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VON NEUMANN REGULAR RINGS: 
CONNECTIONS WITH FUNCTIONAL ANALYSIS 

BY K. R. GOODEARL 

Most ring theorists and functional analysts are at least vaguely aware that 
von Neumann invented regular rings 45 years ago in connection with certain 
operator algebras, but that connection has grown rusty and pretty much 
disused as regular rings and operator algebras have gone their separate ways. 
My purpose here is to report on several more recent connections between 
regular rings and functional analysis, developed in the past decade, through 
which each subject has made a positive contribution to the other. 

The first three sections of this report are ancient history, sketching the 
original development of regular rings in connection with continuous geome­
tries, von Neumann algebras, and A W*-algebras, and providing some of the 
relevant ring and operator algebra concepts for those readers who don't have 
them right at hand. The remaining three sections sketch the recent connec­
tions, including some of the ways in which regular rings have aided the study 
of Rickart C*-algebras and approximately finite-dimensional C*-algebras, 
and some of the ways in which Choquet simplices have aided the study of 
regular rings. 

I. Complemented modular lattices and regular rings. Regular rings were 
invented by von Neumann in the mid-1930's in order to provide an algebraic 
framework for studying the lattices of projections in the operator algebras he 
was investigating. This framework actually dealt with a remarkably large class 
of general lattices, including most complemented modular lattices, which 
were then thought to be the appropriate setting for the logical formalism of 
quantum mechanics. 

Von Neumann modelled this framework on the coordinatization of classi­
cal projective geometry, which was at that time just being recast in a 
lattice-theoretic mold, by Birkhoff [5] and Menger [18], among others. These 
authors viewed projective geometries as lattices L satisfying 

(a) COMPLEMENTATION. The lattice L has a least element 0 and a greatest 
element 1, and every element x E L has at least one complement, namely an 
element y G L such that x /\ y = 0 and jcV.y = l. 

(b) MODULARITY. Whenever x9y,z G L with x < z, then (JC V>0 A * = 
•* V Cv A z)> (This is a weak form of the distributive law.) 
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(c) IRREDUCIBILITY. The only elements in L with unique complements are 0 
and 1. (This prevents L from being decomposed into a direct product of two 
nontrivial sublattices.) 

(d) FINITE-DIMENSIONALITY. There is a positive integer n such that any 
strictly descending chain x, > x2 > • • • > xk of elements of L has at most 
n + 1 terms. 

From this perspective, the classical coordinatization theorem of projective 
geometry [21, Chapter VI], [1, p. 302] states that with a few identifiable 
exceptions (corresponding to non-Desarguesian projective planes), every com­
plemented, modular, irreducible, finite-dimensional lattice is isomorphic to 
the lattice of subspaces of a finite-dimensional vector space over a division 
ring. There is an alternate form of this conclusion, in terms of right ideals in 
matrix rings, which von Neumann found more convenient for generalization. 
Namely, the lattice of subspaces of an «-dimensional vector space over a 
division ring D is isomorphic to the lattice of principal (i.e., singly-generated) 
right ideals in the ring of all « X « matrices over D. Thus, his model was a 
theorem stating that certain lattices are isomorphic to lattices of principal 
right ideals in certain rings. 

For rings in general, the collection of principal right ideals need not form a 
lattice, let alone a complemented lattice; hence, von Neumann was led to the 
class of regular rings, which may be described as those rings in which the 
collection of principal right ideals does form a lattice under the obvious 
lattice operations. Precisely, he defined a regular ring to be a ring R such that 
for any element x E R there is another element y E R satisfying xyx = x 
[24, Definition 4]. The most immediate consequence of this condition is that 
xy is an idempotent (that is, (xy)2 = xy) which generates the same principal 
right ideal as x. As a result, the complementary idempotent 1 — xy generates 
a principal right ideal which is a complement for the principal right ideal 
generated by x. With a bit more computation, von Neumann showed that in 
a regular ring R, the sum and the intersection of finitely many principal right 
ideals are also principal right ideals. This suffices to make the collection of 
principal right ideals of R into a lattice (with sums for least upper bounds and 
intersections for greatest lower bounds), with complements as above. In 
addition, modularity is easily checked. 

