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ASYMPTOTIC EXPANSIONS OF GAUSSIAN INTEGRALS 

BY RICHARD S. ELLIS1 AND JAY S. ROSEN2 

Function space integrals are useful in many areas of mathematics and 
physics. Physical problems often give rise to function space integrals depending 
on a parameter and the asymptotics with respect to the parameter yield impor­
tant information about the original problem. The purpose of this note is to 
describe the asymptotic expansions of a wide class of Gaussian function space 
integrals. Related work has been done by [Varadhan], [Schilder], [Pincus], 
[Donsker-Varadhan], and [Castro]. All asymptotic expansions previously ob­
tained assume a nondegeneracy condition which assures that one never strays too 
far from the realm of Gaussian processes. Our results cover both the nondegen-
erate case and the degenerate case, the analysis of the latter being much more 
subtle. In the degenerate case, the leading asymptotic behavior is non-Gaussian. 

Let PA be a mean zero Gaussian probability measure with covariance 
operator A on a separable Hubert space tf. Our methods can also handle cer­
tain Banach spaces, such as C[0, 1], which are important in applications. Let 
# and F be suitably bounded, real C°° functionals on H. We study the asymp­
totics of 

Jn :=fy(Y/yfi)e-^Y^dPA(Y) (1) 

as « —• °°. 
If ƒ and g are real-valued functions on R, then Laplace's method tells us 

that the asymptotics of / R f(x)exp(-ng(x))dx are determined by the behavior of 
g near its minimum points [Erdélyi, §2.4]. Formally, Jn in (1) can be written 
as 

J^(y/VJ7)^wFW^)-^"ly'y>/2 dY = fi,(Y/y/n)e-nG^^dY9 (2) 

where G(Y) := F(Y) + (A"1 Y, Y)/2. By analogy with the situation on R, we 
expect the asymptotics of Jn to be determined by the behavior of G near its 
minimum points. The expressions in (2) are purely formal since the symbol dY 
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is supposed to represent the nonexistent translation invariant measure on H. 
Also, (A"1 Y, Y) is defined only for Y G Q(A~~V2)9 which in general is only a 
dense subset of H. 

For simplicity, assume that G has a unique minimum point Y*. We neces­
sarily have 

G'(r*) = 0, G"(Y*)>0 onH. (3) 

Here, G '(Y*) and G "(Y*) are respectively the element of H and the linear opera­
tor on H defined by the first and second Fréchet derivatives of G at Y*. We 
say that Y* is nondegenerate if K := kei(G"(Y*)) = {0}. In this case, we can 
write for ||y|| small 

G(Y* + Y) = G(Y*) + U(G"(Y*)Y, Y) + error term. (4) 

Thus, the important term in the exponent of (2) is Ü(G"(Y*)YP Y), giving rise 
to a Gaussian measure with covariance operator (G "(y *))""*. The asymptotics 
of Jn are derived by expanding around this measure. This is the intuition be­
hind Theorem 1. In the special case of Wiener measure, the theorem was proved 
by [Schilder]. 

In Theorem 1 and in its analogue for the degenerate case, Theorem 2, we 
suppose that \p and F are real C°° functionals on H and that there exist constants 
bx > 0, b2 > 0, 0 < b3 < 1/(2|HI|), b4 > 0 such that 

\HY)\ < V * 2 l m 2 , FÇT) > -b3\\Y\\2 ~ b4 (5) 

for Y G H. These bounds are sufficient to assure that Jn exists. 

THEOREM 1. Suppose that G has a unique minimum point Y* and that 
Y* is nondegenerate. Then B := (Gff(Y*))"1 is the covariance operator of a 
mean zero Gaussian measure PB on H. Also, exp(nG(Y*))Jn has the asymptotic 
expansion 

M 
#GW)jn = £ n-/r, + 0(>T(M+1)) as n - • ~, (6) 

/=o 

where M>0 is any integer and the {I\} are functionals. The sum in (6) is ob­
tained by expanding 

[det(7 + AF"(Y*))] - V ^ y * + Y/n1'2) 

• exp(-rt[F(r* + Y/n1'2) ~F(Y*) - (Fr(7*), Y/n1'2) 

- K{F\Y*)Ylnll2> Y/n1!2)]) (7) 

in powers ofn~lf2 through order n~M and then by integrating term by term 
with respect to dPB over H. The leading term in (6) equals 

[det(/ + AF"{Y*))\ -WW*). 
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REMARK. In (6), we must multiply Jn by exp(«G(Y*)) in order to cancel 
the contribution of G(F*) when (4) is substituted into (2). This also applies to 
the degenerate case (see (13)). Only even powers of n~V2 appear in (6) since 
PB is mean zero. 

We now discuss the degenerate case. When K := ker(G"(^*)) is nonempty, 
the above analysis completely breaks down and we can no longer expand around 
a Gaussian measure. Let us assume for simplicity that dim^) = 1. In such a 
case, we say that Y* is simply degenerate. Let U € K be a unit vector and let r 
denote the orthogonal projection onto K . We write Y G H in the form 

Y = zU + XeK®Kl, (8) 

where z := (7, U) and X := TY. Following (4), we examine G(Y* + Y) for 
|| F || small. If we use the coordinates zf X from (8), we find for some m > 2 

G(Y* + Y) = G(Y*) + ±(G"(Y*)X, X) + £^G<m>(y*; IT) 

+ (cross terms in z, X) + (error terms in z, X). (9) 

Unfortunately, when inserted into (2), the cross terms in (9) contribute to the 
leading asymptotics of Jn. We introduce new local coordinates which allow us 
to keep track of these contributions in an efficient way. 

