$K_r(\mathbb{Z}/p^2)$ AND $K_r(\mathbb{Z}/p[\epsilon])$ FOR $p \ge 5$ AND $r \le 4$ BY LEONARD EVENS AND ERIC M. FRIEDLANDER¹

If R is a ring, $K_0(R)$ is the Grothendieck group of finitely generated projective R-modules, $K_1(R)$ is the abelianization of the group GL(R) of invertible matrices over R, and $K_2(R)$ is the second homology group of E(R) = $\ker(GL(R) \rightarrow K_1(R))$. Higher K-groups are defined as homotopy groups of a space associated to GL(R) and provide additional homological invariants of the linear algebra of R. Unfortunately, these higher (degree greater than 2) K-groups appear difficult to compute even for very simple rings: in particular, no higher K-groups of rings with nilpotents have been computed. We present computations for two such rings, $\mathbb{Z}/p^2\mathbb{Z}$ and $\mathbb{Z}/p[\epsilon]$ (the dual numbers over \mathbb{Z}/p).

Before stating our results, we briefly mention other computations of higher K-groups. Quillen [9] computed $K_i(\mathbf{F}_q)$ for any $i \ge 0$ and any finite field \mathbf{F}_q . Browder [3], Harris and Segal [6], Quillen [11], and Soule [12] have partial results on higher K-groups of rings of integers in number fields. Borel [2] has computed the ranks of the K-groups of such rings. Lee and Szczarba [7] have computed $K_3(\mathbf{Z})$. Moreover, Quillen [10] has proved many general theorems which enable one to convert known computations of various rings to computations of related rings.

We announce the following theorems whose proofs will appear in [5].

THEOREM 1. Let $p \ge 5$ be a prime. Let $\mathbb{Z}/p[\epsilon]$ denote the ring (of order p^2) of dual numbers over \mathbb{Z}/p .

$$K_{1}(\mathbb{Z}/p^{2}) = K_{1}(\mathbb{Z}/p[\epsilon]) = \mathbb{Z}/p - 1 \oplus \mathbb{Z}/p,$$

$$K_{2}(\mathbb{Z}/p^{2}) = K_{2}(\mathbb{Z}/p[\epsilon]) = 0,$$

$$K_{3}(\mathbb{Z}/p^{2}) = \mathbb{Z}/p^{2} - 1 \oplus \mathbb{Z}/p^{2}; K_{3}(\mathbb{Z}/p[\epsilon]) = \mathbb{Z}/p^{2} - 1 \oplus \mathbb{Z}/p \oplus \mathbb{Z}/p,$$

$$K_{4}(\mathbb{Z}/p^{2}) = K_{4}(\mathbb{Z}/p[\epsilon]) = 0.$$

Of course, $K_1(\mathbb{Z}/p^2)$ and $K_1(\mathbb{Z}/p[\epsilon])$ are well known [1, V. 9.1], $K_2(\mathbb{Z}/p^2)$ was computed by Milnor [8], and $K_2(\mathbb{Z}/p[\epsilon])$ was computed by van der Kallen [13].

© 1980 American Mathematical Society 0002-9904/80/0000-0203/\$02.00

Received by the editors January 15, 1980.

AMS (MOS) subject classifications (1970). Primary 18F25, 18H10, 20G10; Secondary 18G40.

¹ Partially supported by the N.S.F.

Our proof of Theorem 1 is based on the following homology calculation.

THEOREM 2. Let $p \ge 5$ be a prime and let $SL(p^2) = \varinjlim SL(n, \mathbb{Z}/p^2)$ and $SL(\epsilon) = \varinjlim SL(n, \mathbb{Z}/p[\epsilon])$.

$$\begin{split} H_1(SL(p^2)) &= H_1(SL(\epsilon)) = 0, \\ H_2(SL(p^2)) &= H_2(SL(\epsilon)) = 0, \\ H_3(SL(p^2)) &= \mathbb{Z}/p^2 - 1 \oplus \mathbb{Z}/p^2; H_3(SL(\epsilon)) = \mathbb{Z}/p^2 - 1 \oplus \mathbb{Z}/p \oplus \mathbb{Z}/p, \\ H_4(SL(p^2)) &= H_4(SL(\epsilon)) = 0. \end{split}$$

