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1, Introduction. 

SOCRATES: Are there not two kinds of arithmetic, that of the 
people and that of philosophers? . . . And how about the 
arts of reckoning and measuring as they are used in building 
and in trade when compared with philosophical geometry 
and elaborate computations—shall we speak of each of these 
as one or two? 
PROTARCHUS: I should say that each of them was two. 

Plato, Philebus 56D-57E. 
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In this passage Plato distinguishes between practical arithmetic, the count­
ing off of everyday objects—two oxen and two armies are examples he gives 
—and theoretical arithmetic, in which there is a single unit, identical in all its 
occurrences. This distinction is extended to measurement, contrasting practi­
cal measurements of areas with the highly developed Greek geometry; con­
sider, for example, the theory of 'application of areas', the procedure for 
manipulating rectilinear plane figures.1 But what should we make of his 
further distinction between practical and theoretical calculations? Our inter­
pretation of this will depend on and contribute to whatever reconstructions 
we propose for the kind of mathematics current in the Academy. I should 
like, in this article, to explore this kind of question in the setting of a drastic 
reinterpretation of pre-Euclidean mathematics recently proposed by W. R. 
Knorr. Knorr sees the construction and classification of incommensurable 
magnitudes (Books II and X of Euclid's Elements) as "a massive project 
which engaged the best efforts of the most notable fourth-century mathemati­
cians: Theodorus, Theaetetus, Archytas and Eudoxus,"2 and he extends the 
proposal by Becker and others3 that, before the development of Book V-type 
proportion theory by Eudoxus, proportion was characterised using the 
'Euclidean' subtraction algorithm, in a procedure called anthyphairesis. But 
we make one modification to Knorr's account: we shall argue that this 
anthyphairetic definition, introduced by Theaetetus and used by Eudoxus 
before his discovery of the more powerful and general Book V Definition 5, 
was used to develop a theory of ratio, not of proportion, and we examine this 
conjecture against the available evidence. 

For reasons that we set out (in §10), the anthyphairetic theory, once 
superceded, would be forgotten and misunderstood; therefore contemporary 
testimony is the only reliable guide. Thus, from the following approximate 
limiting dates4: Plato (428—347); Theaetetus (414—369); Eudoxus 
(395—340); Aristotle (384—322); and the discovery of Book V-type propor­
tion theory5 around 350, we see that the writings of Plato and his associates in 
the Academy, where in fact the developments were taking place, provide the 
best evidence. Relevant passages are considered in §§2, 5, 8, and 10. Sec­
ondly, since the bulk of our knowledge of fourth-century mathematics comes 
to us via Euclid's Elements (c.300), we examine that for vestiges of the 
anthyphairetic theory in §§3, 4, 6, and 11, and point out the different 
characteristics of ratio and proportion theory (§§3 and 10). All this discussion 
rests on an appreciation of the historical role of anthyphairesis and an 
understanding of its mathematical implications. The procedure itself, as 
found in the Elements, is described in §6; two basic geometrical calculations 
using it are performed in §7; and the historical evidence for it is set out in §8; 

1 For a description of the application of areas, and texts, see Heath, HGM I, pp. 
150—153; Thomas, SGM I, pp. 186—215; and van der Waerden, SAf pp. 118—124. 

2 Knorr, EEEy p. 1. 
3 Also Zeuthen and Dijksterhuis; see Knorr, EEEy pp. 255—261 (references are given in 

n. 19) and van der Waerden, SA, pp. 175—179. 
4 For references to the question of dating, see Knorr, EEE, p. 297 n. 93. 
5 For the dating of this discovery, see Knorr, EEE, pp. 94—95 and pp. 284-285. Our 

argument will not be altered in any significant way by variations in these dates. 
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§9 shows how the apparently elaborate arithmetic that anthyphairesis de­
mands can be performed within the range of techniques available to fourth-
century Greek mathematics, and how certain important features can readily 
be observed; §10 introduces a new kind of 'literary' evidence for the role of 
anthyphairesis, and §11 describes how it gives a new motivation for the 
classification of irrationals given in Book X of the Elements. Finally, the 
mathematical theory behind anthyphairesis is developed in the Appendix 
using a series of equivalent algorithms. 

It will be superfluous for me to point out the extent to which my inspira­
tion, elucidation, and raw material derive from the studies of Wilbur Knorr. I 
should like to thank him for the interest and information he has extended to 
me during the past years, and his recent enthusiasm over a much more 
modest proposal which has grown into the programme outlined here. The 
second person who has influenced, encouraged, and shared his knowledge 
and enthusiasm with me is Malcolm Brown. Without these two, I should have 
got nowhere. 

Many other people have helped in different ways during the gestation of 
these ideas: colleagues and students, family and friends. The final step of 
writing a first draft was made possible by a visit to the Institute des Hautes 
Etudes Scientifique, Bures-sur-Yvette. Detailed comments were made by 
Malcolm Brown, Jim Franklin, Wilbur Knorr, Barry Mazur, Ian Mueller, and 
Tom Whiteside, and the final result benefitted greatly from their sceptical 
attention. I would like to thank all these people for their help, interest, and 
encouragement. 

2. Arithmetike and logis tike. Within the surviving Greek classical mathe­
matical tradition, number (arithmos) always denotes a positive integer,6 often 
excluding unity, and arithmetic (arithmetike) corresponds to our theory of 
numbers, though these words have a more concrete sense than our use of 
'number', being more connected with the actual process of counting and 
implying the existence of things, possibly idealised units, being counted, as 
with the English words 'couple', 'trio', 'dozen', etc.7 The use of the ratio 
(logos*) of two numbers does appear in the more informal proofs of Archi­
medes but there are no surviving attempts to incorporate the manipulation of 
fractions within a formal treatment. In Euclid's Elements, for example, there 
is very occasional use of 'halves' or 'thirds', as in I, 47, and XII, 10, and later 
interpolated elaborations of the Common Notions, but the explicit operations 
of addition and multiplication of the ratios of two numbers are never 
considered.9 

6 We shall adhere to this terminology throughout the main part of the paper. In the 
Appendix, number will be used in the sense of 'real number'. 

7 For a full discussion of arithmos, see J. Klein (1968), passim. 
8 See von Fritz (1945), pp. 250 and 260—263 for a valuable discussion of the word logos 

and associated words in a mathematical context. 
9 Pace the opinion of van der Waerden, SA, p. 116, that "Theoretical logistic deals 

especially with the study of numbers in their mutual ratios, exactly the sort of thing 
treated in Book V I I . . . "; Book VII is mainly Plato's theoretical arithmetic. See §4. 
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Plato makes frequent reference to mathematics,10 singling out for special 
mention the subject of 'calculation' (logistike and logismos; hereafter we shall 
transcribe these as 'logistic') as a clearly defined and important intellectual 
discipline; sometimes the context gives a contrast with practical calculation 
indicating that a theoretical study corresponding to the practical manipula­
tion of fractions is being considered—the passage from Philebus with which 
we started, is such an example. An important passage in the Republic (524D 
—526C), where he discusses the proper education for the guardians of the 
state, illustrates these points. Here he assigns arithmetic and logistic, with a 
strong emphasis on logistic, to first place in the curriculum: 

It is befitting, then, Glaucon, that this branch of learning 
[logistike] should be prescribed by our law and that we 
should induce those who are to share the highest functions of 
state to enter on that study of calculation and take hold of it, 
not as amateurs, but to follow it up until they attain to the 
contemplation of the nature of number, by pure thought, not 
for the purpose of buying and selling . . . . And it occurs to 
me, now that the study of reckoning (logistike) has been 
mentioned, that there is something fine in it, and that it is 
useful for our purpose in many ways, provided it is pursued 
for the sake of knowledge and not for huckstering . . . that 
it strongly directs the soul upwards and compels it to dis­
course about pure numbers, never acquiescing if anybody 
proffers to it in the discussion numbers attached to visible 
and tangible bodies. 

This passage then continues with what appears to be a clear indication that 
fractional calculations are not reduced to integer arithmetic by dividing up 
the unit: 

For you are doubtless aware that experts in this study, if 
anyone attempts to cut up the 'one' in argument, laugh at 
him and refuse to allow it; but if you mince it up, they 
multiply, always on guard lest the one should appear to be 
not one but a multiplicity of parts. 

Finally the difficulty of the subject is emphasized: 

And, further, as I believe, studies that demand more toil in 
the learning and practice than this we shall not discover 
easily nor find many of them. 

Here are some other instances: Hippias is described as skillful at arithmetic, 
logistic, geometry, and astronomy (Lesser Hippias 366C—368A), and simi­
larly Theodorus is an expert in geometry, astronomy, logistic, music, and all 
the liberal arts (Theaetetus 145A—B); and geometry, astronomy, and logistic 

10 For a general summary of the role of mathematics in ancient Greece, with references, 
see Burkert, LS, Chapter VI, 1, esp. pp. 420—427. For Plato, see Knorr, EEE, pp. 
87—96. 
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are compared with hunting as arts of the pursuit and capture of real meaning 
(Euthydemus 290B—C). Elsewhere Plato gives comparisons between the 
subject-matter of arithmetic and logistic; we shall return to these later.11 

A surviving fragment of Archytas12 corroborates this interest in logistic as a 
theoretical discipline, related to geometry: 

Logistic seems to be far ahead of the other arts in relation to 
wisdom or philosophy, nay it seems to make the things of 
which it chooses to treat even clearer than geometry does; 
moreover it often succeeds even where geometry fails. 

Another instance comes from Aristotle,13 quoted by Iamblichus: 

Those who concern themselves with geometry and logistic 
and the other sciences have from small beginnings made by 
now such progress in a very short time as no other field has 
made in any of the arts. 

There has been considerable discussion of the roles of arithmetic and 
logistic within Greek intellectual activity. The later sense of logistic is quite 
clearly that of practical numerical calculations, and many commentators, 
both ancient and modern, treat this as its only meaning. For example, Proclus 
writes:14 

But others, like Geminus,15 think that mathematics should be 
divided differently; they think of one part as concerned with 
intelligibles only and of another as working with perceptibles 
and in contact with them . . . . Of the mathematics that 
deals with intelligibles they posit arithmetic and geometry as 
the two primary and most authentic parts, while the mathe­
matics that attends to sensibles contains six sciences: 
mechanics, astronomy, optics, geodesy, canonics, and calcu­
lation . . . . Geodesy and calculations are analogous to these 
sciences [i.e. geometry and arithmetic], since they discourse 
not about intelligible but about sensible numbers and fig­
ures . . . . Nor does the student of calculation consider the 
properties of number as such, but of numbers as present in 
sensible objects . . . . 

A similar classification, due to Anatolius, is given by Heron in his Defini­
tions}6 The inadequacy of this interpretation for the subject to which Plato, 
Archytas, and Aristotle are referring is obvious: their study is theoretical 

11 See §10. 
12 Fragment B4, Diels and Kranz (1951—1952) I, p. 438. Burkert, LS, p. 220 n. 14 regards 

this fragment as spurious since "the assertion that logistic helps where geometry fails is 
nonsensical mathematically". By providing a clear meaning for the phrase, we shall 
remove this objection. 

13 Fragment 53, quoted in Burkert, LS, p. 423. 
14 Proclus' Commentary pp. 38-39 (Friedlein's pagination). 
15 Geminus' date and birthplace are uncertain; he was probably a first-century Stoic 

philosopher. See Heath, HGM II, pp. 222—223. 
16 Extracted in Thomas, SGM I, pp. 18—19. 
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(corresponding to Proclus' "concern with intelligibles only"), and must refei 
to a very special kind of calculation, if calculation it be.17 

Our proposals may also help to explain the method by which fractions were 
treated. During the early classical period the Greeks handled fractions as did 
the Egyptians, by expressing proper fractions (with the exception of f) as 
sums of submultiples (e.g. | = \ + \). While there does not appear to have 
been any early theoretical understanding of the other operations on fractions, 
reciprocation (describing by prefixing hypo) and the epimoric fractions (mn + 
m)/mn do seem to have been familiar. These will behave simply with respect 
to an algorithm to be described in §9.18 

3. The notion of ratio. It is a curious, obvious, and unexplained fact that the 
Elements does not contain a precise definition of ratio, though the word logos 
is used frequently with this meaning. Book V, Definition 3 introduces it: 

A ratio {logos) is a sort of relation in respect of size between 
two magnitudes of the same kind, 

but its sense is defined in the celebrated Definition 5 where what is actually 
considered is the equality of two ratios. Definition 6 then introduces retro­
spectively an alternative terminology: 

Let [four] magnitudes which have the same ratio be called 
proportional (analogori), 

and Book V goes on to study proportionality among magnitudes; so propor-
tonality is a relationship that may or may not hold or be relevant. 

To emphasise this difference between ratio and proportion: given four 
objects a, b, c, and d, we can always answer either 'Yes, they are in 
proportion'; or 'No, they are not in proportion'; or 'The idea of proportion is 
irrelevant (since a and 6, or c and d, cannot be compared)'. The procedure of 
Book V does not assign meanings to a:b and c:d separately and then assert 
that they are equal—for this reason, we shall use the abbreviation a:b::c:d 
for proportions, rather than a:b = c:d. A ratio is an independent meaning for 
a:b and, in most treatments, it follows a definition of proportion and 
corresponds to an 'equivalence class' of proportions; this step is in no sense 
considered in the Elements, no alternative definition of ratio apart from V, 
Definition 3 is proposed, and so ratios can only be meaningfully considered 
there within a proportion.19 

17 For details of Greek methods of calculation, see Heath, HGM I, pp. 26—64, and 
Thomas, SGM I, pp. 28—63. We shall not deal with this question here. 

18 For the suggestion that the epimoric terminology derives from the calculation of 
interest, see Burkert, LS, pp. 438—440. But the problem still remains: apparently only 
this restricted set of ratios of numbers was well understood. 

19 Heath, in his Introductory note to Book VI (Euclid, EE II, p. 187) writes "This 
limitation [on geometrical algebra] disappears as soon as we can represent any general 
quantity, corresponding to what we denote by a letter in algebra, by a ratio; and this we 
can do because, on the general theory of proportion established in Book V, a ratio may 
be a ratio of two incommensurable quantities as well as commensurables. Ratios can be 
compounded [i.e. multiplied; see the next section] ad infinutum, and the division of one 
ratio by another is equally easy, since it is the same thing as compounding the first ratio 
with the inverse of the second." This passage is sustained nonsense because, to repeat, 
the idea of a ratio is never defined in the Elements. We shall see later that, even with our 
reconstructed definition of ratio, they cannot easily be compounded. 
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Proportionality among four numbers is defined, independently and diffe­
rently, in VII, Definition 20: 

Numbers are proportional when the first is the same multi­
ple, or the same part, or the same parts, of the second that 
the third is of the fourth.20 

Commentators rarely point out the unsatisfactory nature of this definition: it 
is a vivid, though incomplete, description of four numbers in proportion, and 
not the mathematical criterion needed for the foundation of a theory. (Com­
pare it with V, Definition 5. This latter, as a description, is almost impenetra­
ble, though its latent power and scope are enormous.) But, even as a 
description, it is flawed since the terms in which it is couched—multiple, part, 
or parts—are themselves defined in terms of a basic undefined operation of 
'measuring', in VII, Definitions 3, 4, and 5, parallel definitions to V, Defini­
tions 1 and 2.21 Again we find that although ratio is not mentioned within the 
arithmetical definitions of Book VII, the word appears frequently throughout 
the arithmetical Books VII to IX. 

A third terminology, not formally defined but also used throughout the 
Elements, is based on the phrase translated as 'have (or are) to one another'. 
A good example is VI, 1: 

Triangles and parallelograms which are under the same 
height are to one another as their bases. 

When the different definitions of proportion relating to magnitudes and 
numbers are reconciled in X, 5: 

Commensurable magnitudes have to one another the ratio 
which a number has to a number, 

neither the enunciation, nor the proof (which, as is well known, is deficient in 
its use of the two definitions22) uses the terminology of proportionality 
associated with the formal definitions.23 

In §8 we shall put forward the proposal that a different, explicit definition 
of ratio was in use before the development by Eudoxus of a general theory of 
proportion. The widespread use by Euclid of the terminology of ratios, and 
the inconsistancies in proofs that result from this, then appear as relics of this 
superceeded procedure. 

4. Multiplication and addition of ratios. Operations corresponding to the 
multiplication of ratios do occur within the Elements, with treatments that are 
worthy of note. First observe that although the idea of taking the product of 
two ratios is never defined—nor could it be since ratio itself is not defined, 
but only the equality of two ratios—the operation is used in VI, 23: 

For example, 6 is a multiple of 2,2 is a part of 6,4 is parts of 6. Note how this omits the 
case of 6 and 4. 
See also §6. 
See Knorr, EEE, pp. 253—255. 
Ratios are also 'defined' and manipulated within Euclid's Data and On divisions. See 
Heath, HGM I, pp. 421—430 and Thomas, SGM I, pp. 478—479. 

20 

21 

22 

23 
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Equiangular parallelograms have to one another the ratio 
compounded of the ratio of their sides. 

The terminology is defined in an interpolated corrupt Definition 5: 

A ratio is said to be compounded of ratios when the size of 
the ratios are multiplied into themselves24 

but this is scarcely explicit. 
There could not be a general proposition in Book V on the compound of 

two proportions between magnitudes, since the result might seem to involve 
the product of the magnitudes, which would not in general be defined. 
Particular cases do however occur; significantly,25, the very first proposition 
in Book V to deal with proportions, Proposition 4, proves that (paraphrasing) 
if a:b::c:d9 then ma:nb::mc:nd, describing the compound of a ratio of 
numbers and a proportion between magnitudes. Another case occurs within 
the combined definition and proposition, V, Definition 17: 

A ratio ex aequali arises when, there being several magni­
tudes and another set equal to them in multitude which 
taken two and two are in the same proportion, as the first is 
to the last among the first magnitudes, so is the first to the 
last among the second magnitudes; 

Or, in other words, it means taking the extreme terms by 
virtue of the removal of the intermediate terms. 

This result, that if a\b\\a'\b\ b:c::b':c\ . . . , d\e\\d'\e\ then a\e\\a'\e\ is 
proved as V, 22, and is used in the proof of VI, 23, cited above, where line 
segments are constructed representing the given ratio, so contrived that the 
procedure ex aequali can be applied. A special case of VI, 23 occurs as VI, 14 
and deals with equiangular parallelograms having the same area; the opera­
tion considered here is reciprocation (VI, Definition 2) and, although this 
definition is also corrupt, a satisfactory version of VI, 14 does not pose the 
same problem of meaning as occurred with VI, 23.26 

Multiplication and addition of ratios of numbers would apparently fall 
within the scope of Book VII; indeed closely related results do appear, but in 
a curiously convoluted form. For example, Proposition 10 states: 

If a number be parts of a number, and another be the same 
parts of another, alternately also, whatever parts or part the 
first is of the third, the same parts or the same part will the 
second also be of the fourth. 

24 Heath's translation: "A ratio is said to be compounded of ratios when the sizes of the 
ratios multiplied together make some (?ratio, or size)" (Euclid, EE II, pp. 189—190). 
See also Heath, HGM I, p. 393: "Euclid has never defined 'compound ratio' or the 
'compounding of ratios'; but the meaning of the terms and the way to compound ratios 
[of magnitudes?] are made clear in this proposition." 
Compounding ratios is not to be confused with the composition of ratios, V, 
Definition 14; see that note in Euclid, EE II, pp. 134—135. 

25 In view of the discussion of multiplication of ratios in §9. 
26 See the note to Definition 2 in Euclid, EE II, p. 189. 
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This result, paraphrased, states that (m/ri)a:(m/ri)b::a:b; the case m = 1 is 
treated separately as Proposition 9, with an almost identical enunciation. 
Subsequently, Proposition 17 deals with the case n = 1, but with such a 
different enunciation that a different operation is closely being considered: 

If a number by multiplying two numbers make certain 
numbers, the numbers so produced will have the same ratio 
as the numbers multiplied. 

At no point in the Elements, or in the surviving corpus of classical Greek 
mathematics does anything remotely related to a formal treatment of addition 
of ratios of numbers occur. 

Why then do we not find, within Euclid or elsewhere, a treatment of 
logistic dealing with the basic operations on ratios? Such a question is not out 
of place, since we do find Euclid attempting to introduce some of these 
manipulations. We shall give a reason in §9, where we shall see that what 
would be required for such a book would lie far outside the scope of Greek 
mathematics. 

5. Pre-Eudoxan uses of incommensurable magnitudes and proportion theory. 
There is no evidence of restraint on the part of mathematicians, or concern 
among philosophers over the use of incommensurable ratios in the pre-
Eudoxan period.27 For example, while the fact of incommensurability is 
explicitly dealt with in Plato's Theaetetus (147C—148B), the only place where 
distress over ignorance or error is expressed is in the Laws (819D—820D), a 
late dialogue written during the time of Eudoxus.28 Plato here must surely be 
reacting to new discoveries within an existing theory of incommensurability, 
not expressing his ignorance of the fact or immediate consequences of the 
original discovery of the phenomenon. 

As an example of mathematical developments we have, for instance, the 
impressive classification of quadratic irrationals in Book X of the Elements. 
Pappus29 describes this as follows: 

The aim of Book X of Euclid's treatise on the Elements is to 
investigate the commensurable and the incommensurable, 
the rational and the irrational continuous quantities. This 
science had its origin in the sect of Pythagoras, but under­
went an important development at the hands of the Athenian 
Theaetetus, who had a natural aptitude for this and for other 
branches of mathematics most worthy of admiration. One of 
the most happily endowed of men, he patiently pursued the 
investigation of the truth contained in these [branches of] 
science, as Plato bears witness for him in the book which he 
called after him, and was in my opinion the chief means of 

For discussion of the lack of reliable evidence for a 'foundations-crisis* in pre-Eudoxan 
mathematics, see Burkert, LS, pp. 455—465, and Knorr, EEE, pp. 306—312. 
For a discussion of this passage, see Knorr, EEE, p. 22, esp. n. 11, 94—95, 102 n. 62, 
and 285. 
This commentary survives only in Arabic; see the edition and translation by Junge and 
Thomson (1930), Pt. I, par. 1. 
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establishing exact distinctions and irrefragable proofs with 
respect to the above mentioned quantities. For although later 
the great Apollonius whose genius for mathematics was of 
the highest possible order, added some remarkable species of 
these after much laborious application, it was nevertheless 
Theaetetus who distinguished the powers which are com­
mensurable in length from those which are incommensur­
able . . . as is stated by Eudemus the Peripatetic. 

Although Pappus may be a biased commentator, writing 700 years after the 
event, his reference to Eudemus30 gives validity to this account. At the very 
least, therefore, this passage indicates that Eudemus, as Pappus' source, saw 
no difficulty in results about incommensurable magnitudes being established 
at a time before Book V proportion theory. 

Another important passage is the long fragment of Eudemus describing 
Hippocrates' quadrature of lunes quoted by Simplicius.31 We find that 

He made his starting point, and set out as the first of the 
theorems useful to his purpose, that similar segments of 
circles have the same ratio as the squares on their bases. And 
this he proved by showing that the squares on the diameters 
have the same ratios as the circles. 

The text in Simplicius continues by explaining that ratio here is defined as for 
commensurable magnitudes, though he expresses it only in terms of 'part of; 
several attempts have been made to extract Eudemus' original text from the 
quotation, and some argue that this subsequent passage is a later interpola­
tion. If this is the case, the quoted passage indicates again how Eudemus had 
no hesitation in attributing results on incommensurable ratios to an earlier 
period. 

Further evidence comes from the work of Archytas. In his geometrical 
construction for the duplication of the cube32 we get an explicit manipulation 
of similar triangles, and hence a proportion in which the terms are incom­
mensurable. Then, in his work on music theory, the nonexistence of certain 
ratios of integers implies the existence of incommensurable line segments. 

6, Anthypfaairesis. The 'Euclidean' subtraction algorithm—since the proce-

Eudemus of Rhodes, Aristotle*s pupil, wrote a History of Mathematics that became a 
standard reference throughout ancient times. Although this book, and its companion 
History of Astronomy, is now lost, many passages are quoted by other authors, and 
such passages, once identified, are considered to be our main reliable source of 
information about pre-Euclidean mathematics. 
Extracted in Thomas, SGM I, pp. 234—253. The quotation starts "I shall set out what 
Eudemus wrote word for word, adding only for the sake of clearness a few things taken 
from Euclid's Elements on the account of the summary style of Eudemus, who set out 
his proofs in abridged form in conformity with the ancient practice." The problem of 
identifying the original text is discussed in Heath, HGM I, pp. 183—191. 
Extracted in Thomas, SGM I, pp. 284—289. Again the source, Eutocius, refers it to 
Eudemus. 
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dure clearly antedates Euclid, a more neutral terminology is preferable33 

—appears applied to numbers in VII, 1,2, and 3; while in X, 2, 3, and 4 it is 
used on magnitudes. Here, for instance, is X, 2: 

If, when the less of two unequal magnitudes is continually 
subtracted in turn from the greater, that which is left never 
measures the one before it, the magnitudes will be incom­
mensurable. 

The procedure being described in the phrase 'is continually subtracted in 
turn from*, anthyphairesis?* is as follows: Given two homogeneous magni­
tudes A and B (think of A and B as line segments) with B smaller than A, 
suppose B goes into A some number n0 times leaving a remainder Ax less than 
B; now repeat the procedure with B and Al9 giving rise to a second number n, 
and magnitude Bv If, at some stage, the current smaller magnitude goes 
precisely into the larger magnitude—'measures it' in Euclidean terminology, 
undefined35 and used with the same force as our 'goes into'—then this 
current smaller magnitude measures the magnitude before, which then 
measures the magnitude before it, and so on, and so it measures both original 
magnitudes, which are therefore commensurable (X, Definition 1) and the 
process terminates; this is X, 3. Conversely if the magnitudes are commensur­
able, so have a common measure C, the process will terminate (X, 2). This 
follows because we can see that any common measure of A and B must also 
measure the remainder Ax\ hence the first step replaces A and B by a smaller 
pair B and Al9 which also have common measure C. Repeating this process 
sufficiently many times will decrease the magnitudes until, it can be shown36 

using X, 1, they become less than C, at which a contradiction is manifest. 

A i i 

B , , 
A = n0B + Ax 

ln.niM.1 , I M > , i I . 1 

B ^niAl + Bx Ax 
», m I t „I 

etc. 

FIGURE î 

Similar results hold when the procedure is applied to two numbers, where 
the commensurable/incommensurable distinction is replaced by the existence 
or not of a common factor. Since, at each step, the numbers decrease, we see 

33 In view of Pappus* testimony, the Theaetetan subtraction algorithm' would be a better 
name. That Euclid's role was to downgrade the importance of the algorithm, as we shall 
argue in § 11, adds irony to the misattribution. 

34 We use the word in a substantive form ("the anthyphairesis of two magnitudes"); it 
occurs in Euclid only in a verbal form (e.g." . . , when the less of two unequal 
magnitudes is continually subtracted in turn from the greater . . . **), 

35 Introduced in V, Definition 1: "A magnitude is a part of a magnitude, the less of the 
greater, when it measures the greater**. 

36 An extended study by Knorr of bisection arguments is in progress. 
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immediately in this case that the procedure will always terminate, and the 
remainder at the penultimate step will be the highest common factor. 

We call this procedure 'anthyphairesis', and refer to the sequence 
tt0, zip . . . as 'the anthyphairesis of A and B\ sometimes writing Anth04, B) 
= [ft0, ft1? ft2,... ] . 

7. Anthyphairesis and the discovery of incommensurability. It has been 
suggested that anthyphairesis provided the context for the original discovery 
of incommensurable magnitudes, particularly since the procedure is easily 
performed on a diagonal and side of the pentagon and leads to the inscribed 
pentagram, a figure closely associated with the Pythagoreans.37 The penta­
gram is based on an isosceles triangle whose base angles are double the 
remaining angle. The construction of such a triangle {ABC and AEG are 
typical ones in Figure 2) occurs as IV, 10, and is based on II, 11, the line cut 
in extreme and mean ratio or the 'golden section'. Consequences are that any 
two intersecting diagonals of a pentagram cut each other in extreme and 
mean ratio; all the angles in Figure 2 are multiples of the basic angle BAC, 
36°; and many triangles are isosceles. (Another approach, exploiting the 
symmetries of the figure, uses the many parallelograms to be found within the 

FIGURE 2 

figure.) Hence performing anthyphairesis on the diagonal and side of a 
pentagon (say AB and AD) is the same as anthyphairesis of the mean and 
extreme ratio, and it is immediately read off from the diagram: 

AB = AE + EB = AD + EB where EB = AFis less than AD. 
AD = AE = AF + FE = FG + FE where FE, a side of the 

inner pentagon, is less than FG, a diagonal. 
Thus the anthyphairesis of the larger pentagon leads, after two steps, to the 
anthyphairesis of the inner pentagon, and gives the sequence one, one, one, 
etc.38 Therefore the anthyphairesis continues indefinitely and, using this as 

37 See, for example, von Fritz (1945); but this is strongly disputed by Knorr. See Knorr, 
EEE, pp. 29—36 and 118—126, and Burkert, LS, p. 459. 

38 Note that although the sequence does not terminate, it has been calculated in a finite 
number of steps, all ruler and compass constructible. 
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the criterion of incommensurability, the diagonal and side are incommensur­
able. Or one can argue by reductio: if they were commensurable, their ratio 
could be expressed as a ratio of integers. But this process applied to integers 
terminates, and this is a contradiction. 

The procedure can also be applied to a square where it gives results closely 
related to the 'side and diameter numbers', described by Proclus and Theon 
of Smyrna. Proclus says 

The Pythagoreans proposed this elegant theorem about the 
diameters and sides, that when the diameter receives the side 
of which it is diameter it becomes a side, while the side, 
added to itself and receiving its diameter, becomes a diame­
ter 39 

He then goes on to refer it to Euclid II, 10, thus placing it in a geometrical 
context. The passage might be a vivid description of the modified Meno-lïke 
figure40 shown (Figure 3). From this we can read off the anthyphairesis: 

s d 

FIGURE 3 

diameter of largest square = side of largest square 
H-side of smaller oblique square; 

side of largest square = twice side of smaller square 
+ (diameter minus side of smaller square) 

and, by scaling down the figure to apply now to the smaller square, we see 
that the last remainder is the side of the smallest square in the corner. Hence 
the procedure repeats, giving as anthyphairesis a sequence one, two, two, two, 
etc. 41 

39 See Thomas, SGM I, pp. 132—139 for the full texts. The side and diameter numbers are 
defined by sn+l - sn + d„ </„+, = 2$n + dn, withs0 = d0 - 1. 

40 See the Meno (82A—85C) where Socrates persuades an untutored slave to double a 
square. This type of reconstruction is discussed by Burkert, LS> p. 430; Heath, in Euclid, 
EE I, pp. 400—401; Knorr, EEE, pp. 31—36; and van der Waerden, SA, p. 127, none 
of whom point out the similarity to the Meno figures, the only diagrams occurring in the 
Dialogues. All geometrical reconstructions relating to the side and diameter numbers 
are speculative; but if, as Knorr argues (EEE, p. 174—180) the 'Chinese' proof of 
Pythagoras' Theorem—another variant on the Meno figure—should be interpolated 
between II, 8 and 9 then this indicates a coherent collection of results on squares or 
rectangle situated obliquely within a square. 

41 Again finitely ruler and compass constructible. 
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This is not the place to discuss the relative merits of different proposals for 
a possible context of the first discovery of incommensurability.42 Let me only 
say, briefly, that there are serious objections to an anthyphairetic discovery: 
both the possibility of a nonterminating anthyphairesis, and the subsequent 
implications of this require a greater understanding than arguments based on, 
for example, Plato's Meno figure and relating to the side and diagonal of a 
square. (We shall, however, go on to argue that anthyphairesis did play an 
important part in the fourth-century studies of incommensurability, and in 
the arithmetical techniques of defining, manipulating, and approximating 
ratios of numbers.) Also many scholars now argue that the well-known proof, 
referred to by Aristotle43 in terms that if the side and diameter are com­
mensurable, then one may show that odd numbers equal even numbers, was 
not how it was originally discovered. Whatever actually happened, it makes 
no difference to the thesis argued here. 

8. Anthyphairetic ratio theory. We now consider the suggestion that the 
ratio of two numbers or magnitudes was defined by their anthyphairesis,44 or 
some procedure intimately connected with anthyphairesis, and two ratios are 
equal if they have the same anthyphaireses. For example, we have shown that 
the anthyphairesis of the diameter and side of a pentagon is a sequence of 
ones, and of a square the sequence: one, two, two, t w o , . . . . 

For ratios of numbers and of commensurable magnitudes, the process gives 
rise to a finite sequence of terms of which only the first may be zero; in fact 
anthyphairesis is precisely the procedure used to determine their common 
measure (VII, 2 for numbers, X, 3 for magnitudes). Each step of the operation 
is straight-edge and compass constructible when applied to lines and rectilin­
ear areas, using the theory of application of lines45 and areas, whilst con­
structible extensions to further kinds of magnitudes such as circles or polyhe­
dral solids would have been consequences of solutions of the classical Greek 
problems of squaring the circle or doubling the cube. Consideration of the 
nonterminating anthyphairesis of incommensurable magnitudes would lead to 
serious philosophical problems46 and technical mathematical difficulties, but 
we have shown how some important ratios are determined in a finite number 
of constructible steps, and there would be no difficulty in handling the 
procedure at an informal level, as we shall demonstrate. 

Let us examine the evidence that such a definition was used: 
First, a passage from Aristotle's Topics (158b29): 

It would appear that in mathematics too some things are 
difficult to prove owing to the want of a definition, for 
instance that the line parallel to the side and cutting the 
plane figure divides similarly the base and the area. But once 

42 See Knorr, EEEf pp. 21-61 for an account of the discovery, with references, and 
especially pp. 29—36 for a discussion of anthyphairesis. 

43 Prior Analytics I. 23,41a29, extracted in Thomas, SGM I, pp. 110—111. 
44 See Knorr, EEEt pp. 255—273 for a full account. Note, however, our main point that 

this can be interpreted as better evidence for an earlier theory of ratio, rather than 
proportion. 

45 Propositions 1—3 of Book I consistute a complete theory of application of Unes! 
46 See §11. 
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the definition is stated, the said becomes immediately clear. 
For the areas and the bases have the same antanairesis; such 
is the definition of the same ratio. 

In commenting on this passage, Alexander of Aphrodisias47 explains that 
the figure is a parallelogram, that 'similarly' means 'proportionately', and that 

the said expressed in such-like terms is not familiar, but it 
becomes familiar once the definition of 'in proportion' is 
stated, that the line and the space are divided in proportion 
by the drawn parallel. Now this is the definition of propor­
tionals which the ancients used: those magnitudes are in 
proportion to each other (and similar to each other) of which 
the anthyphairesis is the same. But he has called anthyphaire­
sis antanairesis.48 

Here we have Aristotle referring to the result occurring at VI, 1: 

Triangles and parallelograms which are under the same 
height are to one another as their bases. 

This proposition is the step needed to express the geometrical properties of 
similar plane49 figures in terms of ratio, and the most important of a small 
group of propositions needed to develop the whole of Book X.50 Euclid 
proves it using the definitions of Book V by showing that V, Definition 5 
applies directly; Aristotle sketches in one line an earlier definition and proof; 
Alexander annotates, amplifies, and explains Aristotle's outline, including 
what might seem to be, judging by its context, a direct quotation from 
Eudemus' history:51 "those magnitudes are in proportion to each other of 
which the anthyphairesis is the same." And, as Aristotle observes, the idea of 
this key proposition is indeed immediately clear, since the operation of 
performing anthyphairesis on the two parallelograms generates the 
anthyphairesis of their bases, and vice-versa (Figure 4). 

FIGURE 4 

47 

48 

50 

In Topica, ed. M. Wallies, p. 545. 
The parenthetic phrase is not in all surviving manuscripts. The etymology of the two 
words is roughly as follows '.anthyphairesis — anto-hypo-hairesis, 'reciprocal sub-trac­
tion'; antanairesis = anti-ana-hairesis, 'reciprocal re-traction'. Nicomaches uses the fur­
ther variation antaphairesis. See Knorr, EEE, p. 290 n. 26, for further details and 
references. 
Note also how the same result for solids is stated by Euclid, at XI, 25, in precisely the 
Aristotelian form. 
See Knorr, EEE, pp. 259 and 262—270. 

51 Recall Eudemus* "summary style"; but see note 85. 
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The second kind of evidence is arithmetical. While we do not know how 
early Greek mathematicians performed their calculations, some of the results 
we do know indicate that they must have been using and understanding, in a 
practical way, techniques generating the convergents of a continued fraction 
expansion,52 a procedure closely related to anthyphairesis. Here are some 
examples. 

(a) Aristarchus of Samos makes two assertions in On the Sizes and 
Distances of the Sun and Moon;53 

'But 7921 has to 4050 a ratio greater than that which 88 has 
to 45. 
But 71755875 has to 61735500 a ratio greater than that which 
43 has to 31 : 

(b) Archimedes, in Measurement of a Circle54 quotes without explanation 
the result that (paraphrasing in our notation) 

265 1351 
T 5 3 < V 3 < W 

(c) Hero, in his report of Archimedes' further calculations, Metrica I,55 

says: 

Archimedes proves in his work on plinthides and cylinders 
that of every circle the perimeter has to the diameter a 
greater ratio than 211875:67441, but a lesser ratio than 
197888:62351. But since these numbers are not well-suited 
for practical measurements, they are brought down to very 
small numbers, such as 22:7. 

(d) The side and diameter numbers give a procedure for generating succes­
sive approximations by ratios of numbers to the ratio of a side and diameter 
of a square. Such values were used by Aristarchus, where 7:5 is calculated as 
a lower bound for the ratio diameter:side, and by Hero, who uses 17:12. 

(e) Knorr elucidates two further instances, in a Scholium to Euclid II, 11, 
and a passage from pseudo-Aristotles' Indivisible Lines,56 

We shall explain the manipulations implicit in these examples in the next 
section and the Appendix. Further evidence of a different kind for 
anthyphairetic ratio theory will be considered in §§10 and 11. 

9. Arithmetical implications of anthyphairesis. At first sight, our proposals 
might seem inconsistent. We have argued that, on the one hand, manipula­
tions of fractions were not admitted within the classical mathematical corpus, 
that any attempt to "cut up the 'one' " would be rejected by "the experts". On 

52 

53 

54 

55 

This will be explained further in the next section and the Appendix. 
On the sizes and distances of the sun and moon extracted in Thomas, SGMII, pp. 4—15. 
Extractd in Thomas, SGM I, pp. 316—333. 
Metrica 1, extracted in Knorr (1976) p. 115. The numbers occurring in this extract are 
corrupt:the alleged lower bound is in fact an upper bound, while the upper bound is a 
poorer approximation than 22:7, calculated by Archmimedes in his Measurement of a 
circle. See Knorr, op.cit., for a discussion of interpretations and new proposals. 
See Knorr, EEE, pp. 34—36. 
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the other hand, we have arithmetical evidence of techniques for approximat­
ing ratios, apparently based on anthyphairesis, and these would therefore 
appear to require the manipulation of 'continued fractions', manipulations 
that would seem to presuppose the free use of ordinary fractions.57 

To illustrate: the statement that the anthyphairesis of the diameter and side 
of a square is one, two, two, etc., can be translated into a statement about real 
numbers, that 

V 2 = l + L . 

Truncating this before the successive addition signs and simplifying the 
expressions obtained gives the sequence of fractions 

1 1 - 2 1 _ 7 J7 
Vl + 2 2 ' 1 + 2 + | 5 ' 12 , e t C " 

i.e. the quotients of successive side and diameter numbers. The other exam­
ples considered in the previous section can be treated in the same way. But 
how could such calculations be formulated and performed if fractional 
arithmetic was prohibited—not to mention the intrusion of real numbers?58 

We shall now show that it is possible to perform these operations within the 
Greek context. At the outset I must emphasize that the algorithm described 
here is not proposed as a reconstruction of an original procedure; it is in­
troduced only to demonstrate that the calculations are possible, and that one 
can illustrate, conjecture and prove many properties of anthyphairesis 
straightforwardly and naturally within the setting of the Elements. 

We proceed by describing a problem, an algorithm59 for its solution and an 
illustration of its application: 

PROBLEM 1. Given a ratio 0, find ratios of numbers p:q approximating 0, 
possibly with an indication of whether they are under- or overestimates. 

ALGORITHM 1. If p:q is an underestimate and r:s is an overestimate for 0, 
then/? + r:q + s will be a better approximation than that original estimate 
lying on the same side of 0. Starting with 0:1 as underestimate and 1:0 as 
overestimate will thus generate a sequence of estimates of rapidly increasing 
accuracy. The terms occur in runs of under- and overestimates, and the 
estimates ending each run will be the best ones to consider. This will give an 
alternating sequence of under- and overestimates. 

57 Some of the theory underlying anthyphairesis is developed in the Appendix, and some 
appreciation of this theory will be essential for an understanding of what follows. 
Continued fractions are considered in §A3. 

58 These criticisms apply particularly to the constructions of Taylor (1926) and Thompson 
(1929). 

59 This enunciation is arranged to coincide exactly with the version given in the Appendix, 
§A2 except that/? and q, and r and s have been transposed. This means that the starting 
estimates chosen here would be highly implausible in a Greek context; but without 
change of substance and emphasis, they could be replaced by estimates of the type n0:1 
and n0 + 1:1, where n^ is the first term of the anthyphairesis. Since we are not claiming 
to give a literal reconstruction of an original procedure we shall not make this 
modification. Variants of this algorithm are discussed in Knorr (1976) pp. 136—139. 
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This algorithm is based on the fact that if p:q < r.s, thenp:q < p + r:q + 
s < r.s. While such a result does not appear in Euclid, results very close to it 
are considered as a central part of proportion theory. For example, the result 
is proved in the case of equality: if p:p'::q:q':\ . . . ::/•:/•' then (p + q 
+ • * * +r):(p' + q' + • » * 4- r')::p:p\ This occurs both in the older 
arithmetical form (VII, 12) and, with an almost identical enunciation, in a 
version relating to magnitudes (V, 12); and a similar proposition dealing with 
subtraction also occurs in both books (VII, 11 and V, 19). Inequalities 
between ratios are not considered in Book VII; they are handled in Book V, 
starting at Proposition 10 (where Euclid assumes, without justification, that 
ratios are totally ordered by size). The result we are using can now be derived 
immediately: paraphrasing, if p:q::x:s, then x < r, sop:q::p + JC:# + s < p 
+ r:q + s, and the corresponding right hand inequality follows similarly.60 

Some results of the algorithm are exhibited so strikingly in any example 
that they would clearly be worth investigating, though it seems improbable 
that any kind of general theory or formal verification of these properties 
would be within the scope of early Greek mathematicians. As an illustration, 
consider the following calculation of successive approximations to the ratio of 
the diameter and side of a square. 

We start with diametenside lying between 0:1 and 1:0, and these generate 
the new ratio 1:1; we find diameter:side lies between 1:1 and 1:0 and these 
generate 2:1 which is an overestimate, so diameter:side now lies between 1:1 
and 2:1. Setting this out and continuing for a few steps we get: 

diameter:side lies between this generating a new 
underestimate overestimate underestimate overestimate 

_ _ _ 
1:1 1:0 2:1 
1:1 2:1 3:2 
1:1 3:2 4:3 
4:3 3:2 7:5 
7:5 3:2 10:7 
7:5 10:7 17:12 
etc. 

From this and other examples61 we see the following general patterns 
emerging: 

60 Ian Mueller has pointed out that this argument is fallacious since it requires a fourth 
proportional to three given numbers, and this will not normally exist, e.g., as in 2:3::JC:4. 
The argument can be maintained by passing to commensurable geometrical magni­
tudes; or it can be reworked so as to avoid this step, for instance by passing via an 
extension of VI, 16 thatp:# < r.s is equivalent tops < qr. In any case, I am arguing 
here for the possibility of a kind of experimental arithmetical exploration that would be 
carried out without great regard, to begin with, for the formal justification of each step. 

61 See Fletcher (1973) for many other examples illustrating approximating roots and 
logarithms, the diatonic and other scales with unequal or equal treatment, features of 
the calendar, etc. Taylor (1926) and Thomson (1929) also give examples and remark on 
some of the following characteristics in an interpretation of passages of Plato and 
Aristotle which, in mathematical terms, is closely related to our proposals. But their 
work is vitiated by their unremitting imposition of anachronistic procedures and 
preoccupations, without due consideration for the historical record. 
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(a) The sequences of under- and overestimates generated by the algorithm 
converge rapidly towards each other. 

(b) Under- and overestimates occur in runs, and the run-end estimates in 
this case are the side and diameter numbers. 

(c) Alternate pairs of estimates satisfy simple relationships. For example, 
the successive run-end estimates always satisfy 

1 X 1 - 1 X 2 - - 1 ; 3 x 5 - 2 x 7 = + 1 ; 7 x 1 2 - 5 x 1 7 = - l ; e t c . 
(d) The length of each run of under- and overestimates is the corresponding 

term in the anthyphairesis of the ratio, which therefore can be read off from 
the table; here Anth(diameterrside) = [1, 2, 2, 2, . . . ]. 

(e) If any ratio in the scheme is chosen, and the algorithm is performed on 
that ratio, the original calculation will be duplicated up to the chosen ