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toposes in place of Boolean-valued models. So far this has been done (by M. 
Bunge; see p. 329) only for the independence of the Souslin hypothesis. 

These are by no means the only connections with logic. DeUgne's theorem, 
that every "coherent" topos has enough "points" (Theorem 7.44), is in­
timately related to the Gödel-Henkin completeness theorem for finitary first 
order theories, and there is (Theorem 7.16) a similar categorical version of the 
Lowenheim-Skolem theorem. In other words, topos theory not only devel­
oped from a collision of algebraic geometry and set theory, but this collision 
has set off various other surprises: Sheaves appearing in set theory and 
completeness theorems in algebraic geometry. Other connections-with 
cohomology theory, with torsors, and with profinite fundamental groups-are 
left for the reader to discover in Johnstone's book. 

This book does provide good examples of the better understanding prom­
ised in the introduction. To achieve this understanding, the reader must on 
occasion study hard, to get at what is behind the economical presentation, 
with little motivation, of all the techniques and corresponding theorems. Only 
by choosing this austere presentation was the author able to bring all these 
(and many other ideas) in the brief compass of 360 pages. 

There is a very helpful index of notation at the back. Given the range of 
theorems collected from many authors reported here, usually in neater and 
quicker ways, I located very few slips; Theorem 0.14 from Eilenberg and 
Moore is misquoted, while Theorem 7.37(i) from Grothendieck on coherent 
topoi is misproved; both can be corrected by reference to the original sources. 
Lemma 9.17 is misnumbered-but enough of such carping comments. This is a 
dense and rich book, which has organized valuable material as an aid to our 
deeper understanding of sheaf theory, logic, and algebra. 

SAUNDERS MAC LANE 
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Publishing Company, Reading, Massachusetts, 1977, xxx + 285 pp., $21.50. 

Separation of variables is a technique for solving special partial differential 
equations. It is taught in elementary courses on partial differential equations, 
but the method usually does not achieve the status of a mathematical theory. 

Because most references do not give a precise definition of separation of 
variables, I invented a definition myself. Let us call a partial differential 
equation in n variables xl9..., xn separable if there are n ordinary differen­
tial equations in xl9.. •, xn> respectively, jointly depending on n — 1 inde­
pendent parameters (the separation constants), such that, for each choice of 
the parameters and for each set of solutions (Xl9..., Xn) of the o.d.e.'s, the 
function u(xl9..., xn) := Xx(xx) • • • Xn(xn) is a solution of the p.d.e. Under 
the terms of this definition a converse implication often holds: If u = 
Xx • • • Xn is a factorized solution of the p.d.e. then, for some choice of the 
parameters, the Xt

9s are solutions of the o.d.e.'s. The most familiar cases of 
separability deal with a linear second order p.d.e. which separates into n 
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linear o.d.e.'s of second or first order. Usually one can express the general 
solution of a linear separable p.d.e. as a sum or integral of factorized 
solutions. Suitable boundary conditions may also be taken into account. 
Other variants of separation of variables can be obtained by changing the 
functional dependence of u on the X/s, for instance u(x{9 . . . , xn) = Xx(xx) 
+ • • • + Xn(xn) or u = R ~lX{ • • • Xn for some nonvanishing function R of 
xv . . . , xn. In the latter case we have the so-called /^-separability. 

The two-variable Helmholtz equation in polar coordinates, 

urr + r~xur + r~2um + cohi = 0, 

provides a simple example of separation of variables. Let u(r, 0) — f(r)g(0). 
Then u satisfies the equation above if and only if, for some value of A:, ƒ and g 
satisfy the o.d.e.'s 

r2f"(r) + rf(r) + (œ2r2 - k2)f(r) = 0, g"(0 ) + k2g{0 ) = 0, 
respectively. The solutions of the first o.d.e. are linear combinations of the 
Bessel functions Jk(cor) and J_k(cor). This example illustrates the way many 
special functions arose in history: as factorized solutions of the p.d.e.'s of 
mathematical physics when written in separable coordinates. 

In a systematic study of separation of variables one can ask two natural 
questions. First, find necessary and sufficient conditions for a p.d.e. to be 
separable. Second, if some specific p.d.e. is given, classify all transformations 
of the independent variables such that the p.d.e. becomes separable. 

