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AFFINE LIE ALGEBRAS AND HECKE MODULAR FORMS 

BY V. G. KAC AND D. H. PETERSON 

The character of a highest weight representation of an affine lie algebra 
can be written as a finite sum of products of classical 0-functions and certain 
modular functions, called string functions. We find the transformation law for 
the string functions, which allows us to compute them explicitly in many inter­
esting cases. Finally, we write an explicit formula for the partition function, in 
the simplest case A[x\ and compute the string functions directly. After multi­
plication by the cube of the T?-function, they turn out to be Hecke modular forms! 

1. (See [3] or [7] for details.) Let g be a complex finite-dimensional simple 
lie algebra, § a Cartan subalgebra of g. A the set of roots of § in g. A+ a set of 
positive roots, II = {OLX , . . . , a;} the corresponding set of simple roots, 0 the 
highest root. Let (,) be an invariant symmetric bilinear form on g normalized 
by (6,6) = 2. For a € ^ * with (a, a) * 0 define Ha G § by 0(#a) = 2(0, a)/(a, a) 
for j8 G §*. Let W be the Weyl group of § in g. Denote by M the Z-span of 
W6 (long roots). 

Let C[t, t"1] be the algebra of Laurent polynomials over C in an indeter­
minate t. We regard g' := C[t, t~x] ®cg as an (infinite-dimensional) complex 
lie algebra. Define the affine Lie algebra g as follows. Let g = 'g © Cc © Cd 
and define the bracket by 

( dx \ dx 

for x, y G 'gf. The algebra g is an important example of a Kac-Moody algebra 
[5], [10]. Note that Cc is the center of the algebra g. The subalgebra % = 
i) <B Cc 0 Giis called the Cartan subalgebra of g. For a G §* set ga = 
{x G g | [ft, x] = a(h)x for ft G §}; then we have the root space decomposition 

8 = ®9<r 
Detine a nondegenerate symmetric bilinear form (,) on § by (ft, ft') is un­

changed if ft, ft' G § C 6, (ft, c) = (ft, d) = 0 for ft G fc>, (c, c) = (tf, J) = 0, 
(c, rf) = 1. We identify § with §* by this form; then §* is identified with a 
subspace in %* by a(c) = a(<2) = 0 for a G §*. For a G §* set a = aL „ so that 
Se §* C |* . Define 6 G $* by 6(A) = 0 for ft G §, 6(c) = 0, 6(d) = 1. 
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The root system of g is defined to be the set 

A := {a E §*|a # 0, dim ga * 0}. 

The numbers mult a := dim ga are as follows: mult a = 1 for a E A + Zô, = / 
for a E ZÔ, a ^ 0, and = 0 for all the other a ï 0. The set 

Â+ = {a E Â|a(tf ) > 0} U A+ 

is the positive root system, and II = {otQ := ô - 0, ax,..., at} is the set of 
simple roots. The set of dual simple roots is 

{h0 :=c-He9ht : = ^ , / = 1 , . . . , / } . 

JVe define a reflection rt E GX( § *) by rf<X) = X - X(£,)a^, / = 0 , . . . , /, 
\ G § * . The Weylgroup W of 9 is the subgroup in GL(t) *) generated by all 
rv i = 0 , . . . , I We regard W as the subgroup of W generated by all ri9 

i = l , . . . , / . For a E § * set 

fa(X) = X + X(c)a - ((X, a) + iSA(cX«» a))ô, X E %* 

and set T = {ta\ot EM}. Then one has 

R> = W lx T. 

2. Set P = (X E §*|X(rf) = 0; X(^) E Z, * = 0, . . , / } , P+ = 
{XEP|X(^.)>0,/ = 0 , . . . , / } , P = P n Ç*. Define p E §* by p(/i.)= 1, 
i = 0 , . . . , / , p(tf) = 0, and set # = p(ç)-

A A 

Fix A E P+ ; there exists a unique irreducible g-module L(A) (the highest 
weight module) which admits a nonzero v E Z(A) such that ga(u) = 0 for 
a E Â+ and /*(U) = A(h)v for à E %. For X E §* set L(A\ := {u E L(A)\h(u) 
= X(/i)u for /* E §}, multA(X):= dim £(A)X. If multA(X) ¥= 0, X is called a 
weight of 1(A). We have Z(A) = ©£(A)X, and multA(wX) = multA(X) for 
w€W (see [7] for details). The number m '= A(c) is called the level of the 
module L(A); this is a nonnegative integer, which is 0 if and only if dim L(A) = 1. 

With respect to d we have the eigenspace decomposition 

Z(A)= © £<-*>, 
* e z + 

where dim lS~k) < °°. Consider the domain D := {z + rd +wc|zE §; r, M E C, 
lm r > 0} C §. We define the character of the g -module Z,(A) by 

ch L(A)(z, r, 0 := £ tr exp(~27r/(z + r<i + wc))| , fcx. 

A 

This is an absolutely convergent series defining a W-invariant holomorphic func­
tion on D. The character can be written in terms of classical theta-functions 
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0^ n. For X G Q ®z M, and a positive integer n, 0X n is the holomorphic func­
tion on D defined by 

&\,n(z> T> u) = e'2ninU X e«in\y\2Te-2mny{z) 

The character formula from [6] can be rewritten as follows: 

éT2**rATchZ(A)(z, r ,a)= £ (det w)0 , - . x / ^ (det w)0 _ , 

(1) 
where rA = (2m + 2&T1|A + pi2 - (2s)-1 Ipl2. 

