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BY L. AUSLANDER AND R. TOLIMIERI 

HISTORICAL INTRODUCTION by L. Auslander 

Let me begin with my view of a bit of history. 
Before the Second World War mathematics in the United States was a 

servant of the needs of others and mathematicians taught service courses. 
Indeed, while A. Weil was teaching at an Eastern university it would be only 
a slight exaggeration to say that he was forbidden from presenting proofs in 
class and was called on the carpet by a dean for breaking this structure. In 
the years after the War, mathematics became a subject in its own right. 
Proofs became acceptable, as the creation of the "new math" proved to the 
world. Mathematicians were in demand, were men in their own right and no 
one's servants. 

However, this growth period had a very unfortunate side affect. While 
mathematics was becoming a subject in its own right, many of its practi­
tioners wanted to rid themselves of their former servant image. They had felt 
denigrated by the service role; so they denigrated service mathematics. 
Unfortunately, they lumped together service mathematics and applied 
mathematics. And so during this growth period of mathematics, there sprang 
up a distinction between pure and applied mathematics. During these years, 
the applied mathematicians felt the pure mathematicians looked down on 
them, and so the communications between the pure and applied mathemati­
cians virtually dried up. 

In this paper we willl show that there is really not much difference between 
pure and applied mathematics. Indeed, we will cite instances of pure and 
applied mathematicians doing the same or analogous mathematics, but be­
cause of the lack of communication neither knew of the others' work. 

With these broad generalities stated, let me try to explain how I came to 
the writing of this paper. This may perhaps serve as an example of how the 
gap between pure and applied mathematicians can be bridged. 

I became interested in the study of the finite Fourier transform because I 
needed to know the eigenvalues of the finite Fourier transform. This arose in 
the study of the multiplicity of the regular representation of a solvmanifold. 
This problem was solved and the solution can be found in [8, p. 95]. 
Tolimieri, and Tolimieri and I, took up this problem in [18] and [3] and 
related the eigenvalue problem of the finite Fourier transform to a certain 
algebra of theta functions as discussed in Chapter I of this paper. I felt that 
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the mathematicians at the IBM Watson Research Center at Yorktown 
Heights, New York, might be interested in these results. They were, and they 
invited me to give a talk on my work. After the talk, James Cooley was kind 
enough to point out that two electrical engineers, McClellan and Parks [16], 
and the applied mathematician I. J. Good [11] had written interesting papers 
on this subject. I. J. Good pointed out that Gauss had studied and really 
solved the problem of the eigenvalues of the finite Fourier transform. All 
these ideas are presented in Chapter I. 

My interest in the computational aspects of the finite Fourier transform 
was aroused by the papers J. Cooley gave me. Tolimieri and I in [3] had 
presented a proof of the Plancherel theorem for the reals that put the 
Weil-Brezin (see [19] and [7]) mapping in a central position. I felt this would 
yield a method for computing the finite Fourier transform. Indeed it did! It 
yeilded the Cooley-Tukey algorithm. This inter-relation between the Cooley-
Tukey algorithm and the Weil-Brezin map is discussed in Chapter II. 

All this aroused my interest in the computations of the finite Fourier 
transform. I spent the Fall of 1977 at the IBM Watson Research Center 
where I worked with S. Winograd. I have presented some of Winograd's ideas 
in Chapter HI. 
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MATHEMATICAL INTRODUCTION 

In most applications the finite Fourier transform F(ri), n a positive integer, 
is the n X n matrix whose entry in the a row and b column, 0 < a, b < n9 is 
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the number 

v^ 
02iriab/n 

where ab denotes the product of the 2 numbers a and b. Thus 

F(3) = 
V3 

V2 
1 
1 
1 

1 
- 2 m / 3 

1 
,2^2/3 

F(n) = 
VJt 

e2iri/n 

92m2/n 

e2m2/Z e2m/3 

1 
e2iri2/n . , , 

J2mA/n 

1 
e2m{n-\)/n 

92mi2{n-X)/n 

j e2m{n-\)/n e2m2{n~\)/n . . . e2m(n- l)(/i- l)//i 

The main problem involving the finite Fourier transform is the following. 
Given a complex valued function /(a), 0 < a < n, we want to compute the 
function Y(b), 0 < b < n, given by 

no) 
= F(n) 

ƒ(<>) 

y(«- i ) J [ / (n- i ) ; 
We call y(6) the finite Fourier transform of the function f(a) and we will 
abbreviate this by Y = F(ri)f and sometimes denote F(n)f by f . 

However, on books on Harmonic Analysis the finite Fourier transform is 
defined in the following, apparently, different fashion. Let Z/n denote the 
group of integers mod n. Let C denote the complex numbers and Cx(ri) 
denote the multiplicative group of complex numbers e?mk/n

9 0 < k < n, or 
what is called the group of n roots of unity. Let Z/n denote the set of 
homomorphisms of Z/n into Cx(w). We make Z/n into a group by defining 

(â + b)(a) = â(a) • b(a), a G Z/n, â, b GZ/n, 
where multiplication is in CX(AI). The group Z/n is called the character group 
of Z/n and is well known to be isomorphic to Z/n. We introduce the 
notation b(a) = (a,^è), a G Z/n, b G Z/n. Let ƒ be a complex valued func­
tion on Z/n or Z/n. We definej/)2 = 2öG<7 f(à)f(a) where G is Z/n or 
Z/n. We define L2(Z/n) or L2(Z/n) as the set of complex valued functions 
on Z/n or Z/n with the above norm. We define the finite Fourier transform 

F(n):L\Z/n)->L\Z?n) 
by 

(F(n)f )(b) = 1 

V7t Û £ Z / / I 
(1) 
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(The multiplier l/Vn is inserted to make F(ri) a norm preserving linear 
transformation or a unitary mapping or operator.) 

In order to relate these two definitions of the finite Fourier transform of a 
function, we have to introduce some identifications or isomorphisms. First 
define r:Z/n-+ Cx(n) by 

r(a) = e27Tia/n, a G Z/n. 

We see that r is a homomorphism because 

r(a + b) = e2™(a + b)/n = çliria/riçlmb/n^ 

Noting that e
2>nia/n, 0 < a < n, is not equal to 1, we have that r is an 

isomorphism. 
Next, define s: Z/n -> Z/n as follows: For b G Z/n define s(b) G Z/n by 

the formula 

(a, s(b)) = e2"iab/n
9 all a G Z/n. 

It is straightforward to verify that s is an isomorphism. Using s to identify 
Z/n and Z/n formula (1) becomes 

(F(n)f )(b) = - p - S Aa)e2M,\ 0<b<n. (2) 

This is the same as F(«)/. 
As above, throughout this paper we have tried to begin with the computa­

tional version of a result or problem and only then to present the more 
abstract or structured version of the result. 

The following is a brief chapter-by-chapter survey of the contents of this 
paper. 

In Chapter I we study the finite Fourier transform as a linear transform, 
rather than as the matrix product F(ri)f. Since F(n) is a unitary operator, and, 
as we will show, F(n)4 = /, where I is the identity map, F(n) is similar to a 
diagonal matrix whose eigenvalues are ± 1 and ± i. Hence as a linear 
transformation, F(n) is uniquely determined by the dimension of the sub-
spaces Va, where Va consists of all vectors of functions in L2(Z/ri) such that 

F(n)f=af, a = ±1, ±i. 

The dimension of Va is called the multiplicity of a and the problem of finding 
the dimension of Va, a = ± 1, ±i , is called the multiplicity problem of the 
finite Fourier transform F(n). 

In Chapter I we survey the various results, some classical and some not so 
classical, that enable us to solve the multiplicity problem for F(n). One of 
these methods shows that being able to find the trace of F(n) for all n is 
equivalent to solving the multiplicity problem. Since the trace of F(n) is the 
quadratic Gauss sum this shows one relation of the multiplicity problem to 
classical mathematics. We also discuss some recent results that link the finite 
Fourier transform and the theory of nil-theta functions. These results center 
about an algebra structure that can be associated with the collection of ah 
finite Fourier transforms F(ri), n > 0. 
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CHAPTER I. THE MULTIPLICITY PROBLEM 

1. The Legendre symbol, quadratic reciprocity, and the trace of the finite 
Fourier transform. One of the simplest invariants of a linear transformation is 
its trace. In this section we will define the Legendre symbol (p/q) and show 
that if Tr(F(n)) denotes the trace of the finite Fourier transform then 

Tr(F(M)) 

Œ)-q)\p) Tr(F(p))Tr(F(q)) 

where p and q are odd primes. Of course the celebrated result of Gauss on 
quadratic reciprocity states that 

(E\(l\= f - \ ) [ ( p -0/2][(<7-l)/2]^ 

This shows one of the connections of the finite Fourier transform with 
classical mathematics. In order to carry out this program, we will have to 
introduce a representation p of the group Z/nx of units (elements with 
multiplicative inverse) in the ring Z/n on L2(Z/n). 

We will now start this section with a discussion of the Legendre symbol. 
Let p be an odd prime. Then Z/p is a field having p elements and Z/px 

consists of the nonzero elements of Z/p and is a cyclic group of order/? — 1. 
Let 

S = { £ 2 | £ E Z / / ? * } . 

It is easily verified that S is a subgroup of Z/px. The elements of S are called 
quadratic residues mod p. Again one verifies that the order of the quotient 
group Z/px/S is 2, or, for h G Z/px, h $ S, Z/px = S U hS and S n hS 
is empty. Let {1, -1} be the multiplicative group of order 2 and let h be the 
group homomorphism of Z/px onto {1,-1} with kernel S. For the integers 
Z let p: Z-*Z/p be the homomorphism with kernel consisting of the 
multiples of p. For n E Z we define 

/ n\ fO if n = Omod/?, 

\PJ ~\h(p{n)) if« iÉOmod/?. 

We call (n/p) the Legendre symbol. Since, if n{ = n2 mod/?, (nx/p) = (n2/p) 
we can consider (n/p) for n G (Z/p)x. 

Our first task is to obtain an analytic formula for (n/p). 

LEMMA 1.1.1. Ifn ^ 0 mod/? 

2 e***2/p = (l) 2 e2"*2'*. (1) 
0<£</> \PJo<è<p 

PROOF. We will call Rp c Z a complete residue system mod/? if the 
homomorphism p restricted to Rp defines a 1-1 surjection of Rp onto Z/p. If 
Rp is any complete residue system mod/?, then it is easy to verify that 

0<£<P teRp 
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Let k 2É 0 mod/? and let Rp be a complete residue system mod/? and 

Then it is easily verified that kRp is a complete residue system mod/?. 
Let (n/p) = 1 and n == fc2 mod/?, fc e Z//?x . Then 

2» e2mne/p = V e
2™(*02//> = 2 e27Tiri2/p = 2 e 2 ^ 2 ^ 

and we have proven this case of the lemma. 
Let (n/p) = -1 or p(ri) E Z//?x , p(ri) £ S. As | runs over a complete 

residue system mod/?,/?(£2) runs over £ twice and the point {0} once in Z//?. 
Similarly, hi2 runs over hS twice and the point {0} once in Z//?. Hence 

^ eimne/p + ^ e2™*V/> = 2 2 e2wi*/#\ 
|e /?p le/?,, i^Rp 

The right-hand sum is well known to be zero and so 

^ e2mne/p = ( - 1 ) 2 e2™*2/p = ( —) S e 2 7 " ^ 

and we have verified our assertion. 
Let ƒ be a function defined on complete residue systems mod n such that 

for £ G Rn and £' E i*„' with £ = £' mod n we have ƒ(£) = ƒ(£')• We will talk of 
ƒ as a function on Z/n and use the notation/©, J G Z/n. 

We now begin the task of introducing the representation p of Z//?x on 
L2(Z/p) that combines with F(p) to give another formulation of Lemma 
1.1.1. We begin the process of defining p by looking a little more closely at 
L2(Z/«). 

Let ¥(n) denote the complex valued functions on Z/n. Let 

Clearly, ^(n) is an ^-dimensional complex vector space and the n functions 
fa, a E Z/n, determine a basis of ^(n). We will now make ^(ri) an inner 
product space as follows: For/, g E ^(w) define 

<ƒ,£>= 2 ƒ(«)£(«) 

where the bar denotes the complex conjugate. The resulting Hermitian inner 
product space is denoted by L2(Z/n) and the n functions fa, a E Z/n, define 
an orthonormal basis of L2(Z//î). 

We will now describe the unitary representation p of Z/nx on L2(Z/ri). 
Since Z/nx acting on Z/n by multiplication produces a group of automor­
phisms of the additive group Z/n, we may define for each a E Z/nx a linear 
transformation p(a) of L2(Z/n) by setting 

p(a)(f)s = f(as\ s E Z/n J E L2(Z//z). 
Because p(ö)£ = fa~

la> where / , , a E Z/n, is the orthonormal basis defined 
above, it follows that p(a) is a unitary operator on L2(Z/ri)9 a 6 Z / « X , If 
U(ri) denotes the group of unitary operators on L2(Z/n) it is easily verified 

ƒ«(£) = (J; :_^' «,/?ez/„. 
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that 

p:Z/nx~*U(n) 

is a group monomorphism. 
We will now review briefly, and then extend, the material on the finite 

Fourier transform that we gave in the Introduction. 
Let C denote the field of complex numbers and let C,x denote the 

multiplicative group of complex numbers of absolute value 1. A character on 
Z/n is a group homomorphism X: Z/n^-±Cx. The set of all characters on 
Z/n is denoted by Z/n. For À,, X2

 e Z/n, we define 

(Xj + X2)a = \x(a)\2(a), a E Z/n. 

Then Z/n is a group, isomorphic to Z/n. For 0 < a < n, let Xa: Z/n -> C,x 

be defined by 
Aja) « e-2*ia*/*9 a e z / w . 

Clearly Xa is a well defined character on Z/n and it is easily verified that Z/n 

consists of the n characters Xa, 0 < a < n. Notice Xa E L2(Z/n) and 

a,/} E Z//î- Hence the Aa, 0 < a < n, are an orthogonal basis of L2{Z/ri). 
We can now define the finite Fourier transform F(n) of Z/n as the linear 
mapping of L\Z/n) defined for ƒ E L\Z/n) by 

(F(/z)/)(a) = 4 ^ < ^ X « > = ^ 2 At*)***/* 
Vn vn pez/n 

where a E Z/n. Notice that 

F(n)fa = - p - X ^ a n d ^ ( " ) \ * = ^ / a , 

thus 

Hn?fa=f~« and F(n)4 = ƒ 

where ƒ is the identity mapping. Also 

(F(n)fa, F{n)f, > - \ <X_a, X.,) = { \ ^ " J 

Hence (F(n)fa9 F(ri)fp) - </«»^3> and F(/z) is a unitary operator on L2(Z/n) 
of order 4. We also have that 

(i^iirI/)(«)--7=-</^..>--i 2 /(j8)e-*^/-. 

