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The year 1979 can be regarded as the 20th anniversary of the theory of the 

permanent function. True, permanents were introduced in 1812 by Binet [2] 
and Cauchy [9], and several identities, usually involving determinants as well, 
were obtained in the 19th century by some ten other mathematicians includ­
ing Cayley and Muir. Indeed it was Sir Thomas Muir [30] who in 1882 coined 
the term 'permanent' for the following function defined o n n X n matrices 
A = [ay]: 

per A = 2 tfia(i). . . ana{n) 
a 

where the summation extends over all n\ permutations a o f { l , . . . , / i } . True, 
in 1903 Muirhead [31] obtained the following beautiful result. Let c « 
(Cj, . . . , cn) be a positive «-tuple, and let a = (av . . . , « „ ) and ft = 
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( / ? ! , . . . , fîn) be fixed «-tuples of nonnegative integers. Define n X n matrices 
A = [ay] and B = [by] by ^ = c? and fy - eft (ij = 1 , . . . , n). Then 
always per A < per B if and only if a is majorized by /?, in which case 
equality occurs if and only if either a = /? or cY = • • • = c„. Here a is 
majorized by /? means the following: If ( a * , . . . , a*) and (/îf, . . . , /?*) 
denote the «-tuples a and /? rearranged in nonincreasing order, then a f 
+ • • • + a£ < j8f + • • • +#* (& = 1 , . . . , ri) with equality for k = «. 
Muirhead's theorem was extended by Hardy, Littlewood and Pólya [19] to 
apply to nonnegative «-tuples a and (i. 

Ten years after Muirhead proved his result, Pólya [33] showed that for 
n > 3 there is no uniform way to affix ± signs to the entries of an « X « 
matrix so that the determinant of the resulting matrix equals the permanent 
of the original matrix. And then Schur [37] in 1918 proved the lovely theorem 
that for a positive semidefinite hermitian matrix A, àstA < per./*, with 
equality if and only if A is a diagonal matrix or has a zero row. Surely the 
theorems of Muirhead and Schur and the intriguing implications of Pólya's 
negative finding (is there some linear transformation on the linear space of 
n X n matrices which will 'convert' the permanent into the determinant?) 
would be an ample justification for further study of this scalar-valued matrix 
function. But in 1926 van der Waerden [40] asked the following question and 
then quietly walked away. Call a matrix doubly stochastic if its entries are 
nonnegative, and all of its row and column sums equal 1. What is the 
minimum value of the permanent of an « X « doubly stochastic matrix? 
Apparently no one knew, nor did anyone rush to find out. Skipping a few 
details, we arrive at 1959. 

In 1959 Marvin Marcus and Morris Newman [26] attempted to answer van 
der Waerden's question. Let Qn denote the convex polytope of all « X « 
doubly stochastic matrices and let Jn denote the « X « matrix in Qn all of 
whose entries equal l/n. Then Marcus and Newman proved that if A is an 
n X n doubly stochastic matrix all of whose entries are positive such that 

per A = min{per B: B G Qn}, 

then A = Jn and thus per A = n\/nn. In other words, if the minimum of the 
permanent is achieved in the interior of Qw, then it is achieved uniquely there 
at Jn. But why shouldn't the minimum occur on the boundary of ö„? The 
widely conjectured answer to van der Waerden's question is n\/nn where the 
only matrix in £2„ whose permanent equals n\/nn is Jn. More to come on the 
van der Waerden conjecture later. In addition to the Marcus and Newman 
paper another significant paper was published in 1959 by Brenner [5]. This 
paper proved some theorems about permanents but almost incidentally. Call 
an m X « complex matrix (m < n) A = [atJ] diagonally dominant if \au\ > 
Sy /̂ltf l̂ f or / = 1 , . . . , m. Then Brenner obtained a collection of inequalities 
relating the determinant of a principal submatrix of a diagonally dominant 
matrix A with the determinants of the other submatrices of A on the same set 
of rows. As a corollary one obtains the classical result that the determinant of 
a square diagonally dominant matrix is not zero. A referee observed that the 
crucial property of determinants used in the proofs (the Laplace expansion by 
a set of rows) held for permanents as well, so that it followed in particular 
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that the permanent of a square diagonally dominant matrix is not zero. 
Brenner's paper went almost unnoticed until 1967 when it was observed by 
Brenner and Brualdi [6] that it could be used to easily settle a conjecture of 
Marcus and Mine [24]. The papers of Marcus and Newman and of Brenner 
marked the beginning of the efforts of many mathematicians to settle the van 
der Waerden conjecture and, in general, to understand the permanent func­
tion. 

