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STABLE AND L2-COHOMOLOGY OF ARITHMETIC GROUPS 

BY A. BOREL 

Introduction. In [1], [2] we gave a range of dimensions in which the real 
cohomology of an arithmetic or S-arithmetic subgroup T of a connected semi-
simple group G over Q is naturally isomorphic to the space of harmonic forms on 
the quotient X = G(R)/K of the group G(R) of real points of G by a maximal 
compact subgroup K which are invariant under T and the identity component 
G(R)° of G(R), and indicated some applications to the stable cohomology of 
classical arithmetic groups and to algebraic ̂ -theory. In this note we first state 
an extension to nontrivial coefficients, since this has become of interest in topol­
ogy and ^-theory [7]. A chief tool in [2] was the proof that H*(T; C) could 
be computed using differential forms on T\X which have "logarithmic growth" 
at infinity. Theorem 2 extends this to more general growth conditions. This can 
be used to show that certain L2 -harmonic forms are not cohomologous to zero 
[9]. In § §3, 4, 5 we consider the L2-cohomology space //^(TX-Sf) and relate it 
to the spectral decomposition of the space L2(T\G) of square integrable functions 
on T\G. Theorem 4 gives a sufficient condition under which it is finite dimen­
sional, hence isomorphic to the space of square integrable harmonic forms, and 
§5 a series of examples in which it is not. For convenience, we assume G simple 
over Q and T torsion-free. 

1. Let PQ be a minimal parabolic Q-subgroup of G, S a maximal Q-split 
torus of P0, N the unipotent radical of P and n the Lie algebra ofN. Let X(S) 
be the group of rational characters of S and p G X(S) be such that a2p = 
det Ad a\n for aGS. For /x G X(S) let c(G, n) be the maximum of q such that 
p - n - 77 > 0, where r\ runs through the weights of S in Aqn. Let c(G) = 
c(G, 0). If (r, E) is a finite-dimensional complex representation of G(C), we let 
c(G, f) be the minimum of c(G, jtz), where /z runs through the weights of r with 
respect to S. It is easily seen that c(G) > S^CG^), where G( runs through the 
simple factors of G(C), and c(Gf)-is defined similarly, and that ^G,) is equal to 
[ ( 7 - l ) / 2 ] , / - 1 , 7 - 2 , / - 1 , 7 , 1 3 , 2 5 , 5 , 1 if G,is of t y p e ^ , * , , q , / ^ , 

^6> ^ 7 ' ^8> ^4> G2» 

THEOREM 1. The natural komomorphism #*(g, t ; £ ) r —* Hq(T; E) is 
infective for q< c(G, r), surjective if in addition q < rkRG. If EG = (0), then 
Hq(Ti E) = 0forq< c(G, r)9 (rkRG - 1). If G is simply connected, these 

Received by the editors May 29, 1980. 
1980 Mathematics Subject Classification. Primary 18H10; Secondary 20G10, 20G30, 

53C39. 
© 1980 American Mathematical Society 
0002-9904/80/O000-O505/$01.75 

1025 



1026 A. BOREL 

assertions remain true if T is replaced by an S-arithmetic subgroup or by G(Q). 

Here g and Ï stand for the Lie algebras of G(R) and K. See [5] for rela­
tive Lie algebra cohomology. The proofs of these statements are similar in princi­
ple to those given or sketched in [1], [2] when r is the trivial representation, and 
moreover, take into account some results proved in [5]. If we have an inductive 
system of groups and representations without trivial constituents (Gn, Tn,rn, En) 
such as (G, T, r, E) and if c(Gn, rn) —> °°, then Theorem 1 implies that 
#«(lim rw, lim En) = 0 for q > 0. 

2. On Siegel sets, we consider coefficients of differential forms with respect 
to special frames, as in [2]. For X G X(S) we say that T? € £lx+(T\X) if the 
coefficients of 17 and of dri satisfy a growth condition, 

\m\ < <*(x)K Î Oog a*1,... , log a"% (1) 
where at,. . . , at are the simple Q-roots and P is a polynomial in / variables (I = 
dim S). The proof of the following theorem is analogous to that of 7.4 in [2]. 

THEOREM 2. If X is dominant, then the injection £2x+(r\X) —* £2(rYY) 
induces an isomorphism in cohomology. The elements of £2? are square inte­
grable ifq< c(G, X). The space of square integrable harmonic q-forms contained 
in Slx+(T\X) maps injectively into the cohomology of Tforq< c(G, X) + 1. 
Tjf X < 0, then H*($lx+) is canonically isomorphic to the complex cohomology 
with compact supports of T\X. 

3. Let M be a Riemannian manifold. Let Q,^(M) be the complex of 
differential forms 17 on M such that T? and dr\ are square integrable. By definition 
H(2)(M) = H*(£l(2)(M)) is the space of L2 -cohomology of M (See [6], where 
equivalent Hubert space definitions are given.) Let H^{M) be the space of 
I? -harmonic forms. It is known that if M is complete, then the natural map ƒ : 
H (2)(W —* H{vM is injective. If M is compact, then / is an isomorphism and 

Hi2)(M) = H*(M;C). 

THEOREM 3. There are canonical isomorphisms 

Hi2)(r\X) = H*(i9K9L\r\Gr) 

and 

Hw(T\G) = H*(fi;L2(r\Gr). 

As usual, if (7T, V) denotes a unitary representation of G(R) then V°° de­
notes the space of C°°-vectors in V. To establish Theorem 3, one proves first the 
second statement using a homotopy operator defined by the convolution by a 
compactly supported smooth function on G, and then deduces the first one by 
the comparison theorem for spectral sequences, applied to suitable spectral se­
quences in relative lie algebra cohomology. 
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4. The space L2(T\G) is the sum of the discrete spectrum L2(F\G)d and 
the continuous spectrum L2(T\G)ct. By results obtained jointly with H. Garland 
P] » [4] » H (2)(r\AT) is finite dimensional and is the direct sum of the spaces 
H*(i, K\ ///°), where Ht runs through a set of irreducible constituents of 
L2(T\G)d. By [8], L2(r\G)ct is a Hubert direct sum of invariant subspaces, 
say Vt (i G I), each of which is a continuous integral of unitarily induced princi­
pal series (from parabolic Q-subgroups). By [4], #*(g, K; L2(T\G)™t) is the 
sum of the #*(g, K\ V~) and can be nonzero only for finitely many terms. 
Those spaces can be computed as in [5, III] and can be nonzero only if the 
underlying parabolic subgroup is fundamental [5, IV] in C7(R). Together with 
Theorem 3, this proves 

THEOREM 4. The map ƒ : f/ (2)(r\JST) —* H^(T\X) is an isomorphism 
if G has no proper parabolic Qrsubgroup which is fundamental in G(R), in par­
ticular if rank G = rank K. 

5. It is rather likely that if G has a proper fundamental parabolic subgroup 
Px defined over Q, then T has a subgroup T' of finite index such that H^(T\X) 
is infinite dimensional. This has been checked in a number of cases: (i) G = 
SO(w, 1) for n > 3 odd (with T = T'); (ii) the group Px is minimal over R; 
(iii) G = SLW(R) and Y C SLW(Z). In those cases, infinite-dimensional cohomol-
ogy occurs exactly in the dimensions q such that dim X - /0 < 2q < dim X + 
/0, where l0 = rank G - rank K. 
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