Thus in any regular ring, the collection of principal right ideals forms a 
complemented modular lattice. In a striking tour-de-force, von Neumann 
proved a nearly complete converse: with certain exceptions (generalizing the 
non-Desarguesian exceptions in projective geometry), every complemented 
modular lattice is isomorphic to the lattice of principal right ideals of a 
regular ring, and the regular ring is unique up to isomorphism [25, Part II, 
Theorem 14.1]. (This regular ring is said to coordinatize the given comple­
mented modular lattice.) 

II. Von Neumann algebras, continuous geometries, and continuous regular 
rings. The complemented modular lattices of most interest to von Neumann 
occurred in his investigations with Murray of certain operator algebras. These 
algebras live inside the algebra B(H) of all continuous linear transformations 



VON NEUMANN REGULAR RINGS 127 

on a complex Hubert space H. Von Neumann introduced a weak topology on 
B(H) [22, p. 382]-namely the weakest topology under which the maps 
T\-+(T(x),y) are continuous for all x,y E / / -and required his algebras to 
be closed in this topology. Also required was that the algebras be selfaajoint-
along with any operator T in the algebra, the adjoint operator T* should also 
be included in the algebra. These requirements determine what von Neumann 
called rings of operators-weakly closed selfadjoint subalgebras of B(H). 
Today these algebras are known as von Neumann algebras, or as W*-algebras 
(where the "W" abbreviates "weakly closed", while the "*" suggests 
"selfadjoint"). 

One of the major features of a von Neumann algebra A is a large supply of 
projections. [A projection in B(H) is an operator which projects onto a closed 
linear subspace of H along the orthogonal complement. Algebraically, the 
projections in B(H) are exactly the selfadjoint idempotents, i.e., operators P 
satisfying P = P* — P2.] For example, if T is any operator in A9 then the 
projections onto the kernel of T and onto the closure of the range of T both 
l i e in^ . 

The collection P(A) of all projections in A corresponds (by associating with 
any projection its range) to a subset of the lattice of closed linear subspaces of 
/ / . The inclusion relation among subspaces may be pulled back to define a 
natural partial order in P(A\ which is easily described algebraically: P < Q if 
and only if P = QP. It is a consequence of the weak closedness of A that 
P(A) is in fact a complete lattice-every subset of P(A) has a least upper 
bound and a greatest lower bound in P(A). 

In the irreducible finite-dimensional case, A is some B(H), and P(A) 
corresponds to the lattice of all subspaces of // , so that P(A) is a complex 
projective geometry in the sense of Birkhoff and Menger. In this case, vector 
space dimension provides a natural dimension function on P(A). If normal­
ized by dividing by the dimension n of // , this dimension function assumes 
the values 0, 1/n, 2/n9 . . . , 1. 

Murray and von Neumann discovered certain infinite-dimensional cases 
where P(A) possesses a dimension function satisfying most of the usual 
properties of (normalized) vector space dimension, except that the range of 
the dimension function is the entire unit interval [19, Theorem XII, p. 208]. 
As the dimension function here has a continuous range of values, the 
projection lattices P(A) in these cases were named "continuous geometries" 
in contrast to the "discrete geometries" of the finite-dimensional case. 

Like the projective geometries, these lattices are complemented, modular, 
and irreducible, although not finite-dimensional. They also have two other 
characteristic properties, which hold in projective geometries as easy conse­
quences of finite-dimensionality. One is completeness, while the other is a 
weak infinite distributive law which von Neumann referred to as "continuity 
of the lattice operations", namely x A (\Zya)

 = V (* A ƒ«) and x V (A^«) 
— A (x V y a) f° r a n y x m t n e lattice and any linearly ordered subset {ya} in 
the lattice. In keeping with von Neumann's terminology, any complete lattice 
satisfying this condition is now called a continuous lattice. 
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Von Neumann used these key properties to abstractly define a continuous 
geometry as any complete, complemented, modular, continuous lattice which 
is irreducible but not finite-dimensional [23]. In current usage, reducibility 
and finite-dimensionality are both allowed, so that a continuous geometry is 
any complete, complemented, modular, continuous lattice. With this defini­
tion, the projection lattice P(A) of a von Neumann algebra A is a continuous 
geometry if and only if A is finite in the technical sense that xx* = 1 always 
implies x*x — 1. (There is a natural family of extended real-valued gener­
alized dimension functions definable on P(A), and A is finite in this sense 
exactly when these dimension functions all have finite bounded values.) 