Since 

it follows that the matrix of F(n) with respect to the basis J^ jSG Z / / J , is 
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given by 
1 

m(e2*ifir/n)9 0 < fry <n 
V7l 

Although the linear transformation F(ji) is represented by different matrices 
relative to different bases we will denote the above matrix also by F(ri). 

Since p(a) E U(n), a E Z/nx, and F(n) E U(n) we can form 
F(n)p(a)F(n)~l. Because p(a)Xa = Xaa we have immediately that 

F(n)p(a)F(n)-1 = p(ayl - pia-1). 
We can now relate the above results to Lemma 1.1.1. and the results of 

Gauss on quadratic reciprocity and the value of quadratic Gauss sums. 
If Tr( ) denotes the trace of the linear transformation in the bracket we 

have immediately that 

Tr(F(rt))= 2 e W / n , 
a £ Z / « 

Tr(p(a)F(n)) = 2 ^ W / * 
oez/n 

Now let n and m be relatively prime positive integers and let y = am + fin, 
0<a<n,0</3<m. 

The Chinese remainder theorem implies that the set of all such 7 is a 
complete residue system mod nm. Now let fa E L2(Z/«), 0 < a < n, and let 
ffi E L2(Z/n), 0 < p < m, be the basis of L\Z/ri) and L\Z/m) as defined 
above. Let x(fa>fp) = /«m+/to> where/Y, 0 < y < nm, is a basis of L2(Z/nm) 
as above. Extend x t o a bilinear mapping of L2(Z/n) X L2(Z/m)-* 
L2(Z/nm). Then x induces a linear map x*- L2(Z/n) ® L2(Z/m)~* 
L2(Z/nm). It is easily verified that x* is an isomorphism. A straightforward 
computation then shows that the tensor product of the linear operators 
p(m)F(n) and p(n)F(m) satisfies 

p(m)F(n) ® p(n)F(m) = F(nm). (2) 
The result of Lemma 1.1.1 can now be stated as 

Tr(p(h)F(p)) = ^TT(F(P)), h 2É 0 modp, (3) 

p an odd prime. Since the trace of a tensor product is the product of the 
traces of the factors, we have from equations (2) and (3) that 

[^){^fTx{F(p))Tx{F{q)) = Tv(F(pq)) 

or 

TtjFjpq)) ( 

Tr(F(p))TT(F(q)) ^ } m= and we have verified the result we stated at the beginning of this section. 
The formula 

primes, (5) 
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is Gauss' celebrated formula for quadratic reciprocity. Formula (5) has many 
elementary proofs; see for instance, Hardy and Wright [12]. But Gauss also 
established the following fundamental result. 

THEOREM 1.1.2. Let F(ri) denote the finite Fourier transform on L2(Z/n) and 
let Tr(F(n)) denote the trace of F(n). Then 

Tr{F{n)) = 

i + 1 ifn = 0mod4, 
1 ifn = 1 mod 4, _ 

(6) 
0 j f / i s 2 mod 4, w 

i ifn = 3 mod 4. 
Although formula (5) has elementary proofs Theorem 1.1.2 has, to our 

knowledge no elementary proof and seems to be much deeper than quadratic 
reciprocity. In [13] there is an interesting discussion of the many proofs of 
quadratic reciprocity. 

In the next section we will relate the problem of computing Tr(F(/i)), 
n > 0, to the multiplicity problem for F(n). However, before doing this, we 
pause to show what insights elementary considerations can give us about 
Theorem 1.1.2. 

We begin by showing that Tr(F(2r)) = 0, r odd, is easily verified. For 

Tr(F(2r))= 2 e2"*7* + 2 e2^+r)2/2r. 
0<£<r 0<£<r 

Because r is odd, e27rir/2 = -1 and e
27rl(*+r)2/2r = -.\e2"*2/2r and we have 

established that Tr(F(2r)) = 0, r odd. 
Let/? be an odd prime. We will now show that Tr(F(4/?)) = 1 + / implies 

[ i up = 3 mod 4. 

By (2) 

Tr(p(4)F(p))Tr(p(p)F{4)) = Tr(F(4/>)) - 1 + /. 

Lemma 1.1.1 gives 

Tr(p(4)F(p)) - (4/p)Tt(F(p)) = Tr(F(/>)) 

as it is easy to verify that (4/p) = 1. Thus 

1 + i 
Tr( F(p)) = Tr(p(p)F(4)) • 

But we can easily write out the four terms of the sum Tr(p(/?)F(4)) to prove 
that 

Tr(P(p)F(4)) = f l + l i f ^ l m o d 4 > 
I 1 — * if p = 3 mod 4. 

This shows that 

Tr(F(^)) = ( 1 ÎJ» = J 
11 if n = 3 

= 1 mod 4, 
3 mod 4. 
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2. Equivalence of the trace and eigenvalue problems for the finite Fouriei 
transform. This section relates Theorem 1.2.2 or the computation of Tr(F(n)), 
n > 0, and the multiplicity problem as defined in the Introduction for F(n). 
Since the trace of a linear transformation is the sum of is eigenvalues, it is 
clear that a solution of the multiplicity problem for F(ri) implies Theorem 
1.1.2 or Gauss' result in quadratic Gauss sums. What is very surprising is that 
knowing Tr(F(n)) for all n enables us to solve the multiplicity problem for 
F(n). The proof rests on a simple observation that is at the heart of Schur's 
proof of the computation of Tr(F(n)) (see [6, p. 351]). Schur observed that 

f 1 0 • • • 0] 
0 0 • • 0 1 

[ 0 1 0 - • 0 j 

and hence the characteristic polynomial of F\n) is given by 

( , - l )< n + 1 ) / 2 ( f + l ) ("- , ) / 2 , «odd, 

( , _ i)<«+2>/2(, + i)<-2>/2, n e v e n . K) 

Since the eigenvalues of F2(n) are the square of the eigenvalues of F(n), 
formula (7) yields both that the possible eigenvalues of F(ri) are ± 1, ±i and 
the following result on multiplicity: If F(n) has mx eigenvalues 1, m2 eigen­
values - 1 , m3 eigenvalues i and m4 eigenvalues -i' then 

n + 1 
mx + m2 = —-z—, m3 + m4 

n + 2 
mx + m2 = —-—, m3 + m4 

and 

Tr(F(n)) = (mx - m2) + i(m3 - m4). (9) 

Now let Tr(F(n)) = a + i/3 then (8) and (9) combine to yield for odd n 

mx — m2= a, m3 — m4 = fi9 

n + 1 , n - 1 
mx + m2 = —-—, m3 + m4 = —-— 

and a similar set of equations for even n. Clearly, we can solve for mx, w2, m3, 
m4 in terms of n, a, (i and hence once we have evaluated Tr(F(n)) we have a 
complete solution for the eigenvalue problem. This shows that the trace 
problem for F(ri) is equivalent to solving the eigenvalue problem. 

Theorem 1.1.2 can now be stated in the following equivalent form. 

THEOREM 1.1.2'. Let F(n) denote the finite Fourier transform on TL/n and let 
mpj — 1, 2, 3, 4, denote the multiplicities of the eigenvalues 1, - 1 , i, -i of F{n\ 
respectively. The value of mJyj = 1, 2, 3, 4, as a function of n is given by the 
following table. 

2 , " odd, 

——, n even. (8) 



COMPUTING WITH THE FINITE FOURIER TRANSFORM 857 

n mx = 1 m2 = -1 m3 = i m4 = -i 

Am m + \ m m m — i 
4m + 1 m + 1 m m m \ ' 
4m + 2 m + \ m + \ m m 
4m + 3 m + 1 m 4- 1 m + 1 m 

3. The algebra of the finite Fourier transform. Theorem 1.3.1 stated below 
was first discovered and proven in [4] using nilpotent harmonic analysis and 
its proof is independent of Theorem 1.1.2'. However the equivalence of 
Theorems 1.1.2' and 1.3.1 is easily established and requires no nilpotent 
harmonic analysis. 

Let C[XX9 X2, X3] be the polynomial algebra in three inde terminants over 
the complex numbers C and let C[XX, X29 X3] be the subalgebra generated by 

9Lx"C[Xl9Xi9Xi]/(Xi + Xi)9 

9t2 = C[Xl9 Xl Xl}/ (X% + X*X\ + Xl)9 

3t3 = C | X Xl Xl}/ {Xl + XfXl), 

where ( ) denotes the principal ideal in C[XV X29 X3] of the polynomial in the 
bracket. Let Yx Y2

b 73
3c, a, b, c e Z, a, b9 c > 0, denote the image in 9la, 

a — 1, 2, 3, of the monomial Xx X2
b X3

C. Then it is easily established that 

Y* ?? *3
3c> c = 0, 1, a9 b > 0, 

is a vector space basis of the algebra 2Ia, a = 1, 2, 3. It is not difficult, using 
elementary methods, to prove that 

y6 i y6 y6 i y4 y2 _i_ y6 y6 i y4 v2 
^3 "*" A2> A 2 "*" A l A 2 "̂  A2> A 2 "*" A l A 2 

are each irreducible in C[Xl9 X29 X\\ Hence each of the algebras 3ta, a = 
1, 2, 3, has no divisors of zero. 

THEOREM 1.3.1. Let 3ïa, a = 1,2, 3, be as defined above and let ^%a -* 9ta, 
a = 1, 2, 3, be the linear transformation of 9ta such that 

<5{Yx
a Ylh Ylc) = ( - l)bieYf Ylb Ylc

9 c = 0, 1; a, b > 0. 

Lef F(«) 6e //*e sector subspace of 9la spanned by Yx Y2
b Y\c where a + 2b + 

3c = n and let ^(n) = ^ | V(ri), Then dim V(n) = n and ̂ (n) is equivalent to 
the finite Fourier transform F{ri). Further 

PROOF. Let us begin by verifying the last assertion of the theorem. To do 
this we need only verify it for the basis elements. Now in 3l2 (th

e other cases 
are handled similarly) 

ya ylb __ yd yle ,__. ya + d yl(b + c) 

ya y2b y3 # yd yle =L ya + d y2(6 + c) y3 

ya ylb y3 . yd yle y3 _ __ ya + b + 4 y2(6 + c+l) _ ya + b y2(6 + c + 3) 
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from which it is easy to verify that 

^(17 Ylh 73
3c- Yd

x Yle Y?) = #(y« Y\b Ylc)%{Yd
x Y\e F3

3/) 

a n d s o f ( / g ) = f ( M ( g ) . 
We will now indicate the inductive proof used to prove that dim V(n) = n 

and ?F(rt) and F(n) have the same eigenvalues with the same multiplicities. 
This will prove that ^(n) and F(n) are equivalent. We will adopt the notation 
Vx{ri), x — ± 1> ± /, for the subspace of V(n) of eigenvectors with eigenvalue 
X of #(/!). 

We must now prove that dim Vx(ri) satisfy the table of Theorem 1.1.2'. This 
is merely a property of 2la and §(n) and does not use Theorem 1.1.2' in its 
proof. 

By inspection the above assertion is true for n < 4. Consider n = 4m, 
m > 1. Now 

^(y? Y\b y3
3c) = 1 y? y2

26 y3
3c 

if and only if c = 1, 6 is even and a + 26 = 4m — 3. Thus dim ^(4m) = 
dim Vx(4m — 3) = dim Vx(4(m — 1) + 1) which by induction is equal to m. 
Thus 

dim l^(4m) = m. 

Similarly 

^ (y? Ylh y3
3c) = - 1 yf y2

26 y3
3c 

if and only if c = 1, 6 is odd and a + 26 = 4m — 3. Thus 

dim F_l(4m) = dim V„x{4m - 3) = dim F ^ m - 1) + 1) 

which by induction is equal to m — 1. Hence 

dim F_l(4m) = m — 1. 

Next 

^ ( y f y2
2* y3

3c) = - Ya
x Ylb Y\C 

if and only if c = 0, 6 is odd and a + 26 = 4m. Let 6' = 6 — 1. Then 6' is 
even and a + 26' = 4m — 2 = 4(m — 1) + 2. Thus 

dim V„x(4m) = dim Vx(4(m - 1) + 2) 

which by induction equals m. Thus 

dim V„x(4m) = m. 

Finally 

^ (y f y2
2* y3

3c) = yf y f y3
3c 

if and only if c = 0, 6 is even and a + 26 = 4m. These constraints are 
satisfied only by the following values of a and 6: 

a = 4m, 6 = 0; a = 4(m — 1), 6 = 2 , . . . ; a = 0, 6 = 2m. 

Hence 

dim Fj(4m) = m + 1. 
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Since 

2 dim Vx(4m) = dim V(4m) 

we have dim V(4m) = Am and we have proven our result for n = 4m. The 
other cases are proven in a similar way and the proof is omitted. 

Thus Theorem 1.1.2' and F.4.1 are equivalent. 

4. Direct solutions of trace and eigenvalue problems. Gauss' original proof of 
Theorem 1.1.2 can be found in H. Rademacher [17]. Gauss' proof is algebraic 
and very different from the proofs of his theorem that one finds in the usual 
texts on elementary number theory. We will not summarize Gauss' proof, but 
we do seriously suggest that all readers examine Rademacher's account of this 
remarkable achievement. 

We know two different analytic proofs of Theorem 1.1.2 and these are the 
proofs most often found in elementary texts. Schur's proof was the first proof 
that stressed the role of the finite Fourier transform and its eigenvalues. 
Accordingly, we will begin with a brief discussion of Schur's proof. We will 
follow it with McClellan and Park's proof of Theorem 1.1.2'. We will then 
discuss the two analytic proofs of Theorem 1.1.2. 

We will present Schur's proof of Theorem 1.1.2 only when n is an odd 
prime p as this makes the discussion simpler, but exhibits all the most 
interesting aspects of the method of proof. For those who want the whole 
story, this can be found in [6]. 