A criterium for separability was first obtained by Stàckel [11], at the end of 
the nineteenth century. Curiously enough, he did it for a nonlinear equation 
occurring in classical mechanics, the Hamilton-Jacobi equation. Consider an 
/i-dimensional Riemannian manifold with orthogonal local coordinates 
xl9 . . . , xn. Then the corresponding fundamental tensor {gtJ) is diagonal. In 
case of constant potential energy, the associated Hamilton-Jacobi equation is 

where A is a positive constant. According to StâckePs criterium, equaton (1) is 
separable by solutions of the form u = Xx(x^) + • • • +Xn(xn) iff there is a 
matrix-valued function $(xj, . . . , xn) := (<£>,•,(*,)) (n X n matrix) such that 

Robertson [10] in 1928 considered a quantum mechanical analogue to 
Stackel's problem, namely separability for the time-independent Schrödinger 
equation. Consider a Riemannian manifold M with (g^) diagonal as above, 
g •= II?» i g„, and A the Laplace-Beltrami operator. For constant potential 
energy Robertson's problem reduces to the question of separability for the 
Helmholtz equation 

Au + Xu := 2 g~l/24~ — IT + to = 0 (2) 
i - i dxt ga dxê 

on M. It follows from Robertson's paper that (2) is separable by solutions of 
the form u := Xx(x{) • • • Xn(xn) iff (i) the Stackel condition holds, i.e., 
gij"1 ~\(<b~~l)u for some matrix $ := (^(x,)), and (ii) g1/2/ctet $ = 
/i(*i) * ' • fn(

xn) f° r certain functions ƒ. Next Eisenhart [2] observed that, if 
(i) holds, then condition (ii) is equivalent to the vanishing of the Ricci tensor 
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Ry off the diagonal. Thus for Einstein spaces and, in particular, for spaces of 
constant curvature, (2) is separable iff the Stâckel condition holds. Similar 
results can be derived for pseudo-Riemannian manifolds. 

All literature dealing with these separability criteria fails to give a precise 
definition of separation of variables. As a consequence, at some stage of the 
usual proofs of a necessary condition for separability one has some "evident" 
corollary of the separability which is not evident at all, but rather acts as a 
precise substitute for the original vague definition of separation of variables. 
Examples of this in the book under review can be found on p. 14, formula 
(2.25) and p. 15, case II, first sentence. The only precise definition of 
separation of variables I found in the literature is in a paper by Niessen [8, p. 
329]. However, his definition already specifies the particular form which a 
separable p.d.e. must have, a property which one would prefer to obtain as a 
corollary of the definition. In a forthcoming paper I will propose a definition 
(an elaboration of the second paragraph of this review) which satisfies the 
three criteria of being precise, being close to the informal notion of separation 
of variables and leading to the necessary and sufficient conditions obtained 
by Robertson. 

In the classification of all separable coordinate systems for some specific 
p.d.e. the Stâckel condition is an important tool. Let me mention a few 
equations for which the classification has been rendered. The two-variable 
Helmholtz equation has four essentially different orthogonal separable coor­
dinate systems: Cartesian, polar, parabolic and elliptic, cf. §1.2 of Miller's 
book. For the three-variable Helmholtz equation there are eleven such coordi­
nate systems, a result first proved by Eisenhart [2]. In all cases the coordinate 
surfaces are quadrics, possibly degenerate. JR-separable coordinates which are 
not separable do not occur for this equation. However, the Laplace equation 
in three variables admits six additional /^-separable coordinate systems, for 
which the coordinate surfaces are cyclides, certain algebraic surfaces of 
fourth degree. Bôcher [1] in 1894 already obtained these systems, although he 
did not exhibit a rigorous classification of all jR-separable coordinates. Stan­
dard references for these matters are Morse and Feshbach [7, §5.1] and Moon 
and Spencer [6]. 

Olevski [9] classified the separable coordinate systems for the Helmholtz 
equation on a three-dimensional space of constant positive or negative 
curvature. In recent times mathematicians have made progress towards a 
similar classification for equations on four-dimensional spaces. For instance, 
Kalnins and Miller [4] find 368 conformally inequivalent orthogonal coordi­
nates for which the wave equation utt — A3w = 0 admits an /^-separation of 
variables. Recently there is also increased interest in the classification of 
nonorthogonal separable coordinate systems: see Havas [3] for a historical 
survey. 