Because the interest in von Neumann's lattice-theoretic work was focussed 
mainly on continuous geometries, most of the interest in regular rings was for 
a number of years concentrated on those regular rings which coordinatize 
continuous geometries. These rings, that is, regular rings for which the lattice 
of principal right ideals is a continuous geometry, are known as continuous 
regular rings, and quite a complete structure theory has developed for them 
parallel to the structure theory for von Neumann algebras [12, Chapters 
9-13]. 

For a finite von Neumann algebra A, von Neumann's coordinatization 
theorem yields a continuous regular ring R whose lattice of principal right 
ideals is isomorphic to P(A). In addition, the natural anti-isomorphism of 
P(A) onto itself (via the map P h* 1 — P) induces an involution * on R (i.e., 
an anti-automorphism of period two) such that every principal right ideal of 
R is generated by a projection; thus R becomes what is called a ^-regular 
ring. Actually, not only the lattice structure of R is connected with A9 but also 
the ring structure, for Murray and von Neumann showed that R can be 
constructed directly by enlarging A to contain certain discontinuous opera­
tors defined on dense linear subspaces of the Hilbert space on which A acts 
[19, Theorem XV, p. 229], [25, pp. 26-27]. The involution on R is an 
extension of the adjoint operation I h » r* on A, and the only projections in 
R are those already in A. Thus the projection lattices P(A) and P(R) 
coincide, providing a very direct isomorphism of P(A) onto the lattice of 
principal right ideals of R (namely the map associating to any P G P(A) the 
principal right ideal of R generated by P). 

III. A JT*-aIgebras and continuous regular rings. In order to deal with 
projections in von Neumann algebras on a basis intrinsic to the algebras (i.e., 
without reference to the Hilbert spaces on which they act), Kaplansky 
abstracted the basic properties to define A W*-algebras [17, p. 236] (the name 
was chosen to suggest "abstract W*-algebras"). These algebras are first of all 
C*'-algebras, that is, Banach algebras with an involution * in which ||xx*|| = 
\\x\\2. Then an AW*-algebra is a C*-algebra A such that for any subset 
X C A, the right annihilator ideal 

{a G A\xa = 0 for all x G X) 

is a principal right ideal generated by a projection. 
As in the von Neumann algebra case, the collection P(A) of projections in 

an A W*-algebra A forms a complete lattice, and P(A) is a continuous 
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geometry if and only if A is finite in the technical sense. In this case, there is 
again the question of exhibiting the regular ring which coordinatizes P(A). By 
using an abstract version of the Murray-von Neumann construction, 
Berberian showed in [2] that a finite A W*-algebra A is always contained in a 
continuous *-regular ring R such that R has no new projections beyond those 
m A. 

Since the coordinating regular ring has proved useful in investigating 
continuous geometries, this might also be expected in investigating A ^"-alge­
bras. However, except in one case, the axioms of A W*-algebras have proved 
strong enough to deal efficiently with the questions that have arisen, without 
needing to use the associated regular rings. The exceptional case occurred 
when Berberian proved that the algebra o f n X n matrices over any A W*-al­
gebra is again an A W/r*-algebra [3, Theorem, p. 43]. The proof easily reduces 
to the case of a finite A W*-algebra A, which has an associated regular ring R9 

and some of the steps of the proof were worked out within the ring of n X n 
matrices over R, which is a tractable ring because of the general result that 
the ring of n X n matrices over any *-regular ring with a positive definite 
involution is again a *-regular ring. For another illustration of the possible 
uses of the regular rings associated with finite A W*-algebras, consider the 
following open problem. 

