A CHARACTER FORMULA FOR THE DISCRETE SERIES OF A SEMISIMPLE LIE GROUP

BY JORGE VARGAS

ABSTRACT. For a semisimple Lie group G, we provide an explicit formula for the discrete series characters θ_{λ} restricted to the identity component of a split Cartan subgroup, whenever the parameter lies in a so-called Borel-de Siebenthal chamber and G has both a compact Cartan subgroup and a split Cartan subgroup.

Let G be a connected semisimple Lie group with finite center. The discrete series of G is, by definition, the set of equivalence classes of irreducible unitary representations π , such that π occurs discretely in the left (or right) regular representation of G. According to Harish-Chandra [3], G has a nonempty discrete series if and only if G contains a compact Cartan subgroup. Thus we fix a compact Cartan subgroup $B \subseteq G$, and a maximal compact subgroup $K \subseteq G$ which contains G. Let G, G, G, be the Lie algebras of G, G, and G, G, be their complexifications. Let G = G is called compact (respectively noncompact) if its root space lies in G (respectively the orthogonal complement of G). The differentials of the characters of G form a lattice G is G (G) and G and space of G). The killing form induces a positive definite inner product (G) on G is G. An element G is called nonsingular if G is G. Equivalently, G can be described as the group generated by the reflection about the compact roots in G.

In order to state Harish-Chandra's enumeration of the discrete series [3], we assume, without loss of generality, that G is acceptable in the sense of Harish-Chandra. Then, for each nonsingular $\lambda \in \Lambda$, there exists exactly one tempered invariant eigendistribution θ_{λ} on G, such that

$$\theta_{\lambda}|_{B\cap G'} = (-1)^q \frac{\sum_{w\in W} \operatorname{sgn} w e^{w\lambda}}{\prod_{\alpha\in\Phi,(\alpha,\lambda)>0} (e^{\alpha/2} - e^{-\alpha/2})}.$$

Here $q = \frac{1}{2} \dim G/K$, and G' = set of regular semisimple points in G. Every θ_{λ} is the character of a discrete series representation, and conversely. Moreover, $\theta_{\lambda} = \theta_{\mu}$ if and only if λ belongs to the W-orbit of μ .

Summary of doctoral dissertation, submitted to the Department of Mathematics at Columbia University in 1977; received by the editors October 2, 1979.

AMS (MOS) subject classifications (1970). Primary 22E45.

Key words and phrases. Semisimple Lie groups, representations, discrete series, character formulas.

¹ A distribution θ on G is tempered if it extends to the Schwartz space of rapidly decreasing functions [3].

When G/K is a hermitian symmetric space, there exist positive root systems in Φ such that the sum of two noncompact positive roots is never a root. If λ is dominant with respect to such a positive root system, θ_{λ} is the character of one of the so-called holomorphic discrete series representations. In this special situation, S. Martens [5] and H. Hecht [4] have given explicit global formulas for the characters θ_{λ} . Whether or not G/K is hermitian symmetric, there exist positive root systems which satisfy the following condition [1]:

for each noncompact simple factor G_i of G, there exists exactly one noncompact simple root β_i , and this root β_i occurs at most twice in the highest root of G_i .

(Borel-de Siebenthal property). The problem of computing the discrete series characters θ_{λ} globally can be reduced, at least in principle, to the following rather special situation:

- (a) G is simple and has both a compact Cartan subgroup B and a split Cartan subgroup A.
- (b) Compute θ_{λ} restricted to the identity component of a split Cartan subgroup A.
- (c) The system of positive roots $\Psi = \{\alpha \in \Phi | (\alpha, \lambda) > 0\}$ has the Borel-de Siebenthal property. (See Schmid [6].)

From now on, let G, λ , Ψ , A be as in (a)-(c), and d an inner automorphism of $\mathfrak{g}^{\mathbf{C}}$ such that $d:\mathfrak{b}^{\mathbf{C}} \xrightarrow{\sim} \mathfrak{a}^{\mathbf{C}}$.

We denote the identity component of A by A° and define

$$C = \{ \exp X | X \in \mathfrak{a}, \langle \alpha, d^{-1}X \rangle < 0 \text{ for all } \alpha \in \Psi \}.$$

The closure of C and its conjugates cover A° . Our main result provides an explicit formula for the restrictions of θ_{λ} to A° . This formula involves a particular element t of the Weyl group of $(\mathfrak{g}^{\mathbf{C}}, \mathfrak{b}^{\mathbf{C}})$, whose description we defer until later.