Let me next discuss the group-theoretic approach to separation of vari­
ables, which is the main theme of Miller's book. This approach starts with the 
observation that, if the Helmholtz equation (2) is separable, there are n 
linearly independent, commuting partial differential operators S{ = A, 
S2> - • . 9 Sn such that their joint eigenfunctions with eigenvalues ax = — A, 
«2> • • • > «* are precisely the factorized solutions of (2). Here a2,..., an can 
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be interpreted as the separation constants. Hence, the class of all separable 
coordinate systems for (2) can be brought into correspondence with a 
subclass of the class of all (n — l)-tuplets of commuting second order partial 
differential operators which commute with A. Now assume that the group G 
of isometries of the Riemannian manifold M under consideration is a Lie 
group. Its Lie algebra g consists of first order differential operators on M 
which commute with A. Let Ll9..., Lp be a basis for g. Let S be the linear 
space which is spanned by the second order differential operators LtLj + 
LjLiy ij = 1,...,/?. The space S is included in the space of all second order 
operators commuting with A. Let us make the assumption, valid for most 
examples considered in Miller's book, that both spaces coincide. Let S be the 
class of all «-dimensional subspaces of S which consist of mutually commut­
ing operators and which contain A. G acts on S, so S can be partitioned into 
G-orbits. Identify coordinate systems on M which can be obtained from each 
other by isometries and by transformations of the form (xl9 . . . , xn) -» 
(*i(*i)> • • • » xn(xn))' We conclude that the set of essentially different separ­
able orthogonal coordinate systems on M is in one-to-one correspondence 
with a subset of the set of G-orbits on S. For the two- and three-variable 
Helmholtz equations this correspondence is very nice: each G-orbit on S 
corresponds to a separable coordinate system. However, for the two-variable 
Klein-Gordon equation utt — uxx + co2u = 0 there is one G-orbit on S which 
fails to have this property, cf. p. 55 in Miller's book. It is not yet understood 
why such orbits occur. (However, see [13].) 

Among the separable coordinate systems one distinguishes between "good 
guys" and "bad guys". The good guys are the subgroup coordinates. They 
correspond to commuting second order differential operators which are either 
squares of elements in g, i.e. related to one-parameter subgroups, or Casimir 
operators for nonabelian connected closed subgroups of G. The bad guys are 
all other separable coordinates and they usually represent the generic case. 
Still, a subgroup characterization of all separable coordinates is often possible 
if one also considers nonconnected subgroups, which may arise as the 
symmetry groups of the separable coordinate system, cf. Miller, Patera and 
Winternitz [5]. This suggests a third type of classification which is relevant for 
finding separable coordinate systems: find all closed subgroups of a given Lie 
group G. 

In applications it is often important to know explicitly the kernel c(a, /?) 
which connects two families {/a} and {g^} of factorized solutions of (2) 
corresponding to two different separable coordinate systems. The connection 
formula is fa = 2^ (or fp) c(a, fl)gp. Sometimes this problem can be 
elegantly handled in a Hubert space context. Let S = (A, S2,. . . , Sn} and 
T = {A, T2,..., Tn} be the two commuting families in S which have the/a's 
respectively the g^'s as eigenfunctions. Suppose that some subspace % of the 
solution space of (2) has a Hilbert space structure such that G acts on % as 
an irreducible unitary representation TT. Then S and T act on % as families of 
symmetric, usually unbounded operators. Suppose these operators are 
selfadjoint. We restrict our attention to those/a's and g^'s which are (possibly 
generalized) eigenvectors for S respectively f acting on %. Next we transfer 
the problem of expanding^ as a sum or integral of g '̂s to some other Hilbert 
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space %' on which G acts by an irreducible unitary representation <n' 
equivalent to m and where it may be easier to deal with the corresponding 
families {/„} and {g£}. For instance, in the case of the two-variable Helm-
holtz equation (cf. §1.3 of Miller's book) the problem is transferred to the 
Hubert space 3C' of L2-f unctions on the unit circle, where m' is some induced 
representation. The families {f^} then consist of fairly simple special func­
tions or distributions on the unit circle. 

The method described above for finding the overlaps between families of 
factorized solutions is one of the important merits of the group-theoretic 
approach to separation of variables. We mention two possible applications of 
this method which are not considered in the book. First, the kernels c(a, ft) 
connecting two families {fa} and {g^} of factorized solutions are a source of 
special orthogonal systems, discrete or continuous. Thus new orthogonal 
systems of special functions or new interpretations of known systems may 
arise. Second, if one knows the action of suitable elements from g and S on 
the families {fa} and {g^}, one may derive difference or differential or other 
functional equations for the kernel c(a, /?) connecting these families. 

The Hubert space method of finding connection formulas cannot always be 
applied. For instance, it fails in the case of the Laplace equation. Some 
alternative methods are presented in the book, in particular Weisner's 
method, which involves series expansions of analytic functions and local 
rather than global group actions. I did not yet mention separation of variables 
for parabolic equations. A long chapter in Miller's book deals with two- and 
three-variable Schrödinger and heat equations. The Hilbert space method 
applied to the two-variable Schrödinger equation iut + uxx = 0 is very inter­
esting. The metaplectic representation of the semidirect product of a covering 
group of SL(2, R) with the three-dimensional Heisenberg group occurs in this 
context. 