Let A be a finite A W* -algebra which is infinite-dimensional and also a 
simple algebra (i.e., the only ideals of A are (0) and A). The 2 x 2 matrix 
algebra M2(A) is, using the appropriate norm and the *-transpose involution, 
also a simple, infinite-dimensional, finite A W* -algebra. In the most tractable 
case, namely when A can be generated (as an A W*-algebra) by the union of 
an ascending sequence of finite-dimensional simple subalgebras, it is known 
that M2(A) is isomorphic to A, The open problem is whether M2(A) must 
always be isomorphic to A. 

Now the regular ring R associated with A is a simple, continuous, *-regular 
ring which is not artinian (i.e., there are arbitrarily long descending chains of 
right ideals in R). With the ""-transpose involution, the 2 x 2 matrix ring 
M2(R) has the same properties. The algebras A and M2(A) can be canonically 
identified inside R and M2(R) as the subrings of "bounded elements", as in 
[4, Theorem 1, p. 245]. Consequently, any involution-preserving isomorphism 
of M2(R) onto R would restrict to an isomorphism of M2(A) onto A. 

Thus we obtain a purely ring-theoretic problem: if R is a non artinian, 
simple, continuous, *-regular ring, are M2(R) and R isomorphic (as *-rings)? 
A positive answer to this problem would then yield a positive answer to the 
A ^*-algebra problem outlined above. 

IV. Rickart C*-algebras and tt0-contimious regular rings. During the trend of 
axiomatization that led to AW*-algebras, Rickart introduced a weak version 
of A W*-algebras which he called B*-algebras [20, Definition 2.1], but which 
are now known as Rickart C*-algebras. Such algebras are C*-algebras in 
which it is only assumed that the right annihilator ideal of any single element 
(rather than the right annihilator ideal of any subset, as in the definition of 
A JV*-algebras) is a principal right ideal generated by a projection. In an 
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appendix to his development of A W*-algebras [17, p. 249], Kaplansky showed 
that a few of the most basic 4̂ JF*-algebra proofs carry over to Rickart 
C* -algebras, but then gave an example showing that one of the most widely 
useful properties of A W*-algebras-central comparability-does not always 
hold for Rickart C*-algebras. He then pessimistically concluded: "The pa­
thology shown by this example indicates that it is probably fruitless to pursue 
the theory of [Rickart C*-algebras]." 

However, recent work has shown that Rickart C*-algebras are not so 
intractable after all, and many reasonable analogs of A W* -algebra results do 
in fact hold. The breakthrough was Handelman's discovery of an appropriate 
analog to the regular ring constructions of Murray-von Neumann and 
Berberian, as follows. In any finite Rickart C*-algebra A, the projection 
lattice P(A) satisfies most of the axioms of a continuous geometry, except 
that P(A) is only countably complete (only countable subsets of P(A) must 
have least upper bounds and greatest lower bounds), and the "continuity" of 
the lattice operations is only required to hold for countable subsets. Such a 
lattice is called an K0-continuous geometry, and any regular ring coordinat­
ing such a lattice is called an H0-continuous regular ring. Handelman showed 
that any finite Rickart C*-algebra A is canonically embedded in an ^-con­
tinuous "-regular ring R such that R and A have the same projections (thus R 
naturally coordinatizes P(A)) [15, Theorem 2.1]. 