As in §1.2, let ml9 m2, m3, m4 denote the multiplicity for F(p) of the 
eigenvalues 1, - 1 , i, — /. In §1.2 we showed that 

p + 1 p - 1 
m\ + m2 = 2 > m3 + m4 = —y— 

and 

Tr(F(p)) = ml - m2 + i(m3 - m4). 

Schur's method of proof is simply to obtain enough relations amongst the m's 
to enable them to be computed. 

We begin with a result that shows that it is the sign that is the difficult part 
of Theorem 1.1.2. 

LEMMA 1.4.1. Let F(p) denote the finite Fourier transform on L2(Z/p),p an 
odd prime. Then 

T K ^ ) ) - f ; ! iS
f
p^\mo^; 

[ ± i if p = 3 mod 4. 
PROOF. A multiplicative character X of Z/px is a homomorphism of the 

multiplicative group Z/px into Cf. We extend X to a function on Z/p by 
defining A(0) = 0. Now let A be a nontrivial multiplicative character of 
Z/p x ; i.e., there exists £ e Z/p x such that A(£) =£ 1. View X as an element of 
L\Z/p). Since the characters 

K(0 = e***'*, a E Z/p, 
determine an orthogonal basis of L2(Z/p) and <Xa, Xa) = p, we can write 
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P lez/p 

An argument similar to that given in Theorem 1.1.1 gives 

Tr(F(^))=^ 2 ( f W * . 
V~p iez/p\P) 

Thus, Tr(F(p)) = V 7 # i where 

and ( //?) is the Legendre symbol that was defined as a multiplicative 
character. 

Again let A be an arbitrary multiplicative character. For c ^ 0 mod p9 

X(cx) = 2 aaK(cx)-
a 6 Z / p 

Since A(cx) = A(c)A(x) we have 

a G Z / p o 6 Z / / ) 

Now Aa(c.x) = AcaO) and so if a = c""1/? we have 

E tfA(c*)= S *A«(*) 
a e Z / j ) a e Z / > 

/?ez//> H /*ez//> 

Hence ac_£ = A(c)a£ for all /?. Hence |aj| = |ac|, where | | denotes the 
absolute value, c ^ 0 mod/?. Thus 

(\\y=p(p-l)\al\
2 = p-l 

and 

| « , | - l / V j p . 

Since Tr(F(p)) = V p̂ a j when A = (/), we have 

|Tr(F(/>))|=l. 

It is an elementary fact that (-l/p) = ( - l ) ^ - 0 / 2 . By Theorem 1.1.1 

Tr(F(/>))-= ( - l / ^ T r ^ ) ) 

where the bar denotes the complex conjugate. Hence 

Tt(F(p))2(-l/p) = 1 
or 

Tr(F(P))={ll ^l™**; 
{ ±i ifp = 3 mod4. 
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Lemma 1.4.1 implies that 

mx — m2 = ±1, #*3 = m4 if p = 1 mod 4, 
m\ = m2> m3 — m4= ±1 if/? = 3 mod 4. 

The fact that det(F(/?)) = ( - \)mHm^-i)m* will enable us to obtain the last 
relation we require. 

Let 

A = det(e2^^)o<a,€<p 
then 

A = /?'/2det(F(/?)) 

and v4 is a Vandermond determinant. Hence 

A = Et (e2,r ir / /> - e2nis/p). 
0<s,r<p 

Let Î] = e1"/*; we have 

0<s,r</> 

- n î?r+5 n 2/sin-^—-v. 
0<s,r<p 0<s,r<p P 

Because S ^ ^ o r + * = 2P((P ~ 0/2)2 we have II r j r + ' = 1. Hence 

A = ,0>~ D/>/22/>0>- D/2 JI s i n ( L Z - f k . 
0 < 5 < r < 0 /* 

Because we know the form of F(p)2 we see that 
A2 = p^(-iy(p-l)/2 

and 

A = ±iP(p-»/2pP/2. 

Since sin[(r — s)7r/p] >0for0<s<r<p — lwe must have 

det ^ = jP(P-i)/2pP/2 = ^p/2 det(F(/?)). 

Hence I ^P-D/2 = ( - l ) * ^ - ^ T h u s 

— - = 2m2 + m3 — m4 mod 4. 

From which we have 

mx — m2 = mod 4 if/? = 1 mod 4, 

m3 — m4 = mod 4 if/? = 3 mod 4. 

This combines with our previous results to 

[ i if/? = 3 mod 4. 

1.4.2. MCCLELLAN AND PARK'S PROOF OF THEOREM 1.1.2'. The proof of 
Theorem 1.1.2' by McClellan and Park is interesting for three reasons. First, it 
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is the first direct proof of Theorem I.1.2'; second, it is extremely explicity, in 
that it exhibits eigenvectors; third, it rests on the use of Chebyshev sets. Using 
Chebyshev sets is a very novel idea and we do not believe it would have 
occurred to many "pure" mathematicians. It is also interesting to note that 
McClellan and Park were ignorant of Schur's work (see [15]). We will now try 
to present the flavor of their proof. For complete details see [16]. 

We will list some basic facts about Chebyshev sets. 
DEFINITION. A set of n smooth functions on an interval is a Chebyshev set 

for the interval if any nonzero element in the linear span of the n functions 
has at most n — 1 distinct zeros. 

THEOREM C.l. 

{1, cos t,. . . , cos nt) is a Chebyshev set on [0,7r]. 

{sin f,..., sin nt) is a Chebyshev set on (0, TT). 

THEOREM C.2. If {q>x(t\ . • . , <pn(t)} is a Chebyshev set on an interval and 
*v • • • 9 *n+\ are distinct points of the interval, then the matrix 

(>i(>i) • • • 4>„('i)l 

|>('J • • • *„(OJ 
is nonsingular. If 8, i = 1 , . . . , w + 1, are all nonzero and alternate in sign, 
then 

\ <J>i('i) 

is a nonsingular matrix. 

We will now list certain elementary facts about the finite Fourier trans­
form. Proofs can be found in [16]. 

DEFINITION. A function ƒ on Z/« is called even if 

ƒ(<*) = ƒ ( - « ) , a G Z / i i . 
A function ƒ on TL/n is called odd if 

ƒ («)= -ƒ(-<*), aEZ/n. 
1. For ƒ G L2(Z/n), F\n)(f)(a) = /(-a). 
2. Let [x] denote the greatest integer less than x. Then L2(Z/ri) has a 

v = [n/2] + 1 dimensional subspace of even functions and an n — v dimen­
sional subspace of odd functions. 

3. If ƒ is an eigenvector of F(ri), then ƒ is either an even or odd function. 
4. Even eigenvectors have eigenvalues ± 1. Odd eigenvectors have eigenval­

ues ±i. 
5. If ƒ is an even function, then F(ri)(f) + ƒ (F(ri)(f) — ƒ) is an eigenvector 

of F(n) with eigenvalue 1 (-1) . If ƒ is an odd function, then iF(ri)(f) -

*#i('«+i)8»+ij 
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f(iF(n)(f) + ƒ) is an eigenvector of F{n) with eigenvalue i (— *). 
6. If g is an even (odd) eigenvector of F(n)9 then there exists an even (odd) 

function ƒ such that g = F(n)(f) ± ƒ (g = /F(n) T ƒ). We are now in a 
position to outline the McClellan-Park proof. 

Consider the cases TV = 4m, Am + 1, 4m + 2, 4m + 3 separately. Let m„ 
i = 1, 2, 3, 4, be as in the statement of Theorem 1.1.2'. The steps of the proof 
are as follows: Exhibit fk even functions 1 < k < mx such that F(ri)fk + Ẑ , 
k = 1, . . . , m1? are linearly independent. Since F(n)fk + /^ has eigenvalue 1, 
this will prove that the multiplicity of the eigenvalue 1 is greater than or equal 
to mv Exhibit/^ even functions 1 < k < m2 such that F(n)fk + fk are linearly 
independent. Since F(n)fk — fk has eigenvalue - 1 , this will prove that the 
multiplicity of the eigenvalue -1 is greater than or equal to m2. Similar 
statements hold for m3 and m4. Since mx + m2 + m3 + m4 = TV, this will 
prove Theorem 1.1.2'. 

We will indicate the method of proof by working out for the case TV = 4m 
that the multiplicity of the eigenvalue 1 is greater than or equal to ml = m + 
1. Let fa, a = 0, . . . , 4m — 1, be the bases of L2(Z/N) where fa is the 
function that takes the value 1 at a G Z/iV and zero at all other points. Let 

go=fo> 8m=flm> Zi^fi+fN-i* I = 1, . . . , W - 1. 

We need to study 
m 

^éai(F(N)gi + gi) 
i = 0 

or 

m 

1 = 0 

Since e~
27rik/N = e

2^N~k)/N the coefficients of fm, ...,f2m y i e l d m + l equa­
tions in m + 1 unknowns that can be written as 

1 cos tx • • • cos(m — 1)*! 

1 cos tm • • • cos(m - \)tm 

[ l cosfm+1 • • • cos(m - l)fm+i 

where tt = [(m + i - l)/m][7r/2], i = 1 , . . . , m 4- 1. We now apply Theo­
rem C.2 to conclude that the images of the vectors g0, . . . , gm are indepen­
dent and so the multiplicity of the eigenvalue 1 is greater than or equal to 
m + 1 for N = 4m. 

1.4.3. DIRICHLET'S PROOF OF THEOREM 1.1.2. We will now outline Dirichlet's 
proof of Theorem 1.1.2. Complete details can be found, for instance, in Lang 
[14]. 

This proof of Theorem 1.1.2 rests on the following classical result about 
Fourier series. 

(-ir 

(-1)2"-1 

(I+VN) 

2a, 

2a„ 
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THEOREM FA. I/O is a C' function on [0, 1] then 

*(*) = 2 cme2"imx, 0 < x < 1, 

awrf 

where 

^ z, c* 

cOT = r,ö(jc)e-2,r''"ut dx. Jo 
Now let f(x) = e2"ixl/n, 0 < x < 1, and let fk(x) « f(x + k), k = 0 , . . . , 
n - 1. 7%e« 

.4(0) + A P ) _ e2"*2 + g
2™<*+'>/« 

2 2 

"y A(0) + A W _ 1 + e2*'" e2m/" + e2""2'/" _ 
A-O 2 2 2 

+ 2 • 
By reassociating the terms in the sum, we obtain 

"S A ( 0 ) ! / t ( 1 ) = I + "2 e2**V" + * = VÏÏ Tr(F(n)). 
A: = 0 2 * £ = 1 2 

Let 0 = f0 4- • • * +ƒ,_!. Then 0 is C' on [0, 1] and so, by Theorem F.l, we 
have 

V^Tr(F(f l ) )= 5 ' S Cfk{x)e^imxdx. 

After some elementary operations that include completing the square, we 
obtain 

Vn Tr(F(n)) = 2 e^inm^2 fn
eW*-n>»/»2/» dx. 

m ~ — oo J o 

If w is even e'
ninm2/1 = 1 and if m is odd e-™"2/* = r \ We split the sum 

over even m and odd m. A computation that involves letting m = 2r or 
m = 2r + 1 shows that the sums of the integrals over m even or m odd are 
equal to 

4 = C e2™^1 dy. 
«' — oo 

One verifies that the above improper integral converges and that In = Vn tv 

From all this we otain 

Trcn«))-(i + r-)/0 + r') 
which is another form of Theorem LI.2. 
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1.4.4. LANDSBERG'S PROOF OF THEOREM 1.1.2. We will now outline Lands-
berg's proof of Theorem 1.1.2 as presented in Bellman [5]. This proof is 
particularly interesting in light of Theorem 1.3.3 and the fact that the algebra 

c[xl9 xl xl]/ {xl + xfrl + xf) 
is the algebra of theta functions of characteristic (0, 0) and period /. Lands-
berg's proof rests on the famous functional equation satisfied by the theta 
constants. To be more precise, the theta constants are the first order theta 
functions of period / = r + is, r > 0, evaluated at the origin. This is the 
function 

n— - c o 

and/(0 satisfies the functional equation 

*>-(ÎP£). 
Clearly ƒ(/) diverges along the line Re(7) = 0. To find the relation between 
Gaussian sums and the theta constant f{i), we examine/(0 in a neighborhood 
of its line of divergence. 

Let S(py q) = 2?^o e"***'*, (p> q) = 1. Set t = e + irip/q where e > 0. 
Then 

jL + ™E\ . ! + 2 f *-•**'«{ | e-^^A. 

The function of e in the right-hand bracket behaves like the integral 

Now as e -» 0 the above integral is asymptotic to 

Hence as € ~~» 0, we have/(E 4- mp/q) is asymptotic to VTT £(ƒ>, q)/qVl. 
One similarly finds that f {IT2 ft) is asymptotic to Vn S( — q,p)/qVe as 

e ~» 0. Using the fundamental functional equation and the asymptotics dis­
cussed above, we find 

Yq r = 0 V 7 r- 0 

Choosing # odd and/? = 2 yields Theorem 1.1.2 for w odd. 

5. The finite Heisenberg groups and the finite Fourier transform. In this 
section we will begin to discuss the role that nilpotent harmonic analysis plays 
in the theory of the finite Fourier transform. The reason for the importance of 
nilpotent harmonic analysis is that certain finite nilpotent groups have the 
finite Fourier transform built into their structure. The first indications of this 
are given in this section and will be looked at again in Chapter II. 
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Let 91 be a commutative ring with identity and such that 2x = 0, x G 91, 
implies x = 0. We define the 9l-Heisenberg group as the group of matrices 

f 1 a c] 
0 1 b\ 

10 0 1J 
with a, b, c G 91. It is easy to see that the 9l-Heisenberg may be defined as 
the set 

N(9L) = 91 X 91 X 91 = {(a, b, c)\a9 b, c G 91} 

with multiplication given by 

(*1> b\> C\)(a2' b2> Cl) = (al + <*2> *1 + *2> C l + C2 + #2*2)-

The center of AT(9l), z(N(<SL)) = {(0, 0, c)\c G 91} and JV(9l)/z(JV(9l)) » 91 
© 91. Clearly z(7V(9l)) is isomorphic to the 9L as an additive group. 

We will now review some of the basic facts about unitary representations of 
the groups N(Z/n). 