Consider Z(A) as an ^-module; one has 

£(A) = © L\ where Lx := {Ü G Z(A)|A(i;) = X(A)Ü for h G Ç}. 

Let X G §* be such that Lx =£ 0. Choose the minimal w0 G Z such that 
multA(X + A - Â - n0d) ¥= 0. Set rA(X) := -w0 - (2m + 2s)""1 |Â + p|2 + 
(2mr1IX|2 + C&rMpI2, and (cf. [8]) 

c A ( r ) := e2*^™* £ (dim Lx n £<-*>)***'**. 

The function c£ is holomorphic on the upper half-plane; it is called a string 
function. We set c£ = 0 if LK = 0. Note that c£ = c£ ( ? 0 for w G W lx /wM; 
these string functions are called equivalent. It is easy to see that, due to W-
invariance, one has (cf. [8] and [9]) 

é-2l"r*TchL(A)(z,T,u)= Z c f t r ^ f c r , . ! ) . (2) 
XGP/mM 

Comparing (1) and (2) gives an identity, which together with the transformation 
law for theta functions [1] gives the following: 

THEOREM 1. Let A G P+ be such that m = A(c) > 0, and X G P. 
Let N be the least positive integer such that N\y\ 2 E2ZforfiEP. Then 

(a) Cj^-r-1) = (-fr)-"2 Z b(A9 X; A', X')c£'(r), 
A'e£+ 

A'(c)=m 
\ 'eP/mM 

where 

*(A, X; A', X') = /IA+,|P/M|"1w"l/2(w + g)~~l/2 exp(27r/w~1(X, X')) 

£ (det w)exp(-27r/(w + gTl(A + p, w(Â' + p))). 
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(b) T?(r)dim 9 C£(T) is a cusp-form of weight | A+1 for F(Nm) n r(N(m + g)), 

with multiplier system given in [12]. 

3. Theorem 1 allows one to compute the string functions in many inter­
esting cases. For 0 < i < / define A,. € P+ by Afhj) = 8/;-, At(d) = 0. We write 
c™(r) for c£, where A = Am, X = V 

EXAMPLE 1. Suppose all roots of 9 have equal length. Then all A GP+ 

with A(c) = 1 are conjugate under automorphisms and for each such A there is, 
up to equivalence, a unique string function. Thus all nonzero string functions of 
the modules of level 1 are equal to CQ(T). Using Theorem 1, we obtain CQ(T) = 
t0)"K which is proved in [7] by a more complicated method. For the AX-
module L(AQ) the weight multiplicities have been previously computed in [2]. 

EXAMPLE 2. Let g be of type Bl with roots labelled as in the diagram 

o * o * =» o * 

Then there are three distinct string functions for A(c) = 1, and 

c / ( r ) = J*2lL c o ( T ) _ c o ( T ) = * l / 2 L 

O/Vi _ ^(.U + C^T) 
T?(r/2)i7(ry-2T?(2r) 

Similar results may be obtained for g of types G2, F4, C3, but the general 
case of Cl seems difficult. 

EXAMPLE 3. Theorem 1 can' be generalized to the case of the Lie algebras 
from Tables 2 and 3 (in notations of [7] ). For A = A0 there is, up to equiva­
lence, a unique string function, namely c%(r), given as follows: 7?(T)~' for Affi, 
W^nerr1 fotA%Ll,tKrr1n&rr'+1 îoxD%\,ri(Tr2V<2Tr2 for42> 
and I JCT)" 1 !^ )" 1 foiD^K 

4. The (generalized) Kostant partition function K on §* is defined by 
setting K{ X) equal to the number of partitions of X as a sum of positive roots 
(from Â+), each root being taken with its multiplicity. The function K may be 
used to compute multA(X) [6], and hence to compute c£(j). 

We do this straightforward computation for § ssÂl. Then 8 = a0 + o^, 
A+ = {(n + 1)8, n6 + a0, nô + ax, where n > 0}, and mult a = 1 for all 
a € A+ . We have the formula 

K(n0a0 + if l t t l) = Z (" 1)V 3 ) ( (* + I K * **i - £*(* + 1)) (3> 

where p(3)(«) is defined by 2np<3\n)Xn = n n > 1 ( l - X n ) ~ 3 . Simüar formulas 
exist for all §, but are tractable only for type Âv They are obtained using the 
results from [11]. Applying (3) we obtain 
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THEOREM 2. Let Z(A) be an A ̂ module of level m > 0, and let \ € P, 
c£ * 0. Set a(X) = ' ( (A^) + lX2m + 2)"1, X(/z1X2m)-1) G R2. Let F be 
the quadratic form F(x, y) = (m + 2)x2 - my2 in R2. For v € R2 se/ sign u = 
sign(Vw + 2 * 4- \/"U>)- ^ ^ G0 *^ ^ e subgroup ofSL(2, R) generated by 

I m + 1 m y 
\m + 2 m + 1/ 

77œ/î 

rKr)3^(r) = £ (sign v)e2«iTF<v\ (5) 
ü€Z 2 +f l ( \ ) 

F(ü)>0 
umod GQ 

The function (5) is a modular form of a type studied by Hecke [4]. Com­
paring (5) with Example 1 for / = 1 we obtain an identity for i?(r)2, which 
appears in [4]. Comparing (5) with Example (b) from [7, p. 132] (see also [2, 
Corollary 5.2]) we obtain a new identity 

IKT) IJ (2T )= £ e i f e x p 2 7 r f r p 2 / 2 " t 1 ) 2 - 4 m 2 . 
m,«GZ L ö J 
n>3\m\ 
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