Cl and satisfy f A D A. Suppose finally that Df(x) is a compact operator for all 
x G A. Then A has finite Hausdorff dimension H. 

7.2. COROLLARY (MANÉ).24 If F is a linear subspace of V with dimension > 
2H + 1, then there is a continuous projection *n\ Y —> F such that its restriction 
to A is injective. 

In view of Corollary 3.4, Mallet-Paret's theorem applies to the Navier-
Stokes case (where we actually have f A «• A). Mane's corollary shows how to 
obtain a homeomorphism of A to a subset of a finite-dimensional Euclidean 
space. 

Using the compactness of the set A and of the maps Df(x), it is possible to 
extend the ergodic theory of §6 to the present infinite dimensional situation.25 

21 This was first proved by Margulis (quoted by Pesin [47]) for a diffeomorphism with smooth 
invariant measure. For the case of a general C1 map, see Ruelle [55]. 

22 Apart from the use of the center manifold theorem near a bifurcation, little is known on this 
problem. 

23 Foia§ and Temam [13] have derived a direct proof of this result for the Navier-Stokes case, 
and Mané [39] for general Banach spaces. 

24 See Mané [39]. 
25 I have a Hubert space extension of the multiplicative ergodic theorem and stable-unstable 

manifold theorems which weakens the compactness condition on the maps Df(x) and does not 
assume that they are injective [59]. Independently, Mané [40] has obtained an extension to 
compact injective maps in Banach spaces. The application to Navier-Stokes is discussed in Ruelle 
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7.3. THEOREM. For the Navier-Stokes semiflow, under the assumptions of §3, 
the characteristic exponents are defined, and form a sequence tending to -oo 
{therefore only a finite number of them can be positive). There are globally 
defined unstable manifolds; they are finite-dimensional and contained in A. 
There are locally defined stable manifolds {near A); they are finite-codimen-
sionaL Stable and unstable manifolds are real-analytic. If some ergodic measure 
p has no characteristic exponent equal to zero the stable and unstable manifolds 
are p-almost everywhere transverse to each other. 

For a more precise formulation see [59], [40], [60]. We have here assumed 
that the Navier-Stokes equations defined a smooth dynamical system. It may 
be, on the contrary, that turbulence is linked to the lack of smoothness of 
solutions of the Navier-Stokes equations, as proposed by Leray. This does 
however not seem likely in the weakly turbulent regime. The results quoted 
above are thus in agreement with the notion that a weakly turbulent viscous 
fluid behaves like a typical finite-dimensional smooth dynamical system. 

8. Further remarks. Many dynamical phenomena have now been observed 
both in computer simulations and in hydrodynamical experiments. Of special 
interest is the "Feigenbaum bifurcation" first observed in computer studies of 
(noninvertible) maps of an interval. Apparently this is a new generic bifurca­
tion which consists in the accumulation of "period doubling" bifurcations. An 
attracting fixed point can, by a well-understood bifurcation, lose its attracting 
character and be replaced by an attracting periodic orbit of order 2. Repeat­
ing a similar process n times produces an attracting orbit of order 2n. What is 
surprising is that all these bifurcations are often really seen to follow each 
other, and to converge asymptotically as a geometric sequence. In other 
words in the space of maps of the interval there seems to exist a "Feigenbaum 
manifold" of codimension 1, which is the geometric limit of bifurcation 
manifolds corresponding to period doubling. 

M. Feigenbaum, who discovered this phenomenon, has given it a heuristic 
but highly nontrivial explanation [8], [9] based on the study of an associated 
dynamical system in a Banach space. A rigorized version of Feigenbaum's 
arguments is now being worked out (see [6], [33], [4]). It appears that the 
Feigenbaum bifurcation also occurs in diffeomorphisms and flows (see [5], 
[10]). In any case, something very much like it is observed in some hydrody­
namical experiments (see [35]: this is another example of the occurrence of 
the same phenomena in hydrodynamical experiments and computer studies, 
with the same doubts as to their detailed explanation). 

To conclude our review it is appropriate to ask what the relation of all this 
is to the mathematical heritage of Henri Poincaré. His contribution to 
differentiable dynamical systems is sufficiently impressive, but what about 
turbulence? I think that it is to the credit of Poincaré that he saw that there 
was a problem, and kept away from it. That he saw a problem is visible from 
a section entitled "Explication d'un fait expérimental", at the end of his 
course on the Théorie des tourbillons [51]. He notices that in a liquid flow the 
vorticity is usually not diffuse, but rather tends to be concentrated in 
individual whorls. He says that this fact has not been properly explained 
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mathematically, and attempts at justifying it by a stability calculation. (He 
mentions more calculations, which are not reproduced in the book.) The 
phenomenon considered by Poincaré is two dimensional, and therefore is not 
really turbulence, but it is clearly related to intermittency. The stability 
calculations just referred to seem to be as close as Poincaré came to a 
discussion of turbulence. It is now clear that the knowledge of his time would 
not allow him to do better. Mathematical physics tries to understand a world 
of unknown complexity with tools of known limitations. This requires bold­
ness, and modesty. Obviously Henri Poincaré lacked neither of these two 
qualities. 
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