Let Cm denote the m-dimensional complex vector space (c,,. . . , cm) = c. 
Define the usual Hermitian structure on Cm by 

m 

<cd>-2c,3 
1 = 1 

where bar denotes complex conjugate. Let U(m) denote the group of linear 
transformation of Cm such that for U G U(m) and c, d G Cm 

<c,d> = <£/(c), t/(d)>. 

U(m) is then called the group of unitary transformations of Cm. A unitary 
representation p of a group G is a homomorphism of G into f/(m). A unitary 
representation p is called irreducible if the only subspace of Cm invariant 
under p(g), g G G, is Cm or 0. Also, p is called faithful if p is a monomor-
phism. 

Let pt and p2 be unitary representations of G on Cm. We will say that px is 
unitarily equivalent to p2 if there exists a unitary matrix U such that 

U~lpx(g)U=p2(g), a l lgGG. 

1/ is then called an intertwining operator for px and p2. 
Let / be the identity matrix in U(m) and let x be a character on an abelian 

group A. By x^ we mean the unitary representation of A defined by (xl)(à) 
= x(à)I,a ^A-

Let G be a group and let z(G) denote the center of G. 

THEOREM R.l. Let px and p2 be unitary representations of G and assume, in 
addition, that px is irreducible. Let U be an intertwining operator for px and p2. 
Then p2 is irreducible and U is unique up to multiplication by an element of C*. 

THEOREM R.2. Let p be an irreducible representation of G and let z(G) denote 
the center of G. Then z restricted to z(G), p/z(G) = x * I> where x *s a 

character of z(G). 

We will now state two results that are specific for the groups N(Z/n). 
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These results give a picture of the faithful irreducible unitary representations 
of NÇL/ri). 

THEOREM R.3. Let px and p2 be two irreducible unitary representations of 
NÇL/ri) then px and p2 are unitary equivalent if and only if px\z(NÇL/ri)) = 
p2|z(AT(Z/«)). 

THEOREM R.4. Let A be a maximal abelian subgroup of NÇL/ri) and let x be 
a character on A such that x|<z(N(Z/n)) is a faithful character. Then inducing x 
from A to NÇL/ri) gives an irreducible unitary representation of NÇL/ri). 

Thus, every faithful character x of z(N(Z/ri)) extends to a faithful irreduc­
ible unitary representation of NÇL/ri) and every faithful irreducible unitary 
representation of NÇL/ri) restricts to a faithful character on z(N(Z/n)). 

In order to introduce two irreducible unitary representations px and p2 of 
NÇL/ri) that have the finite Fourier transform as intertwining operator; i.e., 

F(n)p2F(n)~~l = px 

we need to define the following matrices. 

J2iria-0/n n 

DM) = 
0 02m(n— \)a/n 

0 <a <n, 

0 1 0 0 

• • . ' . ' . 0 | 

0 1 

1 0 OJ 

Let A = (a, 0, c) and let x(0, 0, c) = e
2vic/". Inducing x from A to NÇL/ri) 

gives the following irreducible unitary representation of NÇL/ri) = 
{(a, b, c)\a, b,c G Z/n) 

Pl(z(N(Z/n))) = x • I, 

Pl(a, 0, 0) = D„(a), 

p,(0, b, 0) = (Sn)
b. 

Let B = (0, b, c) and let x(0, 0, c) = e2mc/n. Inducing X from B to NÇL/A) 
gives the following irreducible unitary representations of NÇL/ri) 

p2(z(N(Z/n))) = x • / , 

p2(a, 0, 0) = (Sn)
a, 

p2(0, b, 0) = Dn(b). 

It is an elementary exercise to verify that p, and p2 are irreducible unitary 
representations of NÇL/ri) and if 

1 
F(n) 

\Tn 
(e 2iriab/n ), 0 < a,b < n, 
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that 
F(n)p2F(n)~l = p, 

or F(n) intertwines px and p2. By the uniqueness of intertwining operators, 
F(n) is essentially determined by the representations px and p2. 

At this point the appearance of F(n) as an intertwining operator for unitary 
representations of N(Z/ri) is totally unexplained. In §11.3 we will see another 
way of looking at p, and p2 that better explains the finite Fourier transform's 
role as an intertwining operator for px and p2. 

6. A proof of Theorem 133, nil-theta functions and theta functions. In this 
section we will outline a proof of Theorem 1.3.3 that uses harmonic analysis 
on the real Heisenberg group and is completely independent of Theorems 
1.1.2 or 1.1.2'. This proof shows the deep relation between the finite Fourier 
transforms, F(n), n > 0, and the algebra of theta functions with periods 1 and 
V^T . A complete exposition of this material can be found in Chapter II of 
[1]. 

Let R denote the reals and Z c R, denote the integers. Let N = JV(R) be 
the R-Heisenberg group and let T = N(Z) be the Z-Heisenberg group. Then 
T c N and T \ N is a compact manifold. If (x,y, z) G N, x,y, z G R, then 
the 3-form dx /\dy f\dz induces a probability measure on T \ N. We form 
the Hubert space L 2(r \N) and define a unitary representation U of N on 
L\T \ N) as follows: For g G N, f G L2 G (r \ N) define 

(U(g)f)(Th)=f(Thg), hGN. 

It will be convenient to consider functions T \ N as functions on Af such that 
f(yh) = f(h), y G T, h G N. In general, if ƒ is a function on JV and yGiVwe 
set 

Zr{f){h)=f{rXh) 

and call £ the left action. For each m G Z, let 

H{m) = {ƒ G L\T \N)\f(x,y, z + /) = e2™%x,y, z)}. 

One verifies that U(g)H(m) = H(m), g G N, and that 

L2(T\N)= 2 @H{m) 
mez 

where the sum is the orthogonal sum. 
We now want to better understand the spaces H(m). To do this we 

introduce the automorphism 
D-.N-+N 

m 

given by Nm(x9y, z) = (mx, >>, mz). By letting ƒ -» ƒ ° Dm we may use Dm to 
induce a linear mapping of L2(T \ N). By a slight abuse of notation we will 
denote this linear mapping also by Dm. Then 

Dm{H{\)) c H{m). 

One verifies that 
m - l 

H(m) = 2 e W M ( / ) . ( f l ( l ) ) ) . 
y-o 
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We will denote t{0J/m^{Dm{H{\))) by H{mJ\ 0 < j < m - 1. Then 
U(g)H(m,j) = H(mJ), g G N, ally. A deeper fact is that each of the spaces 
H(mJ) is irreducible under the action of U and that H(m, h) and H(n, k) are 
unitary equivalent with respect to U if and only if m = n. 

The notions of irreducibility and unitary equivalence are the general 
Hubert space analogues of those introduced in the previous section. We will 
say more about the structure of H{\) in §11, where we consider the Weil-
Brezin map. 

We next observe that 

J(x,y, z) = {-y, x,z- xy) 

is an automorphism of N such that J(T) = T and such that J(H(m)) = H(m). 
Hence J induces a unitary operator on H(m) which we call Jm. The action of 
Jx on H(\) corresponds to the real Fourier transform in a sense that will be 
discussed in Chapter II. 

In [1] we showed that J enables us to define a first order differential 
operator D(J) on T \ N such that 

/>( / )ƒ= />(/)( /(ƒ)) , ƒ G C«>(T\N). 
Let 

0(m) = {ƒ G C°° n H{m)\D{J)f = 0}, m > 0. 

We will now outline the main properties of the subspaces 0(m) and 0 = 
2 m > 0 © 0(w). (Notice, since ƒ G 0(m) and g G ©(AI) are both C°° functions 
on T \ N their product f g is a C °° function on T \ JV.) First, 0 is an algebra 
and 0(m)0(rt) c 0(m + /*). Second, /(0(m)) = 0(m). Third, dim 0(m) = 
m. Finally, 0 has no zero divisors. 

The representation theory can be used to prove that 
m~\ 

0(m) = 2 ®®(mJ) 

where @(mj) = 0(m) n #(m,;) = t{0J/mfi){Dm{&{\))) and 0(1) has basis 
<p(x,y,z) = e2™ 2 e—^ + 'te™*. 

/ eZ 

The relationship between the algebra 0 and J and the space â = 2„ > 0 © 
L2(Z/n) and the finite Fourier transform extend to S by F = 2„ > 0 © ^(«) 
is given by the following theorem. 

THEOREM 1.6.1. There exists a unitary operator V: 0-> â satisfying 
(1) F(0(«)) - L 2 ( Z / H ) , 

( 2 ) F = F/K-1. 

It follows that 2- can be given the algebra structure of 0 and since 
J(fifi) = JUxVUùJvh G @> we have 

HSigi) = HsùHgiX Si> & G S. 
It is also proved in [4] that 0 is isomorphic to 

c[xv xl xl]/ (xt + xfxi + xf) 
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and so Theorem 1.3.1 follows from Theorem 1.6.1. 
The proof of Theorem 1.6.1 proceeds in the following way. We need to find 

a basis of &(m) such that the matrix of Jm with respect to this basis is 

Jm = —l— e2™^m, 0 < a,j3 < m. 
Vm 

We do this as follows. Let 

<pm(x,y,z) = e2™ 2 e-™o> + t)2
e2„uxt 

/ez 

Then Dm(<pm) E @(m, 0) and we can form the basis 

*W = L(0J/rn,0)(£>m(<Pm))> 0 < j < m, 

of 0(m). In [1] we show that <pmJ, 0 < j < m, is the required basis. 
We can also verify this result using the ideas of §1.5. First, we define a 

representation Ul of the Z/m-Heisenberg group N(Z/m) on @(w) as follows. 
For ƒ E 0(m) and a, b, c E Z let 

Ux(m)(a9 0, 0)/ = L{a/m^oyf9 

^ ( m X a ^ O ) / ^ L(0,Vm,o>/, 

f / ^ m X O ^ ^ ) / - e2"i(c/m)f. 

It is not hard to see that with respect to the basis <pm7, defined above, that 
Ux(m) is a unitary representation of N(Z/m) on 0(m) and that the matrix 
Ux(m) = pj, pj as defined in the previous section. Also one verifies that 

J~xUx{m)J = p2. 

Since J(m) intertwines pj and p2 it follows that /(m) = cF(m) where |c| = 1. 
One then verifies that c = 1 and we have our assertion. 

CHAPTER II. THE COOLEY-TUKEY ALGORITHM AND THE WEIL-BREZIN MAP 

1. The Cooley-Tukey algorithm. Currently the most popular algorithm for 
computing the finite Fourier transform is called the Cooley-Tukey algorithm. 
The history of this algorithm has been set forth in an interesting article by 
Cooley et al. [9] and the original paper is Cooley and Tukey [10]. It is our 
intention in this section to analyze in some detail the basic construction upon 
which the Cooley-Tukey algorithm rests. This will enable us to relate the 
Cooley-Tukey algorithm to the Weil-Brezin map (see [19], [7]) and the proof 
of the Plancherel theorem for the reals as given in Chapter 1 of [3]. 

Because it has been so important in the theory of numerical computations 
and because it is so brief, we will begin by reproducing the few paragraphs in 
Cooley and Tukey [10] that-aside from induction-set forth the idea of the 
Cooley-Tukey algorithm. 
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"Consider the problem of calculating the complex Fourier series 

XU) = 2 A(k)WJ\ j = 0, . . . , N - 1, (1) 

where the given Fourier coefficients A(k) are complex and Wis the principal 
iVth root of unity 

W = el7Ti/N. (2) 

A straightforward calculation using (1) would require N2 operations where 
'operation' means, as it will throughout this note, a complex multiplication 
followed by a complex addition. 

The algorithm described here iterates on the array of given complex 
Fourier amplitudes and yields the result in less than 2N log2 N operations 
without requiring more data storage than is required for the given array A. To 
derive the algorithm, suppose N is composite, i.e., N = rxrv Then let the 
indices in (1) be expressed 

J = J\r\ + Jo> Jo = 0, 1, . . . , rx-l, jx = 0, 1, . . . , r2-l , 

k = kxr2 + k0, k0 = 0, 1, . . . , r2~l, kx = 0, 1, . . . , /y-1. (3) 

Then, one can write 

XUvJo) = 2 S A{kx, k0) W*'Wk« (4) 
k0 kx 

since 

The inner sum, over kx, depends only ony0 and k0 and can be defined as a 
new array, 

AlUo^o) = ^A(kx,k0)W^^ (6) 

The result can then be written 

XUvJo) » 2^iOo> kjW«>*+X>*: (7) 
k0 

There are N elements in the array Al9 each requiring rx operations, giving a 
total of Nrx operations to obtain Av Similarly, it takes Nr2 operations to 
calculate X from Av Therefore, this two-step algorithm, given by (6) and (7), 
requires a total of 

T=N(rl + r2) 

operations." 
Let us now formalize the steps of the Cooley-Tukey algorithm. We let ^( ) 

denote the complex functions whose domain is the set in the parens and 
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^(X9 Y) denote the mappings from X to Y. Then the Cooley-Tukey algo­
rithm rests on the commutativity of the following diagram: 

^(Z/rxr2) 

F(rxr2) 

D' 

• S W i x ZA2) «^(Z/r1(^(Z/r2)) 

1 x F(r2) 

Ç&fa xZfrJ^VIr^iZIrJ) 

M 

$(Z/r2 x Z/rx) «#(Z?r 2 , f (Z/r,)) 

1 x F(rt) 

'$(Z/r2 x Z/r,) « f (Z/rj.^Z/r!)) ^ ( Z / r j r j ) *• 

where the "hat" denotes the dual group or the group of characters and where 
we must still define the various mappings of the above diagram. 

DEFINITIONS. THE MAPPING » . Let f(x9 y) E ^(X X Y). Then for each 
fixed x0 E X, f(x0,y) E ^(Y) and so f(x,y) determines an element of 
^(X, ^(Y)). It is obvious that this correspondence is 1-1. 

THE MAPPING C. Between sets Z/rxr2 and Z/r , X Z/r2 define the follow­
ing homeomorphism C*. (Notice: C* is not a group homomorphism.) For 
0 < k < rxr2 let k = k2 + kxr29 where 0 < k2 < r2, 0 < kx < rx. Define 

C*(/c) = (kX9 /c2) E Z/rx X Z/r2. 