Permanents follow the definition of determinants with the simplification 
that the ± sign which appears in front of the n\ terms in the determinant 
becomes a + sign for each term in the case of the permanent. A simplifica­
tion in the definition which however results in tremendous complications 
when one tries to evaluate permanents. Of course, hardly ever does one 
evaluate the determinant of a matrix by computing the terms one by one. 
Rather one uses elementary row operations and the behavior of the determi­
nant under them to reduce the matrix to another whose determinant is 
obvious. But permanents are not well behaved under row operations (since 
the permanent of a matrix with two equal rows need not be zero), and as a 
result it is usually not possible to accurately compute the permanent of a 
matrix unless the matrix has a special form. But why would one want to 
evaluate the permanent of a matrix anyway? Not for the same reasons one 
often needs to evaluate a determinant. One important reason is based on the 
following. First note that the permanent can be defined for any m X n matrix 
A = [atj] with m < n by 

per A = 2 «lo(l) • • • ama(m) 
o 

where the summation extends over all injections o from { 1 , . . . , m} to 
{ 1 , . . . , «}. Now let X{,..., Xm be a family of subsets of a set S = 
{xly..., xn} of n elements. A sequence sl9..., sm of m distinct elements of 
S is a system of distinct representatives for Xl9 . . . , Xm provided st E Xt 

(/ = 1, . . . , ni). Let A = [ay] be the m X n incidence matrix defined by 
Oy = 1 if Xj E Xt and atj = 0 if xy £ Xr For this matrix A, a la (1).. . a^^ = 1 
if *a(i), •. •, *a(m) is a system of distinct representatives for Xv . . . , Xm, and 0 
otherwise. Hence the permanent of A equals the number of systems of 
distinct representatives for Xv . . . , Xm. Thus, for instance, the classi-
cal'problème des ménages' (the number of ways n couples can be placed at a 
circular table so that men and women sit in alternate places and no husband 
sits next to his wife) has as solution the number 2n\ times the permanent of 
the n X n matrix all of whose entries equal 1 except for those in positions 
(1, 1 ) , . . . , (/i, n), (1, 2 ) , . . . , (n — 1, n\ (AZ, 1) which are 0. Likewise the im­
portant dimer problem of statistical physics [17] (the number of ways to disect 
an «-dimensional parallelepiped into dimers) is easily reduced to evaluating 
the permanent of a matrix with many 0's. For n = 2 Perçus [32] showed that 
this matrix A has a complex companion A such that per A = |det A\. For 
n > 3, Hammersley et al. [18] showed that no such mate A can be found even 
if one allows quaternion entries. It follows that good estimates for the 
permanent of matrices can be valuable. The most efficient known method for 
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computing a general permanent was derived by Ryser [34] from the 
inclusion-exclusion principle. 

Since evaluation of permanents presents considerable difficulty, a great 
deal of the research effort on permanents has been directed at finding good 
lower and upper bounds. A first question might be to determine when an 
m X n (m < n) nonnegative matrix A has a positive permanent. It follows 
from a classical result of Frobenius and König that a necessary and sufficient 
condition is that A contain no p X q zero submatrix for any p, q with 
/? + # = /2 + l .A consequence of this is that a doubly stochastic matrix has a 
positive permanent and indeed that the set ün of n X n doubly stochastic 
matrices is a convex polytope whose vertices are precisely the n X n permuta­
tion matrices (Birkhoff [3]). In particular, since Qn is compact, there exists a 
largest positive number cn such that per A > cn for all A GQn (the van der 
Waerden conjecture asserts that cn = n\/nn). There are a number of lower 
bounds known for the permanent of an n X n matrix of O's and l's. One of 
the more interesting is the following which was first obtained by Mine [29] 
using a structure theorem for matrices of O's and l's due to Sinkhorn and 
Knopp [39]. Call an n X n matrix A of O's and Y s fully indecomposable if it 
has no r X s zero submatrix with r + s = n (it follows from the Frobenius-
König theorem that if A is fully indecomposable then every 1 of A is part of a 
nonzero term in the permanent of A). For a n n X n fully indecomposable 
matrix A of O's and l's, per A > o(A) — 2n + 2 where a(A) is the number of 
l's of A. This inequality was given a geometric interpretation and proof by 
Brualdi and Gibson [7]. The nonempty faces of Qn are in one-to-one corre­
spondence with n X n matrices B of O's and l's such that for some permuta­
tion matrices P, Q, PBQ is a direct sum of fully indecomposable matrices 
(called a matrix with total support). The vertices of the face ^(B) correspond­
ing to B are those permutation matrices R with R < B. If B is fully 
indecomposable, then the dimension of ^(B) equals o(A) — 2/2-1-1. Since 
the number of vertices of a convex polytope of dimension k is at least k + 1, 
the above inequality follows. Moreover, equality occurs if and only if ^(B) is 
a simplex. In addition Brualdi and Gibson characterized those matrices B 
with total support such that ^(B) is a simplex. 