Handelman's construction makes it possible to apply the method which 
was neglected in the AW*-algébTa case, namely the transfer of problems 
concerning a finite Rickart C*-algebra A to corresponding questions concern­
ing the associated N0-continuous *-regular ring R. Here is a sample of results 
which have been proved in this manner. In each case, the key step is the 
application to R of a corresponding result about K0-continuous regular rings, 
which we quote parenthetically. Any element a EL A has a right projection (the 
smallest projection p G P(A) for which ap = a) and a corresponding left 
projection. Kaplansky conjectured that the right and left projections of any 
element of A must be equivalent [17, p. 249], and Handelman proved this in 
[15, Theorem 4.1]. (Whenever two idempotents e and/ in an N0-continuous 
regular ring are equivalent, the complementary idempotents 1 — e and 1 — ƒ 
are equivalent also [15, Theorem 3.2].) Handelman also proved that for every 
maximal ideal M of A, the quotient algebra A/M is a finite A Jf*-algebra [15, 
Theorem 4.3]. (Any quotient ring of an K0-continuous regular ring modulo a 
maximal ideal is a continuous regular ring [15, Corollary 3.2].) Continuing in 
this direction, Handelman, Higgs, and Lawrence showed that the intersection 
of the maximal ideals of A is zero, leading to an embedding of A into a finite 
AW*-algebra, [16, Theorem 3.1]. (In any N0-continuous regular ring, the 
intersection of the maximal ideals is zero [16, Theorem 2.3].) Goodearl, 
Handelman, and Lawrence proved that if A has no finite-dimensional repre­
sentations, then A is isomorphic to an « X « matrix algebra for every positive 
integer n [13, Theorem III. 16.8]. (If an N0-continuous regular ring has no 
simple artinian homomorphic images, then it is an n X n matrix ring for 
every n [13, Theorem II. 15.4].) 
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V. Approximately finite-dimensional C*-algebras and ultramatricial regular 
rings. Among general C*-algebras, there is a reasonably manageable class 
which still exhibits many of the general phenomena, namely the approximately 
finite-dimensional (or AF) C*-algebras introduced by Bratteli [6, Definition 
1.1]: these are the C*-algebras possessing a norm-dense subalgebra which is 
the union of an increasing sequence of finite-dimensional sub-C*-algebras. 
Bratteli showed that such a C*-algebra and such a dense subalgebra de­
termine each other, in the following manner: If A and A' are C*-algebras 
with norm-dense subalgebras R and R' which are unions of increasing 
sequences of finite-dimensional sub-C*-algebras, then A and A' are isomor­
phic as C*-algebras if and only if R and R' are isomorphic as *-algebras [6, 
Theorem 2.7]. Moreover, R and R' are isomorphic as *-algebras if and only if 
they are isomorphic just as algebras [8, Appendix]. 

Since finite-dimensional C*-algebras are semisimple and thus *-regular, so 
are increasing unions of them. Thus there is a class of *-regular algebras 
whose isomorphism classes determine the isomorphism classes of the class of 
A F C* -algebras. The analogous algebras may be defined over any field F 
(where they are merely regular as opposed to *-regular): an ultramatricial 
F-algebra is any F-algebra which is a union of an increasing sequence of 
finite-dimensional subalgebras, each of which is a finite direct product of full 
matrix algebras over F. 

Ultramatricial algebras were completely classified by Elliott in terms of an 
invariant which may be expressed as a generating base of a positive cone of a 
partially ordered "dimension group" [8, Theorems 4.3, 5.1, 5.3]. An equiva­
lent, more compact, classification is in terms of the Grothendieck group, K0, of 
the algebra. This is an abelian group which can be defined for any ring R, 
with generators corresponding to the isomorphism classes of finitely gener­
ated projective right /^-modules, and with an addition operation induced 
from the direct sum operation on the modules. There is a natural translation-
invariant pre-order relation on K0(R), which is a partial order in the case of 
ultramatricial algebras, and there is also a natural "order-unit" in K0(R)9 

given by the generator corresponding to the canonical free right /^-module of 
rank one. 

In these terms, Elliott's classification may be expressed as follows. First, if 
R and R' are ultramatricial F-algebras, then R and R' are isomorphic as 
F-algebras if and only if K0(R) and K0(R') are isomorphic as partially 
ordered abelian groups with order-unit [12, Theorem 15.26]. Second, for an 
ultramatricial algebra R, the partially ordered abelian group K0(R) is a direct 
limit of a sequence of finite rank free abelian groups with the direct product 
ordering, and all such groups do arise [12, Theorem 15.24]. A much more 
convenient description of these groups has recently been proved by Effros, 
Handelman, and Shen [7, Theorem 2.2]: A partially ordered abelian group G 
is isomorphic to K0 of an ultramatricial F-algebra if and only if 

(a) G is countable. 
(b) G has an order-unit. 
(c) If x G G and nx > 0 for some positive integer n9 then x > 0. 
(d) If xl9 xl9yX9y2 £ G with xt < yj for each i9j9 then there exists z E G 

such that xt < z < yj for each i9j. 
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VI. Regular rings and Choquet simplices. The continuous geometries which 
Murray and von Neumann first investigated, namely the projection lattices of 
certain von Neumann algebras, came equipped with dimension functions. 
Von Neumann later constructed dimension functions on arbitrary irreducible 
continuous geometries, and translated these dimension functions into dimen­
sion-like functions on the coordinating regular rings. Specifically, he defined 
a rank function [25, Part II, p. 161] on a regular ring R to be a map 
N: R -> [0, 1] such that 