Winternitz and Fris [12] initiated the group-theoretic approach to separa­
tion of variables. During the past five years Miller, Kalnins and collaborators 
wrote an impressive series of papers on this topic. In the preface to his book 
Miller describes the method as "a group-theoretic machine that, when applied 
to a given differential equation of mathematical physics, describes in a 
rational manner the possible coordinate systems in which the equation admits 
solutions via separation of variables and the various expansion theorems 
relating the separable (special function) solutions in distinct coordinate sys­
tems". One can handle this machine as soon as one has seen it operating for a 
few special equations and this is the way the book proceeds. Successively it 
treats the two-variable Helmholtz and Klein-Gordon equation, the Schrö­
dinger and heat equations, the three-variable Helmholtz, Laplace and wave 
equation, and the Lauricella function FD. The first example, the two-variable 
Helmholtz equation, is very well chosen. All the main ingredients of the 
method are already present here. Some further examples illustrate certain 
complications which may arise in applying the method and, in these exam­
ples, the author also provides some alternative techniques. 

The book is aimed at a general audience rather than at specialists. Accord­
ing to the general editor Gian-Carlo Rota this is part of the philosophy of the 
Encyclopedia of Mathematics and its Applications. By general audience one 



BOOK REVIEWS 1019 

has to understand all users of mathematics. The present volume is typically 
an applied mathematician's book, both by the lack of rigor and by the 
absence of general theorems. The lack of mathematical rigor is not a serious 
defect because, at suitable locations, it is indicated how one can formulate 
precise proofs. However, the very content of this book forcibly suggests the 
necessity for a deductive rather than inductive theory of separation of 
variables, starting with theorems of wide applicability and then going down to 
the special equations. I hope that this book will arouse the interest of some 
pure mathematicians, and that an interaction between the pure and applied 
point of view will lead to such a theory. 

In my opinion, the relationship between separation of variables and group 
theory could have been more fully exploited in the book. For instance, for 
each new equation the laborious classifications of separable coordinate sys­
tems and of G-orbits on S, are performed (or referred to) independently. 
Only after this effort it is observed that both classifications are related. The a 
priori knowledge that the f actorized solutions of (2) must be eigenfunctions of 
n — \ commuting operators which commute with A is never used. As a final 
point of criticism, the book lacks a solid historical foundation. The important 
Stâckel criterium is not even mentioned. In spite of these criticisms I like this 
book very much as a pioneering work in a promising field. 

Miller's book is the first in the section of the Encyclopedia dealing with 
those special functions which occur in the practice and applications of 
mathematics. The section editor Richard Askey wrote a most readable 
foreword describing the numerous interactions between special functions and 
other fields from work done in previous centuries up to still unpublished 
results. 

REFERENCES 

1. M. Bôcher, Die Reihenentwickelungen der Potentialtheorie, Leipzig, 1894. 
2. L. P. Eisenhart, Separable systems of Stâckel, Ann. of Math. 35 (1934), 284-305. 
3. P. Havas, Separation of variables in the Hamilton-Jacobi, Schrödinger and related equations, 

1. Complete separation, J. Mathematical Phys. 16 (1975), 1461-1468. 
4. E. G. Kalnins and W. Miller, Lie theory and the wave equation in space-time. 5. R-separable 

solutions of the wave equation, J. Mathematical Phys. 19 (1978), 1247-1257. 
5. W. Miller, J. Patera and P. Winternitz, Subgroups of Lie groups and separation of variables. 

Report CRM-813, Centre de Recherches Mathématiques, Université de Montréal, 1978. 
6. P. Moon and D. E. Spencer, Field theory handbook, Springer-Verlag, Berlin, 1961. 
7. Ph. M. Morse and H. Feshbach, Methods of theoretical physics. Part I, McGraw-Hill, New 

York, 1953. 
8. H.-D. Niessen, Algebraïsche Untersuchungen über separierbare Operatoren, Math. Z. 94 

(1966), 328-348. 
9. P. Olevski, The separation of variables in the equation A3w + \u * 0 for spaces of constant 

curvature in two and three dimensions, Mat. Sb. 27 (69) (1950), 379-426. (Russian) 
10. H. P. Robertson, Bemerkung über separierbare Système in der Wellenmechanik, Math. Ann. 

98 (1928), 749-752. _ 
11. P. Stàckel, Uber die Integration der Hamilton-Jacóbischen Differentialgleichung mittels 

Separation der Variabelen, Habilitationsschrift, Halle, 1891. 
12. P. Winternitz and I. Fris, Invariant expansions of relativistic amplitudes and subgroups of the 

proper Lorentz group, Soviet Physics JNP 1 (1965), 636-643. 
13. E. G. Kalnins and W. Miller, Killing tensors and variable separation for Hamilton-Jacobi 

and Helmholtz equations (preprint). 
TOM H. KOORNWINDER 


