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Kr(Z/p2) AND Kr(Z/p [e] ) FOR p > 5 AND r < 4 

BY LEONARD EVENS AND ERIC M. FRIEDLANDER1 

If R is a ring, KQ(R) is the Grothendieck group of finitely generated 
projective i?-modules, KX(R) is the abelianization of the group GL(R) of in-
vertible matrices over R, and K2(R) is the second homology group of E(R) = 
kev(GL(R) —> K^R)). Higher .K-groups are defined as homotopy groups of a 
space associated to GL(R) and provide additional homological invariants of the 
linear algebra of R. Unfortunately, these higher (degree greater than 2) ^-groups 
appear difficult to compute even for very simple rings: in particular, no higher 
if-groups of rings with nilpotents have been computed. We present computations 
for two such rings, Z/p2Z and Z/p[e] (the dual numbers over Z/p). 

Before stating our results, we briefly mention other computations of higher 
A"-groups. Quillen [9] computed ^/(F^) for any i > 0 and any finite field F . 
Browder [3], Harris and Segal [6], Quillen [11], and Soule [12] have partial 
results on higher ^-groups of rings of integers in number fields. Borel [2] has 
computed the ranks of the J^-groups of such rings. Lee and Szczarba [7] have 
computed K3(Z). Moreover, Quillen [10] has proved many general theorems 
which enable one to convert known computations of various rings to computa
tions of related rings. 

We announce the following theorems whose proofs will appear in [5]. 

THEOREM 1. Let p > S be a prime. Let Z/p[e] denote the ring (of or
der p2) of dual numbers over Z/p. 

Kx(Z/p2) = K^Z/ple]) = Z/p - 1 0 Z/p, 

K2(Z/p2) = K2(Z/p[e]) = 0, 

K3(Z/p2) = Z/p2 - 1 0 Z/p2; K3(Z/p[e]) = Z/p2 - 1 0 Z/p 0 Z/p, 

K4(Z/p2) = K4(Z/p[e]) = 0. 

Of course, Kx(Z/p2) and K^Z/ple]) are well known [1, V. 9.1], K2(Z/p2) 
was computed by Milnor [8], and #2(Z/p[e]) was computed by van der Kal
len [13]. 
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Our proof of Theorem 1 is based on the following homology calculation. 

THEOREM 2. Let p > 5 be a prime and let SL(p2) = lim SL(n, Z/p2) 
and SL(e) = lim SL(n, Z/p [e] ). ~~* 

H1(SL(p2)) = H1(SL(e)) = 0, 

H2(SL(p2)) = H2(SL(e)) = 0, 

H3(SL{p2)) = Z/p2 - 1 0 Z/p2; H3(SL(e)) = Z/p2 - 1 0 Z/p 0 Z/p, 

H4(SL(p2)) = H4(SL(e)) = 0. 

Let R = Z/p2 or Z/p[e]. Then 7^(7?) = H^SLiR)) 0 fl", #.(/*) = 
iTjiBSLiR)* ) for i > 1, and H^SKR)) = H^BSLiR)*). Therefore, Theorem 2 
and the Hurewicz Tlieorem imply the computations of KX(R), K2(R), and K3(R) 
of Theorem 1. Furthermore, K^(R) is obtained from Theorem 2 using the Serre 
spectral sequence for the natural map BSL(R)+ —> K(K3(R), 3) and the well-
known values of the Z/p homology of K(K3(R), 3). 

The proof of Theorem 2 is achieved by considering SL(n, Z/p2) = SL{n, p2) 
and SL(n, Z/p[e]) = SL(n, e) as extensions over SL(n, Z/p) = SL(n, p). Be
cause Quillen determined H*(SL(p), Z) in [9] and because the kernels of 
SL(n, p2) —> SL(n, p) and SL(n, e) —> SL{n, p) are p-groups, the content of 
Tlieorem 2 is its determination of the p-primary component of the asserted ho
mology groups. 

Let H*(G, A; p) denote the p-primary component of H*(G, A) for any 
group G and G-module A. We consider the spectral sequence 

E2j(p2, Z) = Ht(GL(n, p), tf/FJ; p) => Hi+J(SL(nf p2), Z; p) 

where 1 —> Vn —> SL(n, p2) —> GL(n, p) —> 1 is the restriction of the exten
sion 1 —> Mn —• GL(nf p

2) —> GL(n, p) —• 1 to the subgroup SL(n, p2) of 
GL(nf p

2) consisting of matrices whose determinant has order prime to p. We 
also consider the analogous spectral sequence {E;j(e, Z)} for H*(SL(n, e), Z;p); 
then£ , 2

/(p2 ,Z) = ^2
/(e, Z). To prove Theorem 2, it suffices to compute 

Hr(SL{n, p2) , Z; p) and Hr(SL{ny e), Z; p) which is done using these spectral 
sequences. To identify H3(SL(n, p2), Z; p) and H3(SL(n, e), Z; p) precisely and 
not simply their associated graded structures given by these spectral sequences, 
we also must consider {Er

tj(p
2, Z/p)} and {Er

ifj{e, Z/p)} (which have isomorphic 
E2 -terms). 

The analysis of these spectral sequences involves the determination of E2-
for i + j < 4 and the identification of all relevant differentials. For example, 

E2
>3(Z/p2, Z) = H0(GL(n, p), A3Vn 0 S2Vn) - Z/p 0 Z/p, 

£2
j2(Z/p2 , Z) - #2(GL(/i, p), A2 Vn) = Z/p. 
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The calculations of Ef. are made by computing the homology groups 

H{B„, Hj(Vn); p) (= Ht(Bn, Hj(Vn)) for / > 0) 

where Bn is the subgroup of GL(n, Z/p) of n x n upper triangular matrices. For 
ƒ > 0, Hj{Vn) is considered with a convenient filtration as a Bn module and the 
spectral sequence of this filtered module is employed: 

El, = Bs+t(
Bn> WVJIF^HfYJ) - Hs+t{Bn, Hfyn)). 

The necessary E1 -terms of this spectral sequence are computed using the projec
tion map Bn —> Bn~\ and induction; the necessary differentials are computed 
explicitly. 

The only possible nonzero differentials in the spectral sequences {£T.(p2, Z)}, 
{Er

tj(e, Z)}, {Er
Uj(p2, Z/p)}, and {E?j(e, Z/p)} in the range under consideration 

are the differentials 

" 2 , 2 * ^ 2 , 2 > ^0,3* 

Because of the stability with respect to n of E\2 and #o,3' ** suffices to consi
der the case n = 2. For d\2\ £|>2(e, Z) —>£o)3(e, z ) a n d ^2,2: ^f,2(e>Z/W 
—-* ^o,3(e> z /p) , w e employ an explicit cocycle calculation for the split exten
sion 

1 ~> V2 —> 5X(2, e) x B2~~>B2~+l, 
GL(2,p) 

For tf|f2: Ela(p\ Z) - * ^ 3 ( p 2 , Z) and d|>2 : El2(p
2 ,Z/p)~>El3(p

2 ,Z/p), 
we use the determination of d212

 m t n e S P ^ c a s e together with the theory of 
Charlap and Vasquez [4] to identify these differentials. 
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