(a) N(x) = 0 if and only if x = 0, 
( b ) t f ( l ) - l , 
(c) N(xy) < N(x) and N(xy) < N(y), 
(d) N(e + f) = N(e) + N(ƒ) for orthogonal idempotents e and ƒ. 

Such functions he considered to be a generalization of normalized matrix 
rank. 

When R coordinatizes an irreducible continuous geometry (the case von 
Neumann was mainly interested in), there is a unique rank function on R> 
and condition (a) of the definition is essentially just a consequence of 
irreducibility. For more general regular rings, however, condition (a) is too 
restrictive, hence it becomes appropriate to consider pseudo-rank functions [9, 
p. 269], namely maps TV: R -» [0, 1] satisfying conditions (b), (c), (d). 

In any regular ring R, the collection P(R) of all pseudo-rank functions on 
R may be viewed as a subset of the real linear topological space R* of all 
real-valued functions on the set R (where RR is given the product topology). 
Goodearl showed that P(R) is a compact convex subset of R* [9, pp. 270, 
273], and that P(R) is in fact a Choquet simplex [10, Corollary 3.6]. (Choquet 
simplices are a standard infinite-dimensional generalization of classical 
finite-dimensional simplices.) The structure of P(R) can be investigated as an 
invariant of the structure of R. For instance, P(R) carries enough information 
to determine the decomposition properties of certain completions of R, as 
follows. 

Von Neumann noted that any rank function iVona regular ring R induces 
a metric 8N on R, where 8N(x,y) = N(x — y) [25, Part II, pp. 161-162], and 
in fact if N is a pseudo-rank function, the same argument shows that 8N is a 
pseudo-metric. The completion of R with respect to dN is a ring, called the 
N-completion of R; Halperin showed that this iV-completion is a regular ring 
[14, Theorem 3.7], and later Goodearl showed that it is actually a continuous 
regular ring [9, Corollary 15]. In [9, Theorems 19, 22], Goodearl showed that 
the TV-completion is a direct product of t (= 1, 2, . . . , oo) simple rings if and 
only if TV is a positive convex combination of t distinct extreme points of 
P(R). Moreover, the Boolean algebra of central idempotents in the ^-com­
pletion is naturally isomorphic to a certain lattice of faces in P(R) related to 
N [11, Theorem 3.7]. 

Another case in which P(R) has proved particularly useful is that of an 
N0-continuous regular ring R9 in relation to the partially ordered 
Grothendieck group K0(R). Over any regular ring R9 every pseudo-rank 
function induces a dimension function on the lattice of principal right ideals 
of R9 which extends to a dimension function on the class of finitely generated 
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projective right i?-modules. This latter dimension function in turn induces an 
order-preserving homomorphism of K0(R) into R. Thus we obtain a map of 
P(R) into the space of order-preserving real-valued homomorphisms on 
K0(R). Taking the dual viewpoint, each element of K0(R) induces a map from 
P(R) to R, which is affine and continuous. This leads to a natural order-pre­
serving homomorphism of K0(R) m t o t n e space Aff(P(R)) of all affine 
continuous real-valued functions on P(i^). 

When R is an N0-continuous regular ring, Goodearl, Handelman, and 
Lawrence have shown that this natural map of K0(R) into Aff(P(/£)) is an 
order-embedding, and its image is precisely described [13, Theorem II. 15.1]. 
In particular, if R has no simple artinian homomorphic images, then K0(R) is 
isomorphic (as a partially ordered abelian group) to Aîf(P(R)) itself [13, 
Corollary II. 15.2]. The consequence that K0(R) is, in this case, a rational 
vector space, leads directly to the result that R is an n X n matrix ring for 
every positive integer n, which in turn leads to the corresponding result for 
finite Rickart C*-algebras, mentioned above. 
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