For ƒ E $(Z/rxr2) define C(/) = ƒ o (C*£ E ^(Z/r^X Z/r^. 
THE MAPPING Z>. Between the sets Z/*rxr2 and Z/r2 X zj}x define the 

homeomorphism Z>* as follows: For 0 < k < rxr2 let k = k2rx + kv where 
0 < k2 < r2, 0 < kx < rv Define 

D*(k) = (k2, kx) E Z/r2 X z7>i. 

For ƒ E €(Z/rxr2) define /)(ƒ) = ƒ o (Z)*)"1 E ^(z7r2 X Zjrx). 
THE MAPPINGS 1 X F(r2) AND 1 X F(r2). An element of ^(Z/rv <$(Z/r2)) 

determines an rptuple of elements of ^(Z/r2). The mapping 1 X F{r^) 
denotes applying the Fourier transform F(r2) to each of these rrtuple of 
elements of ^(Z/r2y Define 1 X F(rx) similarly. 

THE MAPPING M. For 0 < a < rx and 0 < b < r2 define 

M(F)(b9 a) = e2™b/r^F(a9 b)9 F E 9(Z/rx X Z/r2). 

For those peoplejvho believe that the Fourier transform is related to the 
groups Z/n and Z/n as presented in modern texts in Harmonic Analysis, the 
mappings C, D9 and M involved in the Cooley-Tukey algorithm seem at best 
formal and at worst arbitrary. We will show in the next section that if we use 
the representation theory of the finite Heisenberg group, then the mappings 
C, D and M are natural. 
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2. The finite Heisenberg groups and the Cooley-Tukey algorithm. Before 
going into the details of this section, we will, as promised, present some of the 
material in §1.5 in a slightly different language. This language has the 
advantage of showing the deep inter-relation of the finite^Fourier transform 
F(n), the dual pairing of Z/n and its dual group Z/n, and the finite 
Heisenberg group H(n). 

Let Cx(n) denote the multiplicative group of complex numbers e
2™k/n, 

k = 0 , . . . , n - 1. Let G(n) as a set be Z/n X Z% X Cx(n) and for 
(ai9 bt, Cj) G G(ri), i = 1,2, define multiplication by 

(av bx, cx)(a2, b2, c2) = (ax + a2, bx + b2, cx • c2 • (ax, b2)) 

where < , > denotes the dual pairing of Z/n and Z/n to Cx(w). Then G(n) is 
a group with this law of composition. We claim that G{n) is isomorphic to 
H(n). Let 

<x:Z/n-»Cx(n) 

be defined by a(k) = e
2™k/n

9 \\ follows that a is an isomorphism between the 
additive group Z/n and the multiplicative group Cx(ri). 

We now define /?: Z/n -» Z/n as follows: For k EL Z/n define 

</, £(&)> = e2™'*/", all / G Z/n. 

Now define y: //(n) -> G(n) by 

(a1? a2, a3) -» (aj, ^(âf2), a(a3)). 

It is an elementary computation to verify that y is an isomorphism. This 
shows that the finite Heisenberg group is built from the group structures on 
Z/n and Z/n combined with the dual pairing of Z/n and Z/n. 

In this general setting, the finite Fourier transform is the isometry F(n): 
L\Z/ri) -» L\Z/ri) defined by 

(F(n)(f))(â) = J L 2 f(a)<a,âX âEZ/n. 
\n a(EZ/n 

Define the action of Z/n on L2(Z/ri) as follows: For a,b E Z/n define 

(T(a)f)(b)=f(b + a). 

Similarly define T(a), for â, 6 G tfh, of ƒ G L\Z?n) by 

( r ( â ) / ) ( è ) = / ( 6 + â ) . 

Let G>r(«) be the group of linear transformations of L2(Z/ri) generated by 
T(a), a G Z/n, and F'l(n)T(â)F(n)9 â G Z/n. We wish to now obtain a 
matrix representation of the group GF(n) in order to understand what the 
group GF(n) is really like. To do this, let fa, a = 0, . . . , n - 1, be the basis of 
L2(Z/n), where fa takes the value 1 at a G Z/n and 0 at all other points. 
Clearly T(l)(fa) = fa+x, and so, relative to the basis f 0 , . . . ,ƒ„_!, T(l) has the 
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matrix representation 

[ 0 1 0 • • • 0 ] 

0 1 * . 0 ' 

I 0 1 ! 
[ 1 0 • • • OJ 

Since (T(\)F(n)fa)(â) = <a, î><a, â}/Vn , we have 

{F(n)-ln\)F(n))fa = (a,\>. 
Thus, using the isomorphism y defined above, we have F(nylT(l)F(n)(fa) has 
the matrix representation 

f e2mO/n 0 I 

I 0 e2iri(n~l)/n\ 

This proves that GF(ri) has the matrix representation p2 of NÇL/n). This 
argument shows the deep relation between the group NÇL/n) and the finite 
Fourier transform F{ri). It also proves that 

F(n)p2F(nyl = px 

as it is easy to see that px(N(Z/n)) is the same as the matrix group generated 
by T(â), âeZ/n, and F{ri)T{a)F(riy\ a G Z/n. 

We now proceed to the task of characterizing the mappings C, D and M 
discussed in the previous section. 

Consider the Z/n-Heisenberg group, NÇL/n), n = rxr2, rx > 1 and r2 > 1 
where 

N(Z/n) = {(a, b, c)\a, b, c G Z/n). 

Let T(r2, rt) and r(r„ r2) contained in NÇL/n) be defined by 

r(r2, r t) - {(aV2, 6'^, 0)|n' G Z/ r„ V G Z/r 2}, 

r ( r„ r2) = {{b'rv a'r» 0)|a' G Z / r p 6' G Z/r 2 }. 

An elementary computation shows that T(r2, rx) and r(r1, r2) are subgroups 
of NÇL/n). Let T be a subgroup of NÇL/n). Consider the homogeneous space 
T \ NÇL/ri) and give this finite set the measure where each point has measure 
one. Form L2(T \ NÇL/ri)). Since NÇL/n) acts on T \ NÇL/ri) by 

R(g)(Tn) - Tng, n, g G N(Z/n)9 

R(g), g G N(Z/ri), defines a unitary representation R of NÇL/ri) on L2(T \ 
N(Z/n)) by 

(H(g)(F))(rn) = FÇTng), F G L2(T \ N(Z/n)). 

It will often be convenient to view functions on T \ NÇL/ri) as functions F 
on NÇL/n) such that 

*Xw)-*•(*)> yGr, gGiv(z/w ) . 
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Let x be the character on the center z(N(Z/n)) given by 

X(0, 0, c) = e2™/\ 

Then — x is the character given by 

- x (0 , 0, c) = e-2™'". 

Let ^(x) denote the functions F(a, b, c) on N(Z/ri) such that 

F(a, b,c + d) = el7rid/nF(a, b, c). 

Define 9r( — x) analogously. Let 

^ (x , r(r2 , r,)) = ff(x) n L2(r(r2 , r.) \ JV(Z/n)) 

and 

^ ( - X , r ( r „ r2)) = f ( - x ) n L 2 ( r ( r„ r2) \ JV(Z/«)). 

It is easily verified that 

R(9(x, r ( r 2 , r,))) = ff(x, IXf* rO), 

* ( # ( - * r ( r l f r2))) - * ( - * T(rl5 r2)). 

Let i**(x) denote the restriction of R to ^(x, T(r2, A^)) and /t*( —x) denote 
the restriction of i£ to ^ ( — x» FCv ri))-

THEOREM II.2.1. R*(x) is an irreducible unitary representation of N(Z/n) 
that is unitarily equivalent to px or p2. 

PROOF. i**(x)(0, 0, d) is e2mid by our definitions of &(x). Hence by Theo­
rems R.l and R.3 the proof of our assertion reduces to computing the 
dimension of ^(x , T(r2, rx)). But the dimension of ^(x, T(r2, rx)) is easily seen 
to be the same as the dimension of S r(Z/r1 X Z/ r 2 ) which is rxr2 or n. Hence 
i?*(x) is irreducible. 

(A similar argument shows that /?*(—x) is irreducible.) 
Since R*(x)> is unitarily equivalent to p2, there exists a unitary operator 

W:L\Z/n)-+9(X>T{r7,rx)) 

such that PF~Ii?*(x)W^ = p2- Recall that fFis unique up to multiplication by 
a complex number of absolute value 1. 

We will now build W from 1 X F(r2) ° C, where C and 1 X F(r2) are as 
defined earlier in this chapter. For ƒ G L2(Z/n) define 

»K(/) = F(x9y, t) G ^(Z/w X Z / n X Z/ / i ) 

by 

j p ( / ) = ^ v / * 2 /0>2 + x)e2"iJr*y/n. 
0<j<ri 

W is the analogue of the Weil-Brezin map as defined in [19] and [7]. We will 
now verify that W(f) G 3F(x, T(r2, rx)). It is clear that W(f) G ^(x). Hence it 
remains to verify that 

W{f){(ar2, brx, 0)(x,y, t)) = W(f)(x,y, t). 

Now (ar2, brv 0)(x,y, i) = (ar2 + x, brx + y, t + ar2y). Thus the left side 
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above equals 

e2m(t + ar2y)/nS£ / ( j > 2 + ar2 + X) e2™jr& + ̂  " 

= e2"*/"2 f((j 4- a)r2 + x)£><^ö>^/* - ^( /X**y 9 t% 

and we have shown that W{f) G ÏÏ(x> T(r29 rj) or 

To relate W to I X F(r2) o C, we note that W(f) restricted to the set 
S = {(x,y9 0)|0 < x < r9 0 < y < rx) equals (1 X F(r2) <> C)f. Further, since 
W(f) G £F(x, r(r2, z )̂), knowing W(/) on the set S uniquely determines 
W(J). 

It is straightforward from the discussion above and the properties of the 
mappings 1 X F(r2) and C to conclude that Wis a unitary operator. 

It remains to verify that 

W~lR*(X)W = p2. 

But this is a formal calculation that the interested reader may easily verify. 
This shows that 1 X F(r2) ° C is essentially an intertwining operator between 
two irreducible unitary representations of NÇL/ri). 

We come next to the mapping M of the Cooley-Tukey algorithm. To 
explain M one has to introduce a bit more of the structure of N(Z/ri). To be 
precise, we must introduce a particular automorphism K of the group 
N(Z/n). For (x9 y9 t) G NÇL/n) let 

K(x9y91) = (x9 y, -t + xy). 

It is a straightforward computation to verify that K is an automorphism of 
NÇL/n) and that K2 is the identity automorphism. 

Consider the following general situation. Let B be a group, G a subgroup of 
B and 4̂ an automorphism of B with ^4(Gj) = G2. Let ƒ G £F(i?) be such that 

f(gb)=f(b% bEB9gGGv 

If g G Gl9 A~lg G G2, and so if f(gb) = ƒ(£), g G Gl9 we have 

f{A-l(gb))-f{A-\g)A-l(b)) =f{A~\b)). 
Hence if f* = ƒ © ^4_1 we have 

ƒ"( &*) = /*(*)> & e G2 and i G 5. 
Now apply this to the special case of the functions W{f) and the automor­

phism K above. Because K = K~l we have W{f) ° K is invariant under 
r(ri> ^2) a n < * s o *s m ^(""X* ri» ^2)- Explicitly 

W(f)(K(x9y9 t)) - W ) 0 % x, - I + v ) 

= 2 / ( ^2 + y)e27Tiar*/ne~2nit/ne2"ixy/n. 
0<a<r 

But the mapping W{f) ° K on (x, 7, 0) is the same as applying M to 
W(f)(x9 y9 0). This supplies us with the group theoretic interpretation of M 
that we sought. 
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Now R*(~~x) a n irreducible unitary representation of NÇL/ri) on 
&(-X>r\>r2)* ° n e c a n s h o w t h a t D X ° * x ^(riXx>y9 °) determines an 
intertwining operator between R*(~~x) anc* a n irreducible unitary representa­
tion of N(Z/ri) on L2ÇL/rxr^. Since the discussion is similar to that given 
above for 1 X F(r^) © C, we will not go any further into the specific details. 

3. The Plancherai theorem for the reals and the Cooley-Tukey algorithm. We 
will now show the general nature of the Cooley-Tukey algorithm by showing 
how it can be used to prove the Plancherel theorem for the reals. Just as for 
the Cooley-Tukey algorithm, the forthcoming proof of the Plancherel theorem 
has an interpretation in terms of nilpotent harmonic analysis. We will not 
present this material because a full discussion would be quite long. For the 
interested reader the material in Chapter I of [3] or Chapter I, §5, of [1] can 
be modified along the lines of the material in the previous section to obtain 
all the group theoretic ramifications of our method of proof. 

Let R denote the reals, Z the integers and T the circle group or R/Z, and 
let F( ) denote the Fourier transform of the group in the parens. The diagram 
of the Cooley-Tukey algorithm becomes in this setting the diagram below. 

*(R)- scr, z) 

F(R) 

ff(RV 
D ~ i 

9 (J 

ff(Z 

> 

1 xF(Z) 

x Z) 

M 

x T) 

1 xF(T) 

•ff(Z,T) 

Recall that as groups R is isomorphic to R, Z is isomorphic to T and T is 
isomorphic to Z. 

Define C : R -* [0, 1) X Z, where we identify T with [0, 1), as follows: If 
JC G R, x = y + n, 0 < y < 1, n G Z, let 

C*{x) = (y, n). 

For ƒ G #(R) define C(J) = ƒ ° C*'\ For F(y, ri) e 9ÇT, Z) define 

1 X F(Z)(F(y, «)) - 2 ƒ"(/. n)*2"**, 0 < £ < 1. 

M is now interchange of | and 7 and multiplication by e2™*?. This gives 

((1 X FÇt)) o M o (lx F(Z)) o C)f * ff 2 ƒ•(ƒ, ^é^^e^é*** <fy. 

For the time being, let us proceed formally and interchange integration and 
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summation to obtain 

(1 X F(T)) o M o (1 x F(Z)) o c(f) = 2 CF(y> n)eM<n+*Xm+*> dy. 
n = — oo •'o 

Applying D ~x we obtain 

F(R)(f)(2ws) = r f{x)e2"ixsds 
• ' - o o 

where x = n + y, s = m + £. 
We will now see how all this works rigorously. 
Consider L2(R) with Haar measure dx and T X Z with Haar measure such 

that the measure of T X 0 is one. It is easily seen that C: L2(R) -» L2(T X Z) 
is a unitary operator; i.e., a norm preserving surjection. Assume that F(T): 
L2(T)~>L2(Z) and F(Z): L2(Z)-* L2(T) are unitary operators. Since M 
consists of multiplying each value of a function by a number of absolute 
value 1, it is trivial to verify that M is a unitary operator. This shows that 

D~l • 1 X F(T) • M- 1 X F(Z) • C: L2(R) -> L2(R) 

is a unitary operator and shows that F(R) is a unitary operator. 
We are left with the task of interpreting the interchange of integration and 

summation used in deriving the integral formula for F(R). We will close this 
chapter with a discussion of this process. 

