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ON THE LOCAL MONODROMY 
OF A VARIATION OF HODGE STRUCTURE 

BY EDUARDO CATTANI1 AND AROLDO KAPLAN1 

Associated to a variation of polarized Hodge structure there is a period map­
ping ty : S —• Y\P, where S is the parameter space and T\P denotes the corre­
sponding modular variety of polarized Hodge structures (the primary example to 
keep in mind is that arising from a family of smooth projective varieties parametrized 
by S) [3], [4]. The local study of the singularities of \p ([5]) reduces to the 
case when S = (A*)z x Am, a product of punctured disks and disks. 

Given a lifting \jj: U1 x Am —> D (U — upper half-plane) of \p to the uni­
versal covering of S there are monodromy transformations yl, . . . , yt G T such 
that 

$(zl9 . . . , z . + 1, . . . ,zl;w1, . . . ,w m ) 

= y$(zl9...9zi9 . . . 9zt;wl9. . . 9wm). 

These 7/s, which are quasi-unipotent automorphisms of the C-vector space H 
underlying the variation, provide important invariants of the singularities of \p. 
In particular, in the single variable case (7 = 1, m — 0) a central role is played by 
the monodromy weight filtration W% = W*(N) of the nilpotent transformation 
TV" = log 7M, where yu is the unipotent part of the monodromy 7. We recall [5] 
that, if k is the weight of the Hodge structures, Nk+ 1 = 0 and the filtration 
(0) C W0 C • • • C W2 k — H is uniquely characterized by the conditions NW- C 
Wj_2 and TV7: ^+//^ /Ar+/-i ~~* ^k-jl^k-f-i is an isomorphism. 

The results announced here concern the monodromy weight filtrations 
arising in the several variables case. The main statements—Theorems 1 and 2— 
were conjectured by P. Deligne [2] (cf. Conjecture 1.9.6, as well as Theorem 
1.9.2 for the special geometric case). For structures of weight two they are con­
tained in [1]. 

THEOREM 1. Let y19 . . . , yt be monodromy transformations of a period 
mapping \p: (A*)z x (A)m —> T\D and Nt the logarithm of the unipotent part 
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of yt. Then all the elements in the open cone of commuting nilpotent endomor-
phisms 

o=IL W \e R. \ > ° 
define the same monodromy weight filtration (to be denoted by W*(o)). 

According to Schmid's Nilpotent Orbit Theorem [5] there exists a limiting 
Hodge filtration F* (depending on w1, . . , , wm) such that the lifting i// may be 
approximated for Im zy- > > 0 by the orbit expQ ẑyVV) • F*. Moreover in the 
case of a single TV and as a consequence of the SL2 -orbit theorem, (W%(N), F*) 
defines a polarized mixed Hodge structure, i.e. the Hodge filtration F* defines 
Hodge structures on the graded quotients Gr;(TV) = WJ(N)/WJ__1(N) which are 
suitably polarized (cf. Theorem 6.16 in [5] for the precise statement, as well as 
[6] ). When this is combined with Theorem 1 one obtains that every point in 
the approximating orbit defines a mixed Hodge structure relative to the filtration 

A further consequence of Theorem 1 is the existence of a Hodge filtration 
F$ such that (W%(o), F$) is a mixed Hodge structure split over R and the orbit 
exp(S^zyV/.) • Ffi lies in D for Im z- > 0. For a single monodromy transforma­
tion these "split" nilpotent orbits correspond to SL2 -orbits in the sense of [5]. 
Thus they could be expected to play a role in extending the SL2 -orbit theorem 
to the case of period mappings of several variables. 

The second theorem relates the weight filtration W%(o) to those associated 
to the faces of the cone a. In order to make this statement precise let us con­
sider two commuting nilpotent transformations TV and TV'. Since TV* preserves 
W%(N), it induces nilpotent endomorphisms in each of the graded quotients 
Gij(N). Suppose that the monodromy weight titrations defined by TV* in the 
various Gr;(TV)'s are all projections of a single filtration W% of the total space 
with the property that N'W- C W;2 (such a W* need not exist for an arbitrary 
commuting pair TV, TV', but if it does, it is unique [2] ). Then, following Deligne, 
we call such W* the monodromy weight filtration of the pair (TV', W*(N)). 

THEOREM 2. Let TV, TV' be any two elements in the closure of o not be­
longing to the same proper face of this cone. Then W%(o) is the monodromy 
weight filtration of the pair (TV', W%(N)). 

We end with a bare bones sketch of the proof of Theorem 1. For elemen­
tary reasons there exists a Zariski-open subcone a' of a where the map TV —» 
W#(N) takes values in a fixed flag manifold. Then the existence of a Hodge fil­
tration F* such that (W*(N), F*) is a polarized mixed Hodge structure for all 
TV G a is seen to imply the vanishing of the differential of that map. Hence the 
filtration W%(N) must be constant on each connected component of a'. 
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For any such component o'0 it is now possible to construct a new Hodge 
filtration F$ such that (W%(o'0), F$) is a mixed Hodge structure split over R and 
such that exp zN • F$ G D for N E o'0 and lm z > 0. This, combined with 
Lemma 1 in [1], guarantees in turn that (W%(N)9 FJ) is a mixed Hodge structure 
even for an TV in the closure of o'0 in o. The conclusion that W*(N) = W%(o'0) 
for any such TV and, hence, that of Theorem 1, follows from the Proposition 
below which, together with the reduction to the R-split case, also underlies the 
proof of Theorem 2. 

PROPOSITION. Let (W*9 F*) be a mixed Hodge structure split over R and 
N a (-1, -l)~morphism of it. Then (W*(N), F*) is a mixed Hodge structure if 
and only if W*(N) = W*. 

Detailed proofs will appear elsewhere. We wish to thank Pierre Deligne 
for his generous advice and encouragement during the preparation of this work. 
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