Theorem. Let W_U be the subgroup of W generated by the compact simple roots for Ψ . Then

$$\theta_{\lambda}|_{C} = (-1)^{q} \frac{|w|}{|w_{U}|} \frac{\Sigma_{w \in W} \operatorname{sgn}(tw) e^{tw\lambda}}{\prod_{\alpha \in \Psi} (e^{\alpha/2} - e^{-\alpha/2})} \circ d^{-1}$$

Let β be the noncompact simple root for Ψ . Then β is as long as or longer than any noncompact root, and the system Φ' of the roots in Φ orthogonal to β has at most three irreducible components. Moreover if Φ' has more than one connected component, then all but perhaps one are of type A_1 , and all the A_1 -type components consist of noncompact roots. Two roots α_1 , $\alpha_2 \in \Phi$ are said to be strongly orthogonal if $\alpha_1 \pm \alpha_2 \notin \Phi$. For any strongly orthogonal subset $S \subset \Phi$ consisting of noncompact roots, we set $\Phi_S = \mathbf{Q}$ -linear span of S in Φ .

Lemma 1. Each irreducible component of $\Psi \cap \Phi_S$ has the Borel-de Siebenthal property.

We now define a family of sub-root systems $\Phi=\Phi^0, \Phi^1, \ldots, \Phi^m$ inductively, as follows: Φ^{i+1} is the set of roots in Φ^i orthogonal to the noncompact simple roots for $\Psi\cap\Phi^i$, until the process stops. Let S_0 be the set consisting of all positive noncompact roots that are simple roots for some $\Psi\cap\Phi^i$, $0\leq i\leq m$.

LEMMA 2. (a) S_0 is a strongly orthogonal set which spans Φ over \mathbf{Q} .

(b) S_0 contains at most one short root.

The next proposition describes the element t of the Weyl group of $(\mathfrak{g}^{\mathbb{C}}, \mathfrak{b}^{\mathbb{C}})$ which was used in the statement of the main result.

PROPOSITION. There exists a unique t in the Weyl group of $(3^{\mathbf{C}}, \mathfrak{b}^{\mathbf{C}})$ such that

- (1) t is a product of reflections about roots in S_0 .
- (2) If β occurs twice in the highest root, then $t \neq 1$.
- (3) t takes any long simple root into a noncompact root.
- (4) $(tw\lambda, \mu) \ge 0$ for every $w \in W_U$ and λ, μ dominant integral with respect to Ψ .

From the Proposition, one can deduce the following properties of t:

- (a) If α_1 , α_2 are two adjacent long simple roots, then sgn $t\alpha_1 \neq \text{sgn } t\alpha_2$.
- (b) Assume β occurs twice in the highest root. Then t fixes any short root in S_0 .
- (c) If S_0 does not contain short roots, $t\alpha = \alpha$ for any short simple root α .
- (d) Again under the assumption that β occurs twice in the highest root, if S_0 does contain short roots, $t\alpha$ is noncompact for any short simple root α . The proof of the theorem procedes by induction on the dimension of G. The crux of the matter is to verify the consistency of our formula with Harish-Chandra's matching conditions [2]. Details will appear elsewhere.

Finally, I would like to express my deep gratitude to Professor Wilfried Schmid for his advice and interest.

REFERENCES

- 1. A. Borel, et J. de Siebenthal, Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comm. Math. Helv. 23 (1949), 200-221.
- 2. Harish-Chandra, Invariant eigendistributions on a semi-simple Lie group, Trans. Amer. Math. Soc. 119 (1965), 457-508.
 - 3. ———, Discrete series for semi-simple Lie groups. II, Acta Math. 116 (1966), 1–111.
- 4. H. Hecht, The characters of Harish-Chandra representations, Math. Ann. 219 (1976), 213-226.
- 5. S. Martens, The characters of the holomorphic discrete series, Proc. Nat. Acad. Sci. U.S.A. vol. 72, no. 9, 1975, pp. 3275-3276.
 - 6. W. Schmid, On the characters of the discrete series, Invent. Math. 30 (1975), 47-144.

DEPARTMENT OF MATHEMATICS, NATIONAL UNIVERSITY OF CORDOBA, CORDOBA, ARGENTINA