For an n X n nonnegative matrix A = [atJ] with row sums rx < r2 

< • • * < rn and column sums sx < s2 < • * • < sn, the inequalities 
n n 

per A < II ri9 per A < J[ sf 

are immediate (since e.g. Wlaml(2
n

k^l aik) = 2 a aXo{X).. • ana{n) + other non-
negative terms). Jurkat and Ryser [21] improved these bounds by showing 
that 

n 

per^l < II min{rl, sf). 

In 1963 Mine [28] conjectured that for A a matrix of O's and l's, 

per ,4 < f[ (r,!),/r<. 
i - i 
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This conjecture was established by Brégman [4] in 1973 and a simpler proof 
demonstrated by Schrijver [36]. A consequence of this inequality is the 
validity of Ryser's conjecture that on the class of vk X vk matrices of O's and 
l's with all row and column sums equal to k the permanent function takes its 
maximum on the direct sum of v k X k matrices of all l's. For n X n 
matrices with all row and column sums equal to k with k not a factor of n, 
the maximum of the permanent is not known. Foregger [12] showed that for 
an n X n fully indecomposable matrix A with nonnegative integral entries, 

per .4 < 2aiA)-2n + 1. 

This implies that an / iX/ i fully indecomposable matrix A of O's and l's such 
that the corresponding face of fin has dimension k satisfies 

per ,4 < 2*"1 + 1. 

Brualdi and Gibson [7] extended this result to obtain that for any n X n 
matrix A of O's and l's with total support with the corresponding face of Î2„ 
having dimension k9 

per A < 2k. 

In both cases conditions for equality were obtained (a pyramid over a 
(k — l)-dimensional rectangular parallelepiped and a A>dimensional rectan­
gular parallelepiped, respectively). 

A fascinating approach for obtaining upper bounds for permanents of 
n X n complex matrices was described by Jurkat and Ryser [20]. Given an 
n X n matrix A they constructed (£i ) X (") matrices Pt(A% i = 1, . . . , n, 
whose entries are constructed from the entries of row i of A such that 

the matrix of the right being a 1 X 1 matrix whose unique entry is per A. As a 
result for any matrix norm || • ||, 

|per |̂< Û 11̂ 04)11. 

Each choice of matrix norm gives rise to an upper bound for the permanent 
and this was exploited by Jurkat and Ryser. 

An important method for obtaining inequalities for the permanent function 
was set forth by Marcus and Newman in their pioneering paper [27]. Let V be 
an «-dimensional unitary space with inner product (•, •), and let Mm(V) be 
the space of m-multilinear functionals on V. Let F (w) be the dual space of 
Mm(V\ Then F (m) is spanned by the decomposable tensors ƒ = ux 

® • • • ® um (wl5 ...9umE.V) where for <p e Mm{V\ 

A<P) = <K"i> • • • » um). 

An inner product is induced on F (m) by defining 
m 

(UX ® • • • ®Mm, V{ ® • • • ® ü j = û (W„ V,). 
1 * 1 

For « , , . . . , um G V define the symmetric product of uv . . . , um by 
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«1* * • " *"m = —^ 2 Hr'(l) ® * # • ®V'(m) 

where the summation extends over all permutations oof {1,.. .9m}. Now let 
vl9... 9vm also be vectors of V and define the m X m matrix A = [â .] by 
ay — (w/> ty)« Then straightforward calculation shows that 

(ux* • • • *wm, ©!»• . . *©m) - ^ j - per ,4, 

where the inner product is that of F(m). This is a remarkable equation for it 
shows that the permanent can be represented as an inner product, and, in 
particular, the Cauchy-Schwartz inequality applies. From this Marcus and 
Newman obtained the following fundamental inequality: for m X n and 
n X m matrices A and B9 respectively, 

|per AB\2 < per AA* per BB* 

and deduced from it inequalities such as |per A\ < per AA*9 |per U\ < 1 for a 
unitary matrix Ü9 and detv4 < per A for a positive semidefinite hermitian 
matrix A (Schur's inequality). In addition they showed that the van der 
Waerden conjecture held for a n « X « positive semidefinite hermitian doubly 
stochastic matrix A9 that is, per A > n\/nn with equality if and only if 
A = Jn. Refinements and additional inequalities using the multilinear ap­
proach were obtained by Marcus and Mine [25] and by others. 