We may view 

G(y, 9 - M - l X F(Z) • C(f) G L2(T X T). 
As such, G(y, £) has a Fourier expansion 

where convergence is in the L2 norm. Now 

flG(y, i)e2™> dy = lx F(T)(G(y, ©). 

But the integral on the left is easily seen to be 

ƒ 
We next note that if gm and g G L2(T) with lim^^^ gw = g in L2(T), then the 
mth Fourier coefficient of gn converges to the mth Fourier coefficient of g. 
This shows that if ƒ G L2(R), then 

fairs) = jiir^ ƒ n f(x)e2™< ds 

where the limit is in the L2 norm. 

CHAPTER III. ALGEBRAIC COMPLEXITY AND THE FINITE FOURIER TRANSFORM 

1. Basic ideas in algebraic complexity. S. Winograd's work on algebraic 
complexity is very interesting at both the practical and the theoretical levels. 
He has in [20], [21] produced algorithms for the finite Fourier transform that 
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are more efficient than Cooley-Tukey. At the theoretical level, he has also 
succeeded in [22] in defining the concept of essential multiplications or 
divisions, or more briefly, essential m/d. This concept is important because 
experience has shown that algorithms that minimize the essential m/d, or 
minimal algorithms, possess interesting algebraic structures. We begin with a 
formal definition of an algorithm that will permit us to define the concept of 
essential m/d. 

Let G be a field, called the field of constants, and let F = G{xx, — , xn) be 
the purely transcendental field extension of G obtained by adjoining the 
indeterminants xx, .. . , xn to G. We use Ü = {co^i = 1, 2, 3, 4} to denote the 
field operations of addition, subtraction, multiplication and division, respec­
tively. For fx, f2 e F we will use wt{fl9 f2) to denote the result of applying the 
binary operation co, to fx and f2 with the convention that 

Let B c F be the given objects for our algorithms. Usually, B = G \J 
{xx, . . . , xn}. But often, in theoretical discussions, other given objects will 
play important roles. 

DEFINITION. We will define an JV-step algorithm a over (F, B) inductively. 
Step 1. Choose either an element of B or choose w(l) G Ö and an ordered 

pair (a(l), 6(1)) from B. Require that Oa(l) = co(l)(a(l), 6(1)) be defined and 
call OJY) the output of the first step of the algorithm. 

Step 2. Choose either an element of B or choose co(2) G Q and an ordered 
pair (a(2), 6(2)) from B u Oa(l). Require that Oa(2) = <o(2)(a(2), 6(2)) be 
defined and call Oa(2) the output of Step 2 of the algorithm. 

Assume the first k steps of a have been defined. 
Step k + 1. Choose either an element of B or choose u(k + 1 ) G 2 and an 

ordered pair (a(k + 1), b(k + 1)) from B u Oa(l) U • • • U Oa(k). Require 
that 

Oa(k + 1) = w(k + l)(a(k + 1), b(k + 1)) 

be defined, and call Oa(k + 1) the output of the k + 1 step of the algorithm. 
If a has N steps, we will call it an iV-step algorithm. We call Oa(k), 

1 < k < N, the output function of the algorithm a. 
Two algorithms a, /? over (F, E) ̂ vill be said to be equivalent if 

Oa(k) = Ofi(k), Kk<N. 

The k step of an algorithm a is called an m/d step if co(k) is multiplication 
or division; i.e., if co(k) = co3 or co4. Clearly equivalent algorithms need not 
have the same number of m/d steps. (For instance, x + x = 2x and 2 • x = 
2x.) This may serve to motivate the following definition. 

DEFINITION. A step k for an algorithm a is called m/d essential if 0{k) is 
not in the G-linear span of B u O(l) u • • • U 0{k - 1). 

DEFINITION. Let f x , . . . ,fs G F. We will say that the JV-step algorithm a 
over (F, B) computes fl9 . . . ,fs if for each fi9 1 < i < s, there is an integer 
k(i), 1 < k{î) < N, such that Oa(k(i)) = £. 
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It is obvious that f l 9 . . . 9fs G F can be computed by an algorithm over 
(F, B) if and only if fl9 . . . , fs are in the field generated by B. 

DEFINITION. We will say that a is a minimal algorithm for computing 
fl9 . . . , fk if, among all algorithms over (F, B)9 a has the minimum number of 
essential m/d. 

The m/d number for computing fl9. . . , fk over (F, E) is the number of 
essential m/d steps in a minimal algorithm for computing ƒ,, . . . ,fk. 

Let a be an TV-step algorithm over (F, E) with output function Oa(k)9 

I < k < N. Let 5: 2? -> F be a mapping. Then, under certain circumstances, s 
determines an TV-step algorithm s(a) over (F, s(B)). We will now describe 
this. 

DEFINITION. Let B c F and let [2?] be the subring of F generated by 2? and 
(B) be the subfield generated by B. A mapping s: B -» F is called a basis for 
substitution if the following are satisfied: 

(a) There is a ring homomorphism 5*: [B] -> F such that s*\B = 5. 
(Note. Since 2? generates [5] as a ring, if s* exists, it is unique.) 
(b) For bl9 b2 G [B]9 if s*(62) ¥= 0, 5*(61)/^*(*2) is well defined. (Hence s* 

can be extended to as much of (2?) as possible.) 
Let a be an TV-step algorithm over (F, B) and 5: 5 - > F a basis of 

substitution. Let the k steps of a be co(k)9 (a(k)9 b(k)). Then s(a) is defined 
and has k step co(A:), 0*(a(fc)), s*(è(/c))) or s(Oa(k)) if Oa(A:) G B provided 
s*(b(k)) 7*= 0 whenever o)(k) = <o4. If .s(a) is defined then s(a) is an TV-step 
algorithm over (F, s(B)) and 05(a)(fc) = s*(Oa(k)). 

DEFINITION. Let a be an TV-step algorithm over (F, B) and /? an M-step 
algorithm over (F, 5'). Let a ° /? be the TV + M-step algorithm over (F, 2? u 
5') whose k step, 1 < fc < M, is the A: step of /3 and whose k step, M + 1 < k 
< M + TV, is the k — M step of a. 

Let a be an TV-step algorithm over (F, 2?) that computes f l 9 . . . , fr and let 
a(/c) or b(k)9 1 < A: < TV, be in the subset bl9...9bs of B. Let /? be an (F, 5') 
algorithm that computes bl9 . . . , £»,. Then a ° ft is an (F, 2?') algorithm that 
computesfl9 . . . ,ƒ,.. 

In particular, if 5 is a basis of substitution such that s(a) is an (F, s(2?)) 
algorithm and /? is an (F, 5') algorithm computing s*(aa(k)) or s*(6a(&)) for 
aa(k) or 6a(/c) G B9 we have s(a) ° /? over (F, 5') computes s(a). 

2. Bilinear algorithms for the finite Fourier transform. S. Winograd has 
recently devised algorithms for computing the finite Fourier transform that 
work much better than the Cooley-Tukey algorithm. They are also of theore­
tical interest because they are based on expressing the finite Fourier trans­
form F(p)9 p a prime, in terms of the complex group algebra of the multi­
plicative group Z/p*. We will denote this group algebra by C(Z//?*). 

Let us begin by writing Winograd's algorithm for/? = 7. Let 

6 
Aj = S e2"Vk'\9 j = 0, . . . , 6. 

*=o 

We will present the algorithm as a sequence of additions, then multiplica­
tions and then additions. 
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S , = 

5 5 = 

S9 = 

^13 = 

s„-
Let u 

^18 = 

5*22 = 

•^26 = 

^30 = : 

•^34 " 

ax + a6, 

a2 ~ a5, 

Ss + a0, 

= S2 "H o4, 
= »$6 "~ *̂ 2> 

= 2TT//7. 

£9 + ml9 

s2l - w4, 
S25 + m7, 

0 2 9 + w 8 > 

*^22 "" *̂ 28> 

^ 0 = 

^ 4 = 

^ 2 = a l *~ a6> $3 = ö 4 + a 3 ' ^ 4 

^6 ^ a2 + a5> «S7 = S*! + 53, Sg 
= « 4 " a 3 ' 

= 5 7 + S6, 

*^10 = *̂ 1 "~ *^3' *^11 ~ *^3 "" *̂ 5> *^12 ^ *^5 "~ S\, 

*$14 = ^13 "*" ^6» ^IS = ^ 2 "" ^ 4 ' ^16 = ^ 4 "" ^6> 

/ cos w + cos 2w + cos 3w A _ 
W' = I 3 V* 8 ' 

/ 2 cos w — cos 2w — cos 3w \ _ 
™2 = ^ 3 )SÏ0, 

/ cos u — 2 cos 2w + cos 3M \ _ 
m3 = I 3 rn' 

/ cos u + cos 2w — 2 cos 3w \ _ 
m4 = ( 3 ]S1 2 , 

./ sin u + sin 2w — sin 3w \ „ 
w5 = ^ 3 JSH, 

A 2 sin u — sin 2M + sin 3w \ _ 
™6 = l[ 3 JSi5> 

./ sin u — 2 sin 2w — sin 3w \ _ 
™7 = ' ( 3 J5.6, 

./ sin w 4- sin lu + 2 sin 3w \ _ m8 = ̂  JS17. 

51 9 = *S18 4- m2, 5*20 == ^19 + m3, 

^23 = ^18 "~ W3> ^24 = ^23 "*" m 4> 

527 = m5 — m6, S2% = o27 — Aw8, 

^31 = *^20 ~*~ ^26' ^32 ^ ^20 ~~ *̂ 26> 

^35 = *^24 + ^30' ^36 = ^24 ~~ ^30 

= S9, Ax = o31, A2 = »>33, v43 = 

= ^35 ' ^ 5 = ^34' ^ 6 = ^32-

S2l — o18 /W2, 

^25 = m5 + m6> 

S2$ = w5 — w7, 

^33 = *^22 "*" ^28' 

= ^36' 

This algorithm requires 8 multiplications instead of 8 • 3 = 24 that 
Cooley-Tukey requires for ^(8). 

We now will describe some of the theoretical considerations upon which 
the above algorithm was built. 

Let co = elmi/p,p a prime, and coJk = e
2viJk/p, 0 < y, k <p, and 

A = 2 e2"ijk/pak = 2 <**kak. (1) 
A: = 0 A: = 0 

Since c&/k = 1 fory or k = 0 we have y40 = a0 + • • • + ap_x and 

Aj ~a0 = Af, Kj<p- 1, (2) 
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where 
P-I 

Af= S <**kak, Kj<p-l. (3) 
k— 1 

Let {mv . . . , rrip^x} be the elements of (Z/p)x ordered so that mi • ny = 
m ,̂ where k = i-j mod/?. Then 

('s «s) (2 ^K)"1) - 2 2 «V* (4) 

because mj(mky
l = m, implies y = h k mod/?. Since S 4̂*/W/ is the right side 

of (4), computing the finite Fourier transform is the same as computing a 
product in C(Z//?*). Because Z/px is a cyclic group of order/? — 1, we can 
obtain another method for computing the terms Af, / = 1,...,/? — 1. Let 
m E rL/px be such that mp~l = l G Z/px; i.e., m is a generator of the 
multiplicative cyclic group Z/px. Then m = ma for some 1 < a </>-l. 
Hence 

2 « S = 2 « " ^ (here A: m> = (m/) 

and 

where 7r(a7) • ay = 1 mod/?. Hence 

2^«W = (2««W)(2>W)W'). 
But, multiplication on the right side is the same as multiplying the expressions 
as polynomials in m and reducing modulo (mp~l-l). This directly relates the 
finite Fourier transform to the group algebra C(Z//? — 1). 

We may also present the above discussion in matrix language as follows: 
Consider the matrix equation 

r A \ ' 

A* 

= («* ) 

a\ 1 

• 

*p-l\ 

A* = fia. 

The first row of the square matrix on the right is w 1 , . . . , cop~l. Thus there 
is a permutation of columns of this square matrix so that the first row of the 
resulting matrix is coa, . . . , o)aP . This permutation can be achieved by 
multiplying the matrix (o)iJ) on the right by a matrix P. Noting that P~l = P', 
where the superscript t denotes the transpose, we have 

A* = tiPP'a. 

Then the first column of fi is (co1, . . . , cop~ly. Forming 

P'A* = P'tiPP'a 
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an elementary computation shows that 

P'£2P = 
or 
(0 

CO" 

<ov 

(0 «"-». 

<*T CO 
aP-

Thus, if we let 

= P ' J * = p<4* = 

Yi 

1P~\ 

P'a = 

y\ 

yP-x 

= y 

we have 

y = P'ÏÏPy 

which is called the cyclic convolution of (Yv . . . , Yp_x) and (yv 

It is now a straightforward computation to verify that 

y, + y2w + + yp.1«/,""2 = (coal + (oa« + + <o«'~V>-2) 

• • J t - l ) -

U i + ^ - i « + ' • • +7 2 ^~ 2 ) m o d ^ - 1 - 1). 

The above discussion shows that the m/d number of F(p), can be bounded 
above by the m/d number of the right side of the above equation. 

Let us now formalize the problem to which the above discussion has led us. 
Let 

&{z) = 2 xtz' and S(z) = 2 yp% 

i - O i - O 

be two polynomials with indeterminates as coefficients and let 

T(z) = R(z)S(z). 

The a + h + 1 coefficients of T are a system of bilinear forms which we will 
denote by f. Let P be a polynomial over G of degree n and let 

rp(z) = R(z) • S(z) mod P. 

Let fp denote the n coefficients of T. Then fp is a system of bilinear forms. 
Let £ = G U {*!,. ^ . , xa,yl9... ,76}. Our problem becomes to compute 
the m/d number of T and Tp. 

We will take up this problem in the next two sections. In the final section 
of this paper we will return and discuss how the above problem relates to the 
m/d number of F(p), p a prime. 