Let $R = \mathbb{Z}/p^2$ or $\mathbb{Z}/p[\epsilon]$. Then $K_1(R) = H_1(SL(R)) \oplus R^{\cdot}$, $K_i(R) = \pi_i(BSL(R)^+)$ for i > 1, and $H_i(SL(R)) = H_i(BSL(R)^+)$. Therefore, Theorem 2 and the Hurewicz Theorem imply the computations of $K_1(R)$, $K_2(R)$, and $K_3(R)$ of Theorem 1. Furthermore, $K_4(R)$ is obtained from Theorem 2 using the Serre spectral sequence for the natural map $BSL(R)^+ \to K(K_3(R), 3)$ and the wellknown values of the \mathbb{Z}/p homology of $K(K_3(R), 3)$.

The proof of Theorem 2 is achieved by considering $SL(n, \mathbb{Z}/p^2) = SL(n, p^2)$ and $SL(n, \mathbb{Z}/p[\epsilon]) = SL(n, \epsilon)$ as extensions over $SL(n, \mathbb{Z}/p) = SL(n, p)$. Because Quillen determined $H_*(SL(p), \mathbb{Z})$ in [9] and because the kernels of $SL(n, p^2) \rightarrow SL(n, p)$ and $SL(n, \epsilon) \rightarrow SL(n, p)$ are p-groups, the content of Theorem 2 is its determination of the p-primary component of the asserted homology groups.

Let $H_*(G, A; p)$ denote the *p*-primary component of $H_*(G, A)$ for any group G and G-module A. We consider the spectral sequence

$$E_{i,i}^{2}(p^{2}, \mathbf{Z}) = H_{i}(GL(n, p), H_{i}(V_{n}); p) \Rightarrow H_{i+i}(\overline{SL}(n, p^{2}), \mathbf{Z}; p)$$

where $1 \rightarrow V_n \rightarrow \overline{SL}(n, p^2) \rightarrow GL(n, p) \rightarrow 1$ is the restriction of the extension $1 \rightarrow M_n \rightarrow GL(n, p^2) \rightarrow GL(n, p) \rightarrow 1$ to the subgroup $\overline{SL}(n, p^2)$ of $GL(n, p^2)$ consisting of matrices whose determinant has order prime to p. We also consider the analogous spectral sequence $\{E_{i,j}^r(\epsilon, \mathbf{Z})\}$ for $H_*(\overline{SL}(n, \epsilon), \mathbf{Z}; p)$; then $E_{i,j}^2(p^2, \mathbf{Z}) = E_{i,j}^2(\epsilon, \mathbf{Z})$. To prove Theorem 2, it suffices to compute $H_r(\overline{SL}(n, p^2), \mathbf{Z}; p)$ and $H_r(\overline{SL}(n, \epsilon), \mathbf{Z}; p)$ which is done using these spectral sequences. To identify $H_3(\overline{SL}(n, p^2), \mathbf{Z}; p)$ and $H_3(\overline{SL}(n, \epsilon), \mathbf{Z}; p)$ precisely and not simply their associated graded structures given by these spectral sequences, we also must consider $\{E_{i,j}^r(p^2, \mathbf{Z}/p)\}$ and $\{E_{i,j}^r(\epsilon, \mathbf{Z}/p)\}$ (which have isomorphic E_2 -terms).

The analysis of these spectral sequences involves the determination of $E_{i,j}^2$ for $i + j \leq 4$ and the identification of all relevant differentials. For example,

$$\begin{split} E^2_{0,3}(\mathbf{Z}/p^2,\,\mathbf{Z}) &= H_0(GL(n,\,p),\,\Lambda^3 V_n \oplus \,\mathbb{S}^2 \,V_n) = \mathbf{Z}/p \,\oplus \,\mathbf{Z}/p \\ E^2_{2,2}(\mathbf{Z}/p^2,\,\mathbf{Z}) &= H_2(GL(n,\,p),\,\Lambda^2 \,V_n) = \mathbf{Z}/p. \end{split}$$

The calculations of $E_{i,i}^2$ are made by computing the homology groups

$$H_i(B_n, H_j(V_n); p) \quad (= H_i(B_n, H_j(V_n)) \text{ for } j > 0)$$

where B_n is the subgroup of $GL(n, \mathbb{Z}/p)$ of $n \times n$ upper triangular matrices. For j > 0, $H_j(V_n)$ is considered with a convenient filtration as a B_n module and the spectral sequence of this filtered module is employed:

$$E_{s,t}^{1} = H_{s+t}(B_{n}, F_{s}H_{j}(V_{n})/F_{s-1}H_{j}(V_{n})) \Rightarrow H_{s+t}(B_{n}, H_{j}(V_{n})).$$

The necessary E^1 -terms of this spectral sequence are computed using the projection map $B_n \longrightarrow B_{n-1}$ and induction; the necessary differentials are computed explicitly.

The only possible nonzero differentials in the spectral sequences $\{E_{i,j}^r(p^2, \mathbb{Z})\}$, $\{E_{i,j}^r(\epsilon, \mathbb{Z})\}$, $\{E_{i,j}^r(p^2, \mathbb{Z}/p)\}$, and $\{E_{i,j}^r(\epsilon, \mathbb{Z}/p)\}$ in the range under consideration are the differentials

$$d_{2,2}^2 \colon E_{2,2}^2 \longrightarrow E_{0,3}^2.$$

Because of the stability with respect to n of $E_{2,2}^2$ and $E_{0,3}^2$, it suffices to consider the case n = 2. For $d_{2,2}^2$: $E_{2,2}^2(\epsilon, \mathbb{Z}) \longrightarrow E_{0,3}^2(\epsilon, \mathbb{Z})$ and $d_{2,2}^2$: $E_{2,2}^2(\epsilon, \mathbb{Z}/p) \longrightarrow E_{0,3}^2(\epsilon, \mathbb{Z}/p)$, we employ an explicit cocycle calculation for the split extension

$$1 \longrightarrow V_2 \longrightarrow \overline{SL}(2, \epsilon) \underset{GL(2,p)}{\times} B_2 \longrightarrow B_2 \longrightarrow 1.$$

For $d_{2,2}^2$: $E_{2,2}^2(p^2, \mathbb{Z}) \longrightarrow E_{0,3}^2(p^2, \mathbb{Z})$ and $d_{2,2}^2$: $E_{2,2}^2(p^2, \mathbb{Z}/p) \longrightarrow E_{0,3}^2(p^2, \mathbb{Z}/p)$, we use the determination of $d_{2,2}^2$ in the split case together with the theory of Charlap and Vasquez [4] to identify these differentials.

REFERENCES

1. H. Bass, Algebraic K-theory, Benjamin, New York, 1968.

2. A. Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. 4^e serie, t.7, 1974, 235–272.

3. W. Browder, Algebraic K-theory with coefficients Z/p, Geometric Applications of Homotopy Theory, Lecture Notes in Math., vol. 657, Springer-Verlag, Berlin and New York, 1977, pp. 40-84.

4. L. S. Charlap and A. T. Vasquez, *The cohomology of group extensions*, Trans. Amer. Math. Soc. 124 (1966), 24-40.

5. L. Evens and E. M. Friedlander, On $K_*(Z/p^2 Z)$ and related homology groups (submitted).

6. B. Harris and G. Segal, K_i groups of rings of algebraic integers, Ann. of Math. (2) 101 (1975), 20-33.

7. R. Lee and R. H. Szczarba, The group $K_3(Z)$ is cyclic of order 48, Ann. of Math. (2) 104 (1976), 31-60.

8. J. Milnor, Introduction to algebraic K-theory, Ann. of Math. Studies no. 72, Princeton Univ. Press, Princeton, N. J., 1971.

9. D. Quillen, On the cohomology and K-theory of the general linear groups over a finite field, Ann. of Math. (2) 96 (1972), 552–586.

10. ———, Higher algebraic K-theory. I, Algebraic K-Theory. I, Lecture Notes in Math., vol. 341, Springer-Verlag, Berlin and New York, 1971, pp. 85–148.

11. — , Finite generation of the groups K_i of rings of algebraic integers, Algebraic K-Theory. I, Lecture Notes in Math., vol. 341, Springer-Verlag, Berlin and New York, 1971, pp. 179–199.

12. C. Soule, K-theorie des anneaux d'entiere de corps de nombres et cohomologie etale (preprint).

13. W. van der Kallen, Le K₂ des nombres duaux, C. R. Acad. Sci. Paris, Ser. A-B 273 (1971), 1204–1207.

DEPARTMENT OF MATHEMATICS, NORTHWESTERN UNIVERSITY, EVANSTON, ILLINOIS 60201