The present status of the van der Waerden conjecture is the following. The 
Marcus-Newman contribution to the van der Waerden conjecture mentioned 
above was extended by Sasser and Slater [35] to normal doubly stochastic 
n X n matrices the argument of whose eigenvalues X satisfied —m/2n < 
arg X < m/2n9 and further by Friedland [13] to doubly stochastic n X n 
matrices whose numerical range is a subset of the closed sector 
[ - *n/2n9 9T/2/I]. For n = 3 the conjecture was established by Marcus and 
Newman [26], f orn = 3 and 4 by Eberstein and Mudholkar [11], for n = 5 by 
Eberlein [10]. Recently Friedland [14], extending a line of investigation 
initiated by Bang [1] has shown that for any n X n doubly stochastic matrix A 

per A > e~n
9 

a bound virtually of the same order of magnitude as that in the van der 
Waerden conjecture. There also exist in the literature numerous conjectured 
inequalities which would imply the van der Waerden inequality. While 
interesting, none of these seem to be more tractable than the van der 
Waerden inequality itself. 

According to the result of Pólya mentioned previously, for every integer 
n > 3 and every n X n matrix M = [my] of l's and — Fs, there exists an 
n X n matrix A = [a^] such that 

per .4 ¥= det M*A9 

where M*A = [m/y a0], the Hadamardproduct of M and A. This result rules 
out the possibility that the techniques of evaluation for determinants could be 
used for evaluating permanents by simply replacing some entries by their 
negatives. Marcus and Mine [23] generalized this considerably by showing 
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that for n > 3, there is no linear transformation T on the linear space of 
n X n matrices such that per A = det T(A) for all n X n matrices A. This 
negative result showed effectively that permanents could not be evaluated by 
means of determinants. Of course these negative findings do not rule out the 
possibility that certain types of matrices could be evaluated via determinants. 
Let A = [atj\ be an n X n matrix of O's and l's, and suppose there exists an 
n X n matrix M = [my] of l's and - l ' s such that per A = det M*A. It then 
follows that for each permutation o of { 1 , . . . , n} such that a l a ( 1 ) . . . amiri) = 
1> mi*(i) • • • mna(ji) = 1 or -1 according as o is an even or odd permutation. 
Hence for any n X n matrix B = [by] with the same zero pattern as A (i.e. 
by = 0 if and only if ay = 0), per B = det M*B so that the permanent of B 
can be evaluated via determinants. Thus it is of considerable interest to 
determine when the permanent of a matrix of 0's and l's can be converted to 
a determinant by affixing a minus sign to some of its entries. Such matrices 
were characterized by Little [22] in the following way. 

Let X = [xy] be an n X n matrix of 0's and l's such that for integers ix ^ i2 

andy*! ^j2, xixJ = 1 if and only if j = jx orj2, xijx = 1 if and only if / = ix or 
i2, and xtj2 = 0. Then the (n-l) X (n-l) matrix X' obtained from X by 
eliminating row ix and column j \ and replacing xtj by 1 is said to be 
obtained from X by a reduction (a special case of contraction used in [7]). 
Since the permanent is a multilinear function of its rows, per X' = per X. A 
matrix Y is said to be reducible from a matrix A" if it can be obtained by a 
sequence of reductions starting from X. Then the permanent of an n X n 
matrix A of 0's and l's can be converted to a determinant by affixing minus 
signs to some of the entries of A if and only if there do not exist permutation 
matrices P and Q, an integer m < n — 3, and an (ji — m) X (n — ni) matrix 
B of 0's and l's such that 

Im®B < PAQ 

where the 3 X 3 matrix of all l's is reducible from B. (Such matrices B were 
characterized in [7] and correspond to those faces of the convex polytope of 
doubly stochastic matrices which are 4-dimensional 2-neighborly poly-
topes-the only type of 2-neighborly polytope that can occur as a face of this 
polytope.) 

The book Permanents by Mine is an unlikely book, unlikely because its 
intent is* to give an account of the function, the permanent, as it developed 
from its inception in 1812 to the present time. While the permanent function 
is an interesting, often fascinating, matrix function with applications to 
enumerative problems, while it has appeared in certain physical problems [8], 
[17], [32] and in probability theory, and while it has been used as a tool in an 
investigation [7] of the polytope ün of n X n doubly stochastic matrices, it 
remains, I believe, a matrix function of specialized interest. Certainly it does 
not rival its relative the determinant for importance in mathematics and its 
applications. Besides giving a nice outline of the historical development of 
permanents, Mine surveys the progress attained in the last twenty years, 
proving many results, stating others without proof, and referring to the 
literature for additional ones. After reading the book I found myself disagree­
ing with the exclusion of certain topics and the inclusion of others. For 
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instance, I think Brenner's result [5] that the permanent of a diagonally 
dominant matrix is different from zero deserves more than just an informal 
mention in the introductory chapter on the historical development of perma­
nents. Since Brenner's proof is done for determinants and in some generality, 
Mine would have performed a valuable service by including a streamlined 
proof of the result for permanents. I would have preferred that the refined 
structure theorem for matrices of O's and l's derived by Hartfiel [15] be 
proved rather than mentioned at the end of the proof of the structure theorem 
of Sinkhorn and Knopp. This refined structure theorem has been very useful 
in obtaining inequalities for permanents and is used in the proof of Theorem 
3.1 in this book. Having it would have made the proof of the inequality 
per A > o(A) — In + 2 for an n X n fully indecomposable matrix A of O's 
and l's almost trivial. Indeed since this inequality holds for nonnegative 
integral matrices, a shorter proof of Theorem 3.1 can be obtained. A discus­
sion of the problem of bounds on the permanent of n X n matrices of O's and 
l's with exactly three l's in each row and column would have been desirable. 
This problem has received considerable attention in the last ten years (e.g. 
Sinkhorn [38], Hartfiel [16]) and has resulted in methods which have proved 
more generally useful. Recently Voorhoeve [41] has obtained an exponential 
lower bound by elementary means. Since Ryser's method for evaluating 
permanents is superior to that referred to as the Binet-Minc method, I think 
the* latter could have been more profitably replaced by a discussion of the use 
of the multilinearity of the permanent function in evaluating permanents. 

The above comments should not distract from the fact that Mine has 
written a book that will be very valuable to researchers of the permanent. In 
addition, the style is such that nonspeciahsts will be able to peruse it to see 
why the permanent has interested so many people in the last twenty years. 
The bibliography contains 303 references and will be very useful. However, in 
spite of Mine's statement that it "contains every paper and book on perma­
nents published before the end of 1977 or awaiting publication at that time", 
references [18] and [22] are not included in the bibliography. 

REFERENCES 

1. T. Bang, Matrixfunktioner som med et numerisk lille deficit viser v.d. Waerdens per-
manenthypothese, Proc. Scandinavian Congress, Turkku, 1976. 

2. J. P. M. Binet, Mémoire sur un système de formules analytiques, et leur application à des 
considérations géométriques, J. Ec. Polyt. 9 (1812); Cah. 16,280-302. 

3. G. Birkhoff, Très observaciones sobre el algebra lineal, Univ. Nac. Tucumân Rev. Ser. A 5 
(1946), 147-151. 

4. L. M. Brégman, Certain properties of nonnegative matrices and their permanents, Soviet 
Math. Dokl. 14 (1973), 945-949. 

5. J. L. Brenner, Relations among the minors of a matrix with dominant principal diagonal, 
Duke Math. J. 26 (1959), 563-568. 

6. J. L. Brenner and R. A. Brualdi, Eigenshaften der Permanente funktionen, Arch. Math. 18 
(1967), 585-586. 

7. R. A. Brualdi and P. M. Gibson, The convex polyhedron of doubly stochastic matrices: I. 
Applications of the permanent function, J. Combinatorial Theory Ser. A 22 (1977), 194-230. 

8. E. R. Caianiello, Combinatorics and renormalisation in quantum field theory, New York, 
1974. 

9. A. L. Cauchy, Mémoire sur les fonctions . . . , J. Ec. Polyt. 10 (1812); Cah. 17, 29-112, 
Oeuvres (2) L 



BOOK REVIEWS 973 

10. P. J. Eberlein, Remarks on the van der Waerden conjecture. II, Linear Algebra and Appl. 2 
(1969), 311-320. 

11. P. J. Eberlein and G. S. Mudholkar, Some remarks on the van der Woerden conjecture, J. 
Combinatorial Theory 5 (1968), 386-396. 

12. T. H. Foregger, An upper bound for the permanent of a fully indecomposable matrix, Proc. 
Amer. Math. Soc. 49 (1975), 319-324. 

13. S. Friedland, Matrices satisfying the van der Waerden conjecture, Linear Algebra and Appl. 
8 (1974), 521-528. 

14. _, A lower bound for the permanent of a doubly stochastic matrix, Linear and 
Multilinear Algebra (to appear) 

15. D. J. Hartfiel, A simplified form for nearly reducible and nearly decomposable matrices, Proc. 
Amer. Math. Soc. 24 (1970), 388-393. 

16. . , A lower bound for the permanent on a special class of matrices, Canad. Math. Bull. 
17 (1974), 529-530. 

17. J. M. Hammersley, An improved lower bound for the multidimensional dimer problem, Proc. 
Cambridge Philos. Soc. 64 (1968), 455-463. 

18. J. M. Hammersley et al., Negative finding for the three-dimensional dimer problem, J. 
Mathematical Phys. 10 (1969), 433-446. 

19. G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge Univ. Press, London, 
1934. 

20. W. B. Jurkat and H. J. Ryser, Matrix factorizations of determinants and permanents, J. 
Algebra 3 (1966), 1-27. 

21. , Term ranks and permanents of nonnegative matrices, J. Algebra 5 (1967), 342-357. 
22. C. H. C. Little, A characterization of convertible (0, \)-matrices, J. Combinatorial Theory 18 

(1975), 187-208. 
23. M. Marcus and H. Mine, On the relation between the determinant and the permanent, Illinois 

J. Math. 5 (1961), 376-381. 
24. , Permanents, Amer. Math. Monthly 72 (1965), 577-591. 
25. , Generalized matrix functions, Trans. Amer. Math. Soc. 116 (1965), 316-329. 
26. M. Marcus and M. Newman, On the minimum of the permanent of a doubly stochastic 

matrix, Duke Math. J. 26 (1959), 61-72. 
27. , Inequalities for the permanent function, Ann. of Math. (2) 675 (1962), 47-62. 
28. H. Mine, Upper bounds for permanents of(0, 1>matrices, Bull. Amer. Math. Soc. 69 (1963), 

789-791. 
29. , On lower bounds for permanents of (0, 1)-matrices, Proc. Amer. Math. Soc. 22 

(1969), 117-123. 
30. T. Muir, On a class of permanent symmetric functions, Proc. Roy. Soc. Edinburgh 11 (1882), 

409-418. 
31. R. F. Muirhead, Some methods applicable to identities and inequalities of symmetric algebraic 

functions of n letters, Proc. Edinburgh Math. Soc. 21 (1903), 144-157. 
32. J. K. Perçus, Combinatorial methods, Courant Institute of Mathematical Sciences, New 

York, 1969. 
33. G. Pólya, Aufgabe 424, Arch. Math. Phys. 20 (1913), 271. 
34. H. J. Ryser, Combinatorial mathematics, Cams Math. Monograph No. 14, Math. Assoc. 

Amer., 1963. 
35. D. W. Sasser and M. L. Slater, On the inequality Sx^y, > (1//I)2XJ * 2>>/ and the van der 

Waerden conjecture, J. Combinatorial Theory 3 (1967), 25-33. 
36. A. Schrijver, A short proof of Mine*s conjecture, J. Combinatorial theory Ser A. 25 (1978), 

80-83. 
37.1. Schur, Ùber endliche Gruppen und Hermitesche Formen, Math. Z. 1 (1918), 184-207. 
38. R. Sinkhora, Concerning a conjecture of Marshall Hall, Proc. Amer. Math. Soc. 21 (1969), 

197-201. 
39. R. Sinkhora and P. Knopp, Problems involving diagonal products in nonnegative matrices, 

Trans. Amer. Math. Soc. 136 (1969), 67-75. 
40. B. L. van der Waerden, Aufgabe 45, Jber. Deutsch. Math.«Verein 35 (1926), 117. 
41. M. Voorhoeve (to appear). 

RICHARD A. BRUALDI 