3. General results on bilinear algorithms. In this section, we will prove three 
general theorems, that, at the present state of the art, are of fundamental 
importance in the theory of bilinear algorithms. 

Let G be a fixed infinite field and let xv ..., xn,yx,..., ym be indetermi-
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nants. Let F = G(xv . •. 9xn,yl9... 9ym) = G(x9 y) and let 
n 

Lu = 2 aukxk> l <j <m9l <i <t9 

be a set of linear forms and let 

A{x)y = (Ly) 

We call A(x)y a system of bilinear forms. We wish to study the m/d number 
of A(x)y. 

Notice that the columns (rows) of all possible matrices A(x) form a vector 
space C (R) over G. We define the G-column (G-row) rank of A(x) as the 
dimension of the vector subspace of C (R) spanned by the columns (rows) of 
A(x). 

In this section F = G(x9y) and B = G \J {xl9.,., xn9 yl9... 9ym). 

THEOREM III.3.1. Let A(x)y be a system of bilinear forms. If A{x) has G-row 
rank s then this system of bilinear forms has m/d number greater than or equal 
to s. 

This theorem is actually much weaker than what is known to be true. Since 
it is not harder to prove the more general result, we will prove it. 

THEOREM 111.3.1', Let fv . . , , ƒ , E G(x9y) and let a be an N-step minimal 
algorithm for computing f\, . • . ,ƒ / . Then the m/d number offl9 . . . , ƒ / equals 
the dimension of the vector space Wa defined as follows: 

Let W* c G(x9y) be the vector subspace spanned by Oa(l)9 . . . , Oa(N) and 
let L be the subspace of elements of the form 2 géxê + 2 hjyj + k9g9h9k EL G. 
Define Wa = W* 0 L/L. 

PROOF. Assume that ft = Oa(N). (A relabelling can always achieve this.) 
Then let a! be the N — 1 step algorithm consisting of the first N — 1 steps of 
a. Then a' is a minimal algorithm for f l 9 . . . , f„l9 aa(N), ba(N). 

We will now prove Theorem III.3.1' by induction on N. Since a 1-step 
algorithm that has no essential m/d computes an element of L, we have 
proven the theorem for iV = 1. 

By induction the theorem is true for a' and f{9 • . . 9ft^\9 aa(N)9 ba(N). Now 
if the iV step of a is not an essential m/d step, a and a' have the same 
number of essential m/d steps. But, clearly, W£ = W* and the theorem is 
true. 

If the N step of a is an essential m/d step Wa ^ W^ or else a is not 
minimal. This again proves our result. 

Theorem 111.3.1' implies Theorem III.3.1 once we observe that the row 
rank of A(x) is the dimension of the vector space V spanned by 2 ci^x^j in 
G(x9y). But V c W* and V n L = 0. This proves dim Wa > dim V. 

Before going on to Theorems III.3.2 and III.3.3 let us pause to give an 
application of Theorem III.3.1 to the problem posed in §111.2. Consider the 
system of bilinear forms that are the coefficients of the product of the two 
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polynomials 

2 xiz
i and 2 y^3* 

This may be written in the form A(x)y, where A(x) has the special form 
(assume a > b) 

A(x)~ 

x0 0 
•Xi Xr\ U 

0 

0 

0 xa 

where A(x) has 6 columns and a + b + \ rows and 

PV 
ƒ = 

yb 

It is easy to compute that the row rank of our special A(x) is a + b + 1. 
Thus by Theorem III.3.1 the m/d number of A(x)y is greater than or equal to 
a + b + 1. Later we will see that it is actually equal to a + 6 + 1. 

THEOREM III.3.2. Le* ^(*).y be a system of bilinear forms. If A(x) has G 
column rank s9 then the m/d number of A(x)y is greater than or equal to s. 

Again it is no harder to prove a slight generalization of this and we will do 
so. This is Theorem 1 of [22]. 

Consider G(xv . . . , * „ ) = G(x). Let <j> be a t X m matrix over G(x). We 
shall use <j>l9..., <j>m to denote the columns of $. (Note. A(x) is a t X m 
matrix over F.) 

THEOREM III.3.2'. Let a be an algorithm computing <py over (G(x,y),B) 
where B = G(x) U {yx, . . . ,ym}- If there are s vectors in {<J>l5.. . , <j>m] such 
that no nontrivial linear combination of them with coefficients in G lies in the t 
dimensional vector space G\ then a has at least s m/d steps of the following 
form: w3(a(k), b(k)) with a(k) and b(k) & G or co4(a(A:), b(k)) with b(k) g G. 

To relate Theorem III.3.2 and Theorem III.3.2', we must first show that if 
A(x)y satisfies the hypothesis of Theorem HI.3.2 then A(x)y satisfies the 
hypothesis of Theorem IH.3.2'. But a linear combination over G of the 
columns of A(x) is in G' if and only if it is the 0 vector. This shows that our 
first requirement is satisfied. 

To see that the conclusion of Theorem III.3.2' implies the conclusion of 
Theorem IH.3.2 merely note that the s steps guaranteed by Theorem HI.3.2' 
are essential m/d for a. 
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Thus it remains only to prove Theorem III.3.2'. To simplify the language of 
this proof and only here, we have called those m/d not excluded by Theorem 
III.3.2' essential. 

We prove the theorem by induction on s. Clearly an algorithm with no 
essential m/d steps can only compute elements of the form 2 gptj + ƒ, 
gj G G, ƒ G G(x). But if s = 1 there exists a matrix coefficient of <j> that is not 
in G and so the algorithm must compute. 

2 hjyp some hj £ G. 

Hence we must have at least one essential m/d in the algorithm. 
Suppose the assertion holds for a = N. Assume $ is such that at least 

N + 1 of the vectors {<j>v . . . , <ƒ>„} have no linear combination over G which 
is in G'. Let a be a minimal algorithm computing <py and let k be the first 
integer such that an essential m/d step of a occurs at step k. Then, either 

<>«(*)-(2&*+/)-(2 V,+/) 
or 

O (k) = S & y ' + / 

for gi9 ht G G, and ƒ,ƒ' G G{x). Furthermore, we may assume the labelling 
has been done so that one of the ht ^ 0, for otherwise the k step of a would 
not be an essential m/d step. 

Clearly s(yn) = - ƒ - 2 /y>„ s the identity on yx u • • • \Jyn-x U G(x). 
G(x) is a basis of substitution. However s(a) may not be an algorithm. Since 
there are only a finite number of divisions in any algorithm the substitution 
s(a) can fail to be an algorithm only when s* applied to some finite set 
{rv . . . , rm) c G(x)[.y] is zero. Choose g G G so that 

s*(rj) + g * 0, j G 1, . . . , M. 

This substitution yields an algorithm that computes tfy' where <j>j = ty — 
*/̂ /i> J = 1> 2 , . . . , n — 1 and >>' = (>>!,... ,j>„_i)'. The number of essential 
m/d steps in a' is at least one less than in a. This is because the image of the 
k step in a' is not an essential m/d and the algorithm /? computing 
g — y _ 2 /y, has no essential m/rf. But there are at least N vectors in 
{</>i, . . . , <t>n-\} s u ch tha t n o nontrivial G-linear combination is in G'. Hence 
by induction a' has at least N essential m/d and so a has at least N + 1 
essential m/d. 

It turns out that it is much easier to study minimal algorithms that use only 
essential multiplications. The following theorem indicates why this is so. This 
is contained in the proof of Lemma 2 in [22]. 

THEOREM III.3.3. Let A{x)y be a system of bilinear forms and let a be an 
algorithm that uses the minimal number s of essential multiplicatons. Then there 
exist 2s linear forms Lt{xyy)y Ll(x,y% i = 1,. . . , s, such that A(x)y = Um 
where U is a matrix over G and m is the column matrix 



COMPUTING WITH THE FINITE FOURIER TRANSFORM 887 

fL.L',1 

We call this a presentation theorem because it shows that no matter how 
complicated the original a was we can produce a minimal algorithm for 
computing A(x)y of the following form: Compute the linear forms L,, L/, 
i = 1, . . •, s, multiply, using essential multiplications, the linear forms to 
form the quadratic forms L, • L/, i = 1 , . . . , s, form linear combinations of 
the quadratic forms Lt • L/, i = 1,. . . , s, to obtain the elements A(x)y. 

Notice the algorithm presented at the beginning of §11.2 for computing F(l) 
was of the above form. We will call algorithms of the above form quadratic 
algorithms. 

PROOF. Let kv . . . , ks be the steps of a where the essential multiplications 
occur. 

If m is a step of the algorithm a then 

Oa(m) = Lm(0) + Lm(x) + Lm(y) + Lm{x2) + Lm(y2) + Lm{xy) + ... 

where Lm(0) is a constant and Lm( ) is a form in the type of term in the 
bracket. We will denote OJJk^) by L,(0) + . . . . Then we can compute the 
system of bilinear forms A(x)y by linear combinations over G of Oa{k^ 
i — 1, . . . , s. Hence there is a linear combination of the L,-(xy), i = 1 , . . . , s, 
terms that equals each bilinear form in A(x)y. 

It is crucial to our argument to observe that we may modify the algorithm 
to obtain a new algorithm a' without introducing any new essential m so that 
L;(0) is always zero. This is because L,(0) G G and subtracting by it is not an 
essential m. We will henceforth assume that a = a' or that the desired 
modification has been made. 

Now Oa(kj) = Oa(l)Oa(m) where / and m are steps of the algorithm. Note 
that we may form Ut = Lt{x) + Lt(y) and Um = Lm(x) + Lm(y) without any 
essential m. Further UlUm and Oa(l)Oa(m) have the same quadratic terms. 
Since forming linear combinations preserves degree, it follows that we may 
replace the terms Oa(l) and Ot{m) in our algorithm by Ul and Um, respec­
tively, and still compute the bilinear forms A(x)y. This proves our theorem. 

4. Some minimal algorithms. In §111.3 we established some results that 
enabled us to put lower bounds on m/d numbers. In this section we will see 
how to use the Chinese Remainder Theorem to produce algorithms. We will 
also prove that in certain cases we can actually compute m/d numbers. 

One version of the Chinese Remainder Theorem goes as follows. Consider 
the polynomial ring G[z] over a field G and let Pl9..., Pk G G[z] be such 
that P( and Pj are relatively prime for i ^j. Then the proof of the Chinese 
Remainder Theorem assures the existence of polynomials Qi9 i = 1,. . . , k, 
such that 

Qt^Sy mod Pj 

where 8^ = 1 if i = j and 0 otherwise. The usual statements then stress the 
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following: Given Bv . . . , Bk in G[z] there exists a B such that 

B = Bi mod Pt. 

Indeed 

5 = 2 5,8,. 
will do. 

But it also follows that if 

B = Bi mod P( 

then 

5 ^ 2 A Ô I m°dP whereP = 1 1 ^ . 

It is this last assertion that we will need to construct algorithms. We will 
now give two applications of this idea. 

Let R(z) = 2?Œax,z' and S(z) = *2j=0yjZj. Using the notation of §111.2 we 
wish to compute T or the coefficients of the polynomial T(z) = R(z) • S(z), 
We will use the Chinese Remainder Theorem to produce an algorithm that 
does this in a + b + 1 essential w/rf. Combining this with the results in 
§111.3 we will have proven that the m/d number of f is a + b + 1. 

Choose a0, . . . , aa+b distinct elements of G and let 

a + b 

Q = n (2 - «,). 
!«=0 

Then g is a polynomial of degree a + b + 1 and so T(z) may be identified 
with T(z) mod g. 

Now let Qi = (z — a,-). Then g and Qj are relatively prime for i 7*7. We 
observe that if 

g, = Il («/ - «,), 
yV/ 

then 

is such that 

Gi = gr*]l(z-aJ) 

Gi=8y mod Qj. 

Hence 

T(z) = T(z) mod g = ( 2 G,(* • S mod &)) mod g 

1=0 

The above equation shows that T(z) can be computed in the a + b + 1 
essential multiplications /*(«,) • ^(a;). 

A second method for computing f starts by choosing a + b elements of G, 
Pu • • • 9 fia+b a n d u s e s the identity 
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R(z) • S(z) - R(z) • 5(2) mod *II (z - ft) + xj^Ji (z - fl). 
/ - l 1=1 

As before i?(z) * S(z) mod H?*f (2 - A) *s computed by the Chinese Re­
mainder Theorem using a + è multiplications and x a * ^ is the a + i + 1 
essential multiplication. 

We will say that the second method uses a0 = oo in the first method. 
Now if P = zn + 2£~ô ft2'» s i n c e reducing mod P involves no essential 

m/d, we can compute Tp if a > n and 6 > n in 2rc — 1 multiplications. 
Let R{z) and 5(2) be of degree n~\ and let P = II*Li P, where the Pt are 

pairwise relatively prime and Pg = P/ where P, is irreducible. By the Chinese 
Remainder Theorem there exist Qf e G[z], i = 1 , . . . , k, such that 

Qi=S(/ modP, 

and 

T(2) modP = ( 2 ô / ( ^ - ^ m o d P J ) ) modP 

= ( S ô / ( ^ ' S ) modP,) mod P. 

Since multiplying by Q{ and reducing mod P involve no essential multiplica­
tions, we have that all the essential multiplications occur in computing R • S 
mod P,. If the degree of Pr = /*,., then 2*L 1 rç? — 1 and by the above discus­
sion we can compute R • S mod Pt in 2nt — 1 essential multiplications. Then 
our algorithm takes 2*» i(2w/ — 1) = 2/t — A: essential multiplications to com­
pute T(z) mod P or fp in the notation of §111.2. 

We will now show that all minimal bilinear algorithms for computing T are 
almost the same as the two algorithms we discussed above. 

THEOREM III.4.1. Any bilinear algorithm for computing T in a •¥ b + \ 
essential multiplications involves computing the a + b + \ bilinear forms 

where g ^ O , h ^ 0 E G, a0, . . . , aa+b E C l l o o and at =£ otj for i =£j. 
{Assume a > 6.) 

