BLOCKS WITH CYCLIC DEFECT GROUPS IN GL(n, q)

BY PAUL FONG AND BHAMA SRINIVASAN1

Let G be a finite group and B an r-block of G with cyclic defect group R. The decomposition of the ordinary characters in B into modular characters is described by the Brauer tree T of B. The problem of determining the Brauer trees for finite groups of Chevalley type was proposed by Feit at the 1979 AMS Summer Institute. Our result is a necessary step in this problem: If G = GL(n, q) and r is an odd prime not dividing q, then T is an open polygon with its exceptional vertex at one end. The proof also shows an interesting fit of the modular theory for such primes r with the underlying algebraic group, the Deligne-Lusztig theory, and Young diagrams.

Because R is a cyclic defect group, R has the form

$$R = \begin{pmatrix} I_1 & 0 \\ 0 & R_1 \end{pmatrix}, \tag{1}$$

where the elementary divisors of a generator of R_1 are, say, m copies of an irreducible polynomial of degree d over F_a . By (1) the structure of $C = C_G(R)$ is

$$C = \begin{pmatrix} C_0 & 0 \\ 0 & C_1 \end{pmatrix}, \tag{2}$$

where $C_0 \simeq GL(l, q)$ and $C_1 \simeq GL(m, q^d)$. The normalizer $N = N_G(R)$ is then obtained by adjoining to C an element t of the form

$$t = \begin{pmatrix} I_l & 0 \\ 0 & t_1 \end{pmatrix},$$

where t_1 induces a field automorphism of order d on C_1 .

By Brauer's First Main Theorem B corresponds to a block B_C of C with defect group R, where B_C is determined up to conjugacy in N. Let E be the stabilizer of B_C in N, so e = |E:C| is then the inertial index of B. Let Λ be a set of representatives for the orbits of E on the set of nontrivial irreducible characters of E. In the Brauer-Dade theory [1] the exceptional characters E in E are labeled by E in E in E are labeled by E in E in E to E in E to E in E by E in E in E by E in E

Received by the editors April 22, 1980.

AMS (MOS) Subject Classifications (1970). Primary 20C20, 20G40.

¹ This research was supported by NSF grants MCS79-02750 and MCS78-02184.

The block B_C decomposes by (2) as $B_C = B_{C_0} \times B_{C_1}$, where B_{C_0} is a block of C_0 of defect 0 and B_{C_1} is a block of C_1 with defect group R_1 . Since $R_1 \leq Z(C_1)$, a theorem of Reynolds [6] implies that the characters θ_{λ} in B_{C_1} can be labeled by the irreducible characters λ of R so that θ_1 is the unique r-rational character in B_{C_1} and so that $\theta_{\lambda}(xy) = \lambda(x)\theta_1(y)$ for any x in R_1 and any r'-element p of p is the unique p and p is the unique p and p is the unique p and p is the unique p is the unique p and p is the unique p is th

Let $R_C^R(\theta)$ be the virtual character of G associated to the irreducible character θ of C by the Deligne-Lusztig theory. Thus $R_C^G(\theta)$ is an element of the Grothendieck ring of representations of G over \overline{Q}_I . (We have modified the notation of [2], [4]. We should strictly write $R_{\overline{C}}^G(\theta)$, where \overline{G} is the algebraic group $GL(n, \overline{F}_q)$, F is a Frobenius endomorphism of \overline{G} with $G = \overline{G}^F$, \overline{C} is a regular subgroup of \overline{G} , and $C = \overline{C}^F$.)

PROPOSITION 1. There is a labeling of the χ_{λ} , $\lambda \in \Lambda$, and signs ϵ_0 , $\epsilon_1, \ldots, \epsilon_e$ such that

$$\begin{split} R_C^G(\theta_0\theta_\lambda) &= \epsilon_0 \chi_\lambda \quad \text{for } \lambda \in \Lambda, \\ R_C^G(\theta_0\theta_1) &= \epsilon_1 \chi_1 + \epsilon_2 \chi_2 + \dots + \epsilon_e \chi_e. \end{split}$$

The signs ϵ_i and the generalized decomposition numbers of B corresponding to a generator x of R are related by

$$\begin{split} \epsilon_i &= d^x(\chi_i,\,\theta_0\theta_1) \quad for \ 1 \leq i \leq e, \\ \epsilon_0 \sum_{g \in E/C} \lambda^g &= d^x(\chi_\lambda,\,\theta_0\theta_1) \quad for \ \lambda \in \Lambda. \end{split}$$

A classification of the irreducible characters of G has been given by Green [3], and can be restated in the language of [5] as follows: Each irreducible character θ of G corresponds to an ordered pair $(s,\,\xi)$, where s is a semisimple element of G and ξ is a unipotent irreducible character of $C_G(s)$. The correspondence is given by $\theta=\pm\,R_{C_G(s)}^G(\xi\eta)$, where η is the linear character of $C_G(s)$ dual to s. (The dual η of s is defined by fixing an isomorphism of \overline{F}_q^* into \overline{Q}_l . Then $\mathrm{Hom}(\overline{L}^F/[\overline{L},\overline{L}\,]^F,\,\overline{Q}_l^*)\simeq (Z(\overline{L}))^F$ for any regular subgroup \overline{L} of \overline{G} . In particular, if s is a semisimple element of G and $\overline{L}=C_{\overline{G}}(s)$, then s is in $(Z(\overline{L}))^F$ and thus determines a linear character η of $C_G(s)$.)