The operator TG,f(Y*}r is invertible on K . By the implicit function 
theorem, the relation 

$ = -(rG"{Y*yrlT[FXY* + Y + * ) - F'QT*) - F"(Y*)(Y + *)] (10) 

defines a unique C°° function $ = 3>(Y) G K for ||Y1| sufficiently small. Now 
suppose that for small z we can write 

G(r* +zU+ 9{zU)) = 0(7*) + Xz* + 0(z*+1), (H) 

where X ¥^ 0 and fc < °° is an integer. Since Y* is a simply degenerate minimum 
point, we must have X > 0, k even, and one can show k > 4. With this notation, 
writing Y = zU + 4>(ziy) 4- X, * G # X , we find 

G(Y* + y) = G(r* + zü + $(zto + *) 
= G(7*) + Xz* + &(G"(F*)Ar, X) + (error terms in z, * ) . (12) 

This is the correct analogue of (4) in the simply degenerate case. This approxi­
mate decoupling of G along the directions K and K is the basic intuition be­
hind Theorem 2. We emphasize that $(zU) can be computed to any order in z 
by a straightforward iteration and that X and k are also readily determined. 

THEOREM 2. Suppose that G has a unique minimum point Y* and that 
Y* is simply degenerate. Then TG"(Y*) T is invertible on K with inverse opera­
tor denoted by B±. B± is the covariance operator of a mean zero Gaussian mea­
sure PB concentrated on K . Suppose that (11) holds. Then exp(nG(Y*))Jn 
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has the asymptotic expansion 

^Gçr*)jn = n i /2- i /* J £ n-V%k + Oin-W+W)] asn-^<*>, (13) 

where M > 0 is any integer and the ff^} are junctionals. Let Wn(z) := zU/n^k 

4- $(zU/nlfk). The sum in (13) w obtained by expanding 

Î m iKF* + ^ ( z ) + */"1 / 2) 
[2ftÇiU; U}D]lf2 n 

. exp ^ JG(r* + R/W(z)) - G(7*) - *( J ^ Y ] J 

• exp(-«[F(F* + Wn(z) 4- X/w1/2) - F(7* 4- Ww(z)) 

- (F'(7* 4- Wn(z)\ X/n1!2) - K(F"(Y*)Xlnll2, X/w1/2)]) 

w powers ofn~xlk through order n~Mfk and then by integrating term by term 
with respect to exp(-Xzk)dzdPB (x) over R x ^ . In (14), 

D := det[7 4- TpApTF"(Y*)r] , 

where p is the bounded operator on H defined by 

pY:=Y-[(AU,Y)l(4U,U)]U. 

The leading term in (13) equals 

nm-il*(2a(£U9 U)Dr^2(f^j-Xzkdz)^(Y*). 

We see that in the simply degenerate case, the asymptotic expansion is ob­
tained by expanding around a non-Gaussian measure in the degenerate direction 
K and around a Gaussian measure in the nondegenerate directions K . 

We sketch the proof of Theorem 2. By [Donsker-Varadhan, Theorem 6.2], 
[Varadhan, § 3 ] , for any ô > 0 there exists c = c(ô) > 0 such that 

^GiYt)Sm.mY.Yn>s
e-^{Y,yr")dPA(Y)-0(e-n a s n - o o . (15) 

On the set \\n~^2Y- Y*\\ < ô, we argue formally. Provided 6 is sufficiently 
small, we may change variables on this set from Y to w1/2(F* 4- Wn{z) 4- X/nlf2), 
where Wn(z) = zU/n1^ 4- ^(zU/n^k). Write Sn for the set {z, X: \\Wn(z) + 
X/nV2\\ < 6} and tyn for the expression involving \JJ in (14). Using (12) with 
explicit forms for the error terms, we see that formally 
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e»W>Jn = e«G*y*>ƒ _, /2 ^{YlyJn)e-nG^l^"UY + 0(e~"c) 
" J\\n 1I2Y-Y*\\<6 

= „i/2-i/fcƒ ^nexp(-n[G(r* + Wn(z) + Xlnll2)-G{Y*)\)dzdX + CK?-™) 
sn 

= Mi/2-i/fcf ^Jne-Xz" dz dPB (X)+ 0(e-nc) a s n - » ~ , (16) 

where fw denotes the product of the exponentials in (14). We expand \//nfn in 
powers of n-W through order rTMlk. Using the bound PBpX\\ > a) < 
Cjexp(—C2a

2) for a > 0 (Clf C2 positive constants), we control the errors and 
show that (16) gives rise to the same expansion (13) as does (14). This formal 
argument gives the right answer except for the factor [2n(AU, U)D]_1^2 in (14). 
The operator rpApr, which appears in the definition of D, inverts TA~1T on Kr. 

Theorems 1 and 2 assume that G has a unique minimum point which is 
either nondegenerate or simply degenerate. Our methods also handle the case 
where G has finitely many minimum points, including the case of degenerate 
minimum points which are not simply degenerate. Function space integrals with 
nonisolated degenerate minimum points play an important role in recent physics; 
see, for example, [Coleman]. We will treat this case in a forthcoming paper. 
We have also derived limit theorems for probability measures related to Jn. These 
will appear elsewhere. These limit theorems and the asymptotic expansions dis­
cussed in this note were inspired by a model in statistical mechanics [Ellis-Rosen, 
(1),(2)]. 
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