PROOF. Let T be the set of bilinear forms defined by 

fXoO — 0 ] 

X& Xo 

Xa Xb 

0 

( 5 ) - * 

0 ... ox, 
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By our presentation theorem, we have that there exist m^ . >. 9ma+b bilinear 
forms where 

m( « ( 2 aixi + 2 *jty)(2 a'iXi + 2 bfo) 

and an (a + b + 1) X (a + b + 1) matrix U over G such that 

m0 

Xy = tf I ! 

m. la + b 

The essence of this theorem is to prove that each 

m'={4ox>a')[hkyjaJ) 
(£V'+*M 

or 
OT, = «*«y*- (0) 

As we discussed in §111.3, all the rows of X are linearly independent over 
G. Hence the set of bilinear forms Xy span an a + b + 1 dimensional space. 
Hence the set of bilinear forms Um span an a + b + 1 dimensional subspace 
of the space of bilinear forms. This implies that U is nonsingular and so we 
may let W = U ~l and write 

WXy = m. 

Let (H>O, . . . , wj+j,) be the ith row of fF. Then substitution in (1) yields 

^o 

^ 

(1) 

(2) 

This implies that the bilinear form on the right side of (2) can be computed in 
1 essential multiplication. By Theorem IH.3.2 of §111.3 the column rank on 
the right side must be 1, or all the forms S^.Q wj+kxp & = 0 , . . . , 6, are all 
(7-multiples of one. This implies that the matrix 

w: 

w; 

wk 

M> a+\ 

wt a + b 

(3) 

has rank 1. 
We claim this can happen only under two circumstances: either Wç — 

0 , . . . , wj+fc-i = 0, w^+b =£ 0; or there exists a, (which may be zero) such 
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that 

wj = «X, j = 0,. . . , a + b where a{ = (a,)7 

(when 0° = 1). 
We may verify this assertion as follows: We have two cases to consider. 
Case 1. M>O = 0. Then since (3) has rank 1, 

WQW2 — (w[) = 0 or wj = 0 

and 

w Jwj - (wrf = 0 or wl
2 = 0. 

(4) 

(5) 
We may proceed by induction to verify that ŵ  = 0, 0 < & < a + &— 1. 
Since rank of (3) is 1, wl

a+b =£ 0. 
Case 2. H>0 T̂  0. Let w[ = Ẑ JWQ and w2 = ^2w^. By (4) 

and by (5) 
^2 "~ ^1 

1 ^ 3 "~~ A' i O r K"\ ~~* /C i • 

We may proceed by induction to verify that if 

wj = ktwl 

Then kt = k[. We let a, = kv 

Since W is nonsingular at most 1 row can be of the first kind and for two 
rows with WQ=£ 0 and M^^Owe must have a, ^ aJ9 i ¥=j. Thus (2) becomes 

\ y - 0 7 = 0 y = 0 V 

n 
or mi has the form (0). This proves the theorem. 

0 • • • 
Wn 0 ] | 1 a 

w = 
w. a + b 

1 <*a + b 

or 

W = 

Wn 

W, * + *> 

a. 

1 «a + * 

1 
ua + b 

-a + b 
xa+b 

„a + b 

„a+b 
^a + b 

REMARK. We see that the Vandermonde matrix enters into every bilinear 
minimal algorithm a. 

We will now prepare ourselves to prove the following result. Let P = zn + 



892 L. AUSLANDER AND R. TOLIMIERI 

2/.o 8iz*> where P = Pl and P is irreducible over G. If 
n-\ n-\ 

R = 2 *,*'> 5 = 2 Ĵ '> 
i - O i - O 

then the system of bilinear forms Tp has m/d number 2n 
Let CP be the companion matrix of P acting on the column vector space 

V*. 

1. 

Cp = 

o 1 

• f t 

«.-

The minimal polynomial of CP is P itself. This means that P(CP) is the zero 
matrix and any other polynomial with this property is divisible by P. Now let 
v G V,v¥=0. Consider the set § of polynomial Q such that 

vQ(Cp) - 0. 

Clearly S is an ideal, $ D P. Since CP is nonsingular z £ 5 and 5 ^ G[z]. 
Let (P) be the ideal generated by P. If B and P are relatively prime then the 
ideal generated by B and P is G[x]. Since 5 ^ G[z], 5 c (P). Hence if Q is 
not divisible by P, i>ö(C/>) 7̂  0 any v G V* and so Ô(CP) is nonsingular. 

LEMMA III.4.2. Let VP = {v G F| /Aere ex/ste a polynomial Q of degree < n 
and vQ(Cp) = 0}. Then dim Fp < /z. 

PROOF. Let W = {t> <E FluP'-^Cp) = 0). Claim W = FP. Clearly WK c 
VP. If t>ö(Q>) = 0, then by the above discussion 

Q = P 'g ' , Ö' relatively prime to P, 

where / > r > 0 and Ô'(Q>) is nonsingular. But then vPr(CP) = 0 which 
implies vPl~\CP) = 0. 

LEMMA III.4.3. Let CP be the companion matrix to P(z). If 

t = 

'n-\ 

then the coefficients of z S"«o 4Z' m °d P(z) are CP(t). 

This is essentially the definition of CP. 

LEMMA III.4.4. Let R(z) = S?!»1 xiz
i and S(z) = 2"~ô ^ ^ ^ fp be the 

system of bilinear forms that are the coefficients of R(z) • S(z) mod P(z). Let 
TP = >4(x)y as in $1113. Then 

A{x) = (X,CpX9...,C^lX) 

where 
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X = 

CP is the companion matrix to P, and Cp is the a power of the matrix CP. 

PROOF. We have, since R(z) = 2 xiz
i and S(z) = 2 yjZJ, that 

S(z)-R(z)=y0^xiz
i+ylz'2xiz

i+ • • • H - ^ z ' - ' S x,z'. 

By Lemma III.4.3 we have 

S(z)-R(z)=yQX+yiCPX+ -• • +yn-.{C£-lX. 

The coefficients of zk in S{z) • i?(z) is 2 >>*£*, where ^ is the fc entry in the 
column vector CpX, k = 0, 1. 

We are now in a position to prove the following theorem. 

THEOREM III.4.5. Let R(z) and S(z) be polynomials of degree n — 1. Let 
P = Pl where P is irreducible over G and let deg P = n. The minimum number 
of multiplications needed to compute Tp is In — 1, where TP is the system of 
bilinear forms that are the coefficients of R(z) • S(z) mod P(z). 

PROOF. Let r be the minimum number of multiplications needed to com­
pute Tp. By Theorem III.3.3, we have 

A(x)y = Um 

where U is an n X r matrix over G and 

L, • L\ 

m 

L, L) 

Let V be an n-dimensional G-vector space, let F* be its dual space and let 
w E V*. Then wA(x) =£ 0 because its first coefficient is 

Hence wUm is not zero and so wU is not zero. Since w was arbitrary, this 
shows that the rank of U is n. By reordering columns, if necessary, we may 
assume that we have a nonsingular n X n matrix W since 

WU=(I\U') 

where / is the n X n identity matrix. 
Let VP be as in Lemma III.4.2. Then, because W is nonsingular, there 

exists a row of W, say the first, denoted by w, which is not in VP. Then 
wA(x)y is a bilinear form and 

wA(x)y = (1 0 . . . 0 u\ . . . ux
r_n)m. 

Thus the bilinear form on the left, above, can be computed using r — n + 1 
multiplications. We now claim that the n columns of wA(x) are independent. 
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This would imply our theorem for by Theorem III.3.2 r — n + I > n or 
r > In - 1. 

To show that the columns of wA{x) are independent, assume that 

0 = 2 wCpX-oii = w 2 *iC*P )X. 
i = 0 \ i = 0 / 

Since the elements of X are indeterminants over G 

w[%aiCH=0-
But w £ VP and the above contradicts Lemma III.4.2. 

COROLLARY III.4.6. Let P = P[\ . . . , Pl
k
k where Pt are distinct irreducible 

polynomials over G. Then TP can be computed in In — k multiplications and no 
divisions. 

This follows easily from the discussion at the beginning of this section. 
Before coming to the final result to be proven in this paper, we would like 

to remind the reader of the relation between the Chinese Remainder Theorem 
and the rational form theorem for a matrix. __ 

Again let P = Pv . . . , Pk where Pt = P/1 and the Pt are distinct irreducible 
polynomials in G[z]. Let CP be the companion matrix to P acting on V*. By 
the Chinese Remainder Theorem 

<?[*] /*-2 .®G(z)/P, 

where equality denotes isomorphic. The rational canonical form theorem says 
that there exists subspaces V* of V* such that 

(a) V* = 2 0 Vf9 

( b ) C P ( F ? ) - J?, 
(c) Cp\Vf = CP, 

where CP is the companion matrix to Pr 

THEOREM III.4.7. Let P = Pv . . . , Pk where Pt = Pli and Pt are distinct 
irreducible polynomials in G[z]. Further let the degree of Pé = nt and n = 
2 ? . , nt. Let R(z) = 2 ^ x.z1 and S(z) = ^nr}ytz\ If T = RS then fP 

cannot be computed with less than 2n — k essential multiplications and no 
divisions. 

We have already seen in Corollary III.4.6 that the m/d number is bounded 
above by In - k. In the proof of the theorem we will need the following 
purely technical lemma. We will state and prove this lemma below, but the 
reader may prefer to skip directly to the proof of Theorem III.4.7 and return 
to the lemma later. 

LEMMA III.4.8. Let P = Pl9 . .., Pk be as in Theorem III.4.7 and let VP9 

i = 1, . . . , k, be as in Lemma III.4.2. Let W be a nonsingular n X n matrix 
and let Wl be the first nx columns of W, let W2 be the next n2 columns of W, 
etc. Then each Wl has a row wl(j{i))J a function of i, such that w\j{î)) ^ VP. 
Further, there exists a 1 X n matrix /? with nonzero entries only at the j(i), 
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i = 1, . . . , k9 coordinates such that 

/3W=(yi,...,yk) 

where yj is a I X ttj matrix j = 1,. . . , k and yy £ VP. 

PROOF. Since W is nonsingular, each matrix W, j = 1, . . . , k, has rank iij. 
By Lemma IH.4.2 there must be a row w\j(ï)) £ VP. Consider the set U of 
1 X n vectors with nonzero entries only aty(0> i = 1, . . . ,& .£ / i s a fc-dimen-
sional vector space. 

In W' consider the row vectors w'(J(i))9 j(J) = 1,. . . , k, and form 
Sf . i Pj^wyO)). The set U(i) of p such that 

2 V 0 ' ( 0 ) « VP( 
i = i 

is the complement of a proper linear subspace in U. Hence Pi ?= i U(i) is not 
empty. Any point in H U(i) satisfies the conclusion of Lemma III.4.8. 

PROOF OF THEOREM. By our discussion about the Chinese Remainder 
Theorem and Rational Canonical Form Theorem, we see that we may assume 
(without use of essential m/d) that fp corresponds to Ai(x

i)yi and f to 
A(x)y where 

A{x)~ 

Ax{x') 

0 

0 

M*k). 
y = 

y1 

y\ 

Let A(x)y = Urn, by Theorem III.3.3. Then U is an n X t matrix over G 
where / is the number of essential multiplications. Since all rows of A(x) are 
linearly independent, the rank of U is n. Therefore, there exists an n X n 
nonsingular matrix W such that 

WU = (ƒ | U'), where I is the n X n identity matrix. 

Applying Lemma III.4.8 to W and letting /? be as in Lemma III.4.8, we 
consider the bilinear form 

/3WA(x)y = p(I\U')m. 

We claim that at least n multiplications are needed to compute this bilinear 
form. We prove this by showing that the column rank of the left side above is 
n. Let y = PW and consider every nontrivial linear combination of the 
column of fiWA(x) = yA(x). Substituting CJ

Px* for they element oiAfa*) we 
obtain this linear combination as 

2Y/(2^)X'. 
This vanishes only if ^ 2 ctyC^ = 0 for i = 1,. . . , k. But y, £ VP and so 
cty = 0 for all i andy. Thus by Theorem III.3.2 it requires at least n essential 
multiplications to compute yA(x)y. But /?(/\U') has at most k + t — n 
nonzero coefficients. Hence 

k + t ~ n> n or t > In — k 
and our theorem is proven. 
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5. Algorithms for computing the finite Fourier transform. In §111.2 we 
presented S. Winograd's algorithm for computing F(7). We are now in a 
position to outline the steps for creating that algorithm as discussed in [21]. 
However, before proceeding to this, let us at least mention a fundamental 
result proven in [24]. 

THEOREM 111,5.1. The m/d number for computing the finite Fourier transform 
on a prime number p is 2p — 3 — £(p — 1), where £(H) is the number of d such 
that d\n. 

We cannot discuss the proof of this theorem in this paper as it is too long. 
It does show that the algorithm of §111.2 which uses 8 multiplications achieves 
the minimum number of multiplications for computing F(7). 

We will now outline the steps that are followed in creating the algorithm 
for F(7). 

Step 1. Consider the cyclic group (Z/7)* of order 6 and show that 
e2m3/7 = w3 is a generator of (Z/7)* and that co1, co3, co2, co6, co4, co5, corre­
spond to 1, (co3), (co3)2, (co3)3, (co3)4, (co3)5. 

Step 2. This enables us to show that the Fourier transform can be 
computed from the coefficients of the polynomial 

R(z) • S(z) mod z6 - 1 = (co1 + œ3z + Ù)2Z2 + co6z3 + coV + coV) 

* (ax + a5z + a4z
2 + a6z

3 4- a2z
4 + a3z

5) mod z6 - 1 

in the notation of §111.2. 
Step 3. We verify that 

x« - 1 = (x - l)(x + \){x2 + x + 1)(JC2 - x + 1) 

** *V *2> * 3 > *4* 

Step 4. If 

Qi = 80 mod PJf ij « 1, 2, 3, 4, 

as in §111.4, we compute and find 

Ôi = \(x + l)(x2 + x + l)(x2 - x + 1), 

Q2 = - l(X - \)(x2 + JC + 1)(;C2 - X + 1), 

Ö 4 = ~ ( f ~|)(*2~l)(*2+*+l)-
Ste/? 5. Compute 

JÇ mod Pi9 

and so compute 

R • S mod z6 - 1 = 2 Ôi(* mod />,.)($ mod /» ) mod z6 - 1. 
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Step 6. Apply the Chinese Remainder Theorem twice more to compute 
R3SZ mod P3 and R4S4 mod P4 

where 
#3 = R mod P3 and R4= R mod PA 

S3 = S mod P3 and S4= S mod P4. 

Step 7. Combine all the previous computations into a bilinear algorithm. 
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