Let (s_i, ξ_i) be a pair corresponding to the irreducible character θ_i of C_i for i = 0, 1. Thus

$$\theta_i = \pm \, R_{L_i}^{C_i}(\xi_i \eta_i),$$

where $L_i=C_{C_i}(s_i)$ and η_i is the linear character of L_i dual to s_i . In the case $i=0,\,\xi_0$ has defect 0; in the case $i=1,\,L_1$ is a torus of order $q^{dm}-1$ in C_1 and ξ_1 is the 1-character of L_1 . Let $s=s_0s_1$ and $K=C_G(s)$. It then follows that $C_K(R)=C_C(s)=L_0\times L_1,\,N_K(R)=\langle C_K(R),\,t^f\rangle$, and $|N_K(R)/C_K(R)|=e$, where d=ef. In particular, if B_{L_0} is the block of L_0 containing ξ_0 and B_{L_1} is

the principal block of L_1 , then $(B_{L_0} \times B_{L_1})^K$ is a block B_K of K with defect group R and inertial index e. Let $\psi_{\lambda}, \lambda \in \Lambda$, be the exceptional characters in B_K , and $\psi_1, \psi_2, \ldots, \psi_e$ the nonexceptional characters in B_K . The $\psi_1, \psi_2, \ldots, \psi_e$ are then unipotent. Let η be the linear character of K dual to S.

PROPOSITION 2. There is a labeling of the $\psi_1, \psi_2, \ldots, \psi_e$ and signs $\delta_0, \delta_1, \ldots, \delta_e$ such that

$$\begin{split} R_K^G\left(\delta_0\psi_\lambda\eta\right) &= \epsilon_0\chi_\lambda, \quad \lambda \in \Lambda, \\ R_K^G\left(\delta_i\psi_i\eta\right) &= \epsilon_i\chi_i, \quad 1 \leq i \leq e. \end{split}$$

In particular, R_K^G induces a 1-1 correspondence between the nonexceptional characters of B and the unipotent characters in B_K .

The group K is a direct product $K = K_1 \times \cdots \times K_t$, where K_i , say, is isomorphic to $GL(n_i, q^{d_i})$. Let $B_K = B_{K_1} \times \cdots \times B_{K_t}$ be the corresponding decomposition of B_K . We may label these so that B_{K_i} has defect 0 for i > 1. Then B_{K_1} has defect group R. The unipotent characters of K_1 are in natural 1-1 correspondence with the irreducible characters of the Weyl group W_1 of K_1 , and since W_1 is the symmetric group on n_1 symbols, the unipotent characters of K_1 are thus naturally labeled by partitions of n_1 . Since the characters in B_K are products of a fixed character of $K_2 \times \cdots \times K_t$ by the characters in B_{K_1} , we may also label the nonexceptional characters in B_K by the partitions μ_1 , μ_2, \ldots, μ_e of n_1 labeling the unipotent characters in B_{K_1} . Thus we write ψ_{μ_i} for ψ_i .

PROPOSITION 3. Each partition μ_i has a unique e-hook ν_i and the hooks $\nu_1, \nu_2, \ldots, \nu_e$ are pairwise distinct. The e-core μ_0 of μ_1 , obtained by deleting ν_i from μ_i , is the same for all i; moreover, μ_0 has no e-hooks. The μ_i account for all partitions μ of n_1 with a unique e-hook and e-core μ_0 .

Let the partitions μ_i be arranged so that the e-hook ν_i of μ_i has leg length i-1. By our labeling the nonexceptional characters in B are of the form $\chi_i = R_K^G(\delta_i \epsilon_i \psi_{\mu_i} \eta)$.

PROPOSITION 4. If the χ_i are labeled as above, then the signs δ_i are given by $\delta_i = (-1)^{i-1}$. Moreover, R_K^G induces a graph isomorphism of the Brauer trees of B_K and B. The tree of B is the open polygon.

$$\chi_1$$
 χ_2 χ_3 χ_e exc

^{1.} E. C. Dade, Blocks with cyclic defect groups, Ann. of Math. (2) 84 (1966), 20-48.

^{2.} P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976). 103-161.

- 3. J. A. Green, The characters of the finite general linear groups, Trans. Amer. Math. Soc. 80 (1955), 402-447.
- 4. G. Lusztig, Irreducible representations of finite classical groups, Invent. Math. 43 (1977), 125-175.
- 5. G. Lusztig and B. Srinivasan, The characters of the finite unitary groups, J. Algebra 49 (1977), 167-171.
- 6. W. F. Reynolds, Blocks and normal subgroups of finite groups, Nagoya Math. J. 22 (1963), 15-32.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT CHICAGO CIRCLE, CHICAGO, ILLINOIS 60680