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Few books have been written on the subject of an abstract model for the 
structure of manifolds of maps; the present book is one of this select group. 
Most of the books and papers in global analysis have been concerned with 
the point-set or differential topology of abstract Banach manifolds, with 
applications to various equations from physics, or else with the introduction 
and investigation of new examples of manifolds of maps which may play a 
role in future investigations. While this mass of literature is for the most part 
not concerned with the structure of manifolds of maps itself, it has nonethe­
less helped to shed some light on the nature of this still poorly-understood 
structure (and, equally important, on what this structure is not). Before 
discussing The metric theory of Banach manifolds, let me review what the 
literature of global analysis has told us thus far about the nature of manifolds 
of maps. 

Let us assume for the moment that Mx and M2 are smooth finite-dimen­
sional manifolds, and that Mx is compact (possibly with boundary). Then all 
the standard examples of manifolds of maps from Mx to M2 contain the C°° 
maps, are infinite-dimensional manifolds, and are sandwiched as topological 
spaces between C°°(Af„ M2) and C\MV M2). By a result due to Palais [14, 
Theorem 16], it follows that all of these manifolds are of the same homotopy 
type as C°(MX, M2). But it is also well known to infinite-dimensional topolo-
gists [9] that any two homotopically equivalent topological manifolds, each of 
which is modeled on a separable infinite-dimensional Fréchet space (not 
necessarily the same space), are homeomorphic. While there exist important 
examples of manifolds of maps which are not separable, it still follows that 
most of the interesting spaces of maps from Mx to M2 are homeomorphic to 
C°(M,, M2). Thus nothing is gained topologically by investigating any 
Fréchet manifold of maps from Mx to M2 other than C°(MX, M2). Any gain is 
going to come from the analytical structure on the function space. Putting 
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aside for the moment the consideration of global structures such as Finsler 
metrics (which can only be introduced once one already has a well-defined 
local structure), the basic analytical structure on a manifold of maps is local 
and is determined by the nature of the transition functions for the given atlas 
of coordinate charts on the function space. Thus the problem of deciphering 
the nature of the basic structure of manifolds of maps may be viewed in part 
as a problem in nonlinear functional analysis. Once this information is in 
hand, a global structure theory of manifolds of maps-infinite-dimensional 
differential geometry, really-will be within reach (for indications of how this 
might differ from a straightforward theory of Banach manifolds and Finsler 
metrics, see [4], [17], and [19]). 

Incidentally, since the transition functions on manifolds of maps are 
induced by differential operators of order zero, and since a nonlinear dif­
ferential operator of order k may be viewed as the composition of a linear 
differential operator of order k and a nonlinear differential operator of order 
zero, the study of these transition functions is very closely tied to the study of 
nonlinear differential operators (see [15, Chapter 15] for a readable develop­
ment of this subject). 

A property of the transition functions which seems to play a key role in the 
structure of manifolds of maps was uncovered by Palais ([16], [15, Lemma 
19.12]): let £, i) be smooth vector bundles over the compact manifold M, 
ƒ: ?~*TJ a smooth fiber-preserving map, and let 9H(*) denote any of the 
well-known section functors which assigns to each vector bundle over M a 
Banach space of continuous sections of the bundle. Then the induced map 
91t(/): 9IL(f)~»^0?) s e n d s bounded sets in 9!t(£) to bounded sets in 
9IL(TJ). Roughly speaking, this means that the transition functions map 
bounded sets to bounded sets. 

Other key properties derive from the fact that these manifolds do not exist 
in isolation: there exist scales of manifolds sandwiched between C00(Af1, Af2) 
and C°(Ml9 M2), and the natural atlas on each manifold is obtained from the 
atlas on C°(MV M2) by restriction of the charts in this atlas to the smaller 
space. So, for any manifold, the transition functions are continuous (and 
differentiable) not only for the given linear topological structure on the model 
space but for a great many weaker linear topological structures as well. Still 
further relations follow because the norm on a given model space is often 
derived in some fashion from the weaker norms (e.g. the C*-norm from the 
C°-norm, the L£-norm from the ZAnorm, etc.). 

This suggests two possibilities to the researcher interested in an application 
of this elusive structure to a problem in nonlinear analysis: the utilization of a 
Banach manifold of maps appropriate to the particular problem (such as a 
space of Ck or Sobolev maps) and careful investigation of additional proper­
ties imposed on the transition functions by conditions such as the ones just 
mentioned; or alternatively, the selection of the common core within all the 
manifolds of maps from Mx to Af2~namely, C°°(Ml9 M2)- and investigation 
of the appropriate functional-analytic problem directly on this core. The first 
approach has been pursued in some detail by the reviewer [6] in connection 
with applications to the calculus of variations; the second approach has been 
taken by many authors-indeed, by anyone who has ever investigated dif-
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ferential calculus in Fréchet spaces, since the study of CCC(MV M2) reduces 
essentially to the study of the analytical structure of the transition functions 
on the model space. The most exciting work of the latter type has been done 
by R. Hamilton. In somewhat unrelated papers ([7], [8]) he develops two 
inverse function theorems in graded Fréchet spaces, one of which is tailored 
essentially for application to nonlinear elliptic operators, the other (more 
recent) one of which is a more general result of the Nash-Moser type (since 
Hamilton proved this theorem, several fairly complicated generalizations by 
other authors have appeared). 

So far, however, neither of these approaches-selecting a single manifold of 
maps and concentrating on it alone-has proven adequate to deal with the 
problem of existence and uniqueness of flows for vector fields on function 
spaces which are induced by various nonlinear parabolic and hyperbolic 
differential operators of mathematical physics. While these vector fields are 
continuous and even differentiable on the space of C00 maps, there are no 
techniques currently available for dealing with vector fields on any sort of 
nonnormable Fréchet space. And while flows for these equations have been 
constructed by regarding the equations as unbounded vector fields on ap­
propriate Banach function spaces (see, in particular, [10], [11], [18]), these 
techniques require the use of at least two distinct manifolds in the function 
space scale. A determination of the relation of these theorems to the inverse 
function theorems of [7], [8], or [6] might shed further light on the relation 
between the Banach manifolds in the various scales between C°°(MV M^) 
and C°(MV Af2), or else on the relation of the core space C°°(MV M^) to the 
rest of the function space manifolds. However, even the existence of any 
relation between the theorems on flows and the just-cited inverse function 
theorems is conjectural at this point. 

In connection with the topic of flows for unbounded operators, it is 
appropriate to mention a result of J. Marsden [13], who has constructed a 
flow for the sum of a bounded and an unbounded operator from the flows for 
the individual operators by a Lie product technique, something like P. 
Chernoff's nonlinear generalization of the Trotter product formula. However, 
the theorems of Chernoff and Trotter are very different in that they show the 
convergence of a Lie product approximation scheme to a flow which is 
already assumed to exist. Marsden's technique requires the use of at least four 
distinct manifolds in a scale; information about relations between the spaces 
may be present implicitly in the hypotheses of the various lemmas and 
theorems of his paper. 

A major difficulty in the development of the appropriate analytical tools 
for global analysis is the fact that many theorems which are inequivalent in 
infinite-dimensions reduce to the same result in finite-dimensional spaces, 
and as a consequence it is often difficult to decide what should be the 
appropriate generalization to infinite-dimensional spaces of a given finite-
dimensional result. For example, the theorems on flows for unbounded 
operators cited above, and the usual existence and uniqueness theorem for 
flows generated by locally Lipschitz vector fields on Banach spaces, both 
reduce to the same result for vector fields on finite-dimensional spaces, 
though in infinite dimensions the theorems for unbounded vector fields are 
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much more general (modulo the fact that the theorems of [10] and [11] apply 
only to reflexive spaces). As another example, compare the inverse function 
theorem of [6] with the usual inverse function theorem for Ck mappings 
between Banach spaces: again, the two theorems reduce to the same result in 
finite dimensions, though for infinite-dimensional spaces the second result is 
more general but with a weaker conclusion than the first. 

In addition to the sort of investigation just discussed, there has been work 
done in extending the construction of a manifold structure on various spaces 
of maps from Mx to M2 to the cases where Mx and M2 are allowed to be 
noncompact, or even infinite-dimensional. The case of Mx compact, M2 

arbitrary, was first treated by H. Eliasson [5]. His construction of the 
manifold structure on spaces of maps from Mx to M2 roughly parallels the 
development by Palais in Foundations of global non-linear analysis for the case 
of M2 finite-dimensional, the main difference being that Eliasson had to 
postulate the existence of a smooth spray on M2, the existence of which is not 
automatic as in the finite-dimensional case. An ingenious alternative method 
of construction which avoided the use of an exponential map on M2, and 
hence also of a spray, was developed by N. Krikorian [12]. 

The structure of spaces of mappings from Mx to M2 becomes much more 
delicate when Mx is permitted to be noncompact. In this case it is necessary 
to impose a metric on M2 just to obtain a topological manifold structure on 
C°(MX, M2). For this manifold, a necessary condition for two maps ƒ, g E 
C°(MX, M2) to be in the same component of the function space is that 
sup p( ƒ(.*), g(x)) < oo, where p is the metric on M2. For the case of Mx and 
M2 noncompact, it is always possible to change the metric on M2 in such a 
way as to change the components of C°(MV M2). And once one progresses to 
sets of differentiable maps from Mx to M2 (C* maps, Holder maps, etc.), it is 
necessary to have at least a metric on Mx as well if there is to be any hope of 
equipping a given set of such maps with a manifold structure. 

As far as I am aware, only two researchers, M. Cantor and E. Akin, have 
undertaken the investigation of manifolds of maps on a noncompact domain. 
Their techniques are totally unrelated, as are the types of function spaces to 
which their ideas apply. Cantor has been interested in studying various 
parabolic and hyperbolic differential equations of mathematical physics (See 
[1], [2], and especially [3]) defined on finite-dimensional noncompact domains 
(usually assumed to be diffeomorphic to R", though not necessarily equivalent 
to R" as Riemannian manifolds). For these applications, he has found it 
convenient to work with manifolds modeled on what he refers to as 
"weighted Sobolev spaces". These model spaces admit norms which are 
defined by integrals over Mx, are closely related to the usual Sobolev spaces, 
and are reflexive (subject to the familiar restriction/? G (1, oo)). For each of 
these model spaces, the fact that the norm on the space is defined by an 
integral over Mx (Mx is assumed to be a complete Riemannian manifold, the 
measure on Mx the one induced by the Riemannian metric, so the measure of 
the whole manifold is infinite) guarantees that f(x) -» 0 as x —» oo. It follows 
that the manifolds of maps which Cantor constructs are made of maps which 
exhibit the same asymptotic behavior as x -» oo in Mx. This type of manifold 
can only be constructed when Mx is finite-dimensional; indeed, Sobolev-type 
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spaces of continuous functions have never been satisfactorily generalized to 
infinite-dimensional domains. 

E. Akin, on the other hand, introduces us in The metric theory of Banach 
manifolds to the study of manifolds of maps from Mx to M2 with no 
restrictions whatsoever upon the dimensionality of Mx and Af2. He has taken 
an axiomatic approach to the construction of the manifold structure much 
like the approach Palais pioneered in [15], although Akin's axioms are 
necessarily more intricate because of the possible infinite-dimensionality of 
Mx and Af2. Thus Akin considers an abstract class of mappings ®$L{Mx<i AQ 
rather than any specific type of map; however, the reader should keep in 
mind that these axioms have been tailored to fit the examples of Ck, Lip*., 
and Holder maps (which, unlike Sobolev maps, make sense on infinite-dimen­
sional domains). The norms on the model spaces for these examples are 
defined locally in terms of behavior on Mv so it is not surprising that Akin 
does not assume any asymptotic behavior on the mappings in ?KL(MV M^) 
near infinity (because of his interest in applications to foliations, he would 
probably find any constraints which would impose asymptotic behavior 
totally unacceptable). This treatment is intended to apply only to those 
classes of mappings which are closed under composition, which again ex­
cludes mappings of the Sobolev type even in the case of Mx finite-dimen­
sional. 

The construction of the atlas on 9H(Ml5 M2) proceeds under the assump­
tion that each manifold M, possesses an atlas &f (smaller than the maximal 
atlas compatible with the given differentiable structure on AQ such that there 
is a uniform bound on the norm of each transition function and a sufficiently 
large number of its derivatives (the exact numerical value of "sufficiently" 
depending upon the section functor 9H), together with restrictions on the size 
of the domains of the transition functions which are specified in terms of the 
metric structures on Mx and M2. Technical details make the construction 
extremely complicated; it is to be hoped that someone will be able to capture 
the essence of this nontrivial theory in a more easily accessible development 
(discussions of the more subtle aspects of some of the definitions plus 
inclusion of more examples would be helpful). For instance, for the case 
where Mx and M2 are assumed to be finite-dimensional, it might be possible 
to adapt Cantor's techniques to Akin's setting to obtain a significant simplifi­
cation of method. Alternatively, in the direction of greater generality, it might 
be possible to adapt Krikorian's technique [12] to this infinite-dimensional 
setting to remove the dependence of Akin's construction upon the existence 
of a well-behaved exponential map on the space M2. 

Chapter VII of The metric theory of Banach manifolds is devoted to the 
development of the technical machinery necessary to deal with applications 
to foliation theory. The author promises to develop relations between his 
metric structures and the geometrical structures of his manifolds of maps in 
future papers. 
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Permanents, by Henryk Mine, Encyclopedia of Mathematics and its Applica­
tions (Gian-Carlo Rota, Editor), Volume 6, Addison-Wesley, Reading, 
Mass., 1978, xviii -I- 205 pp., $21.50. 
The year 1979 can be regarded as the 20th anniversary of the theory of the 

permanent function. True, permanents were introduced in 1812 by Binet [2] 
and Cauchy [9], and several identities, usually involving determinants as well, 
were obtained in the 19th century by some ten other mathematicians includ­
ing Cayley and Muir. Indeed it was Sir Thomas Muir [30] who in 1882 coined 
the term 'permanent' for the following function defined o n n X n matrices 
A = [ay]: 

per A = 2 tfia(i). . . ana{n) 
a 

where the summation extends over all n\ permutations a o f { l , . . . , / i } . True, 
in 1903 Muirhead [31] obtained the following beautiful result. Let c « 
(Cj, . . . , cn) be a positive «-tuple, and let a = (av . . . , « „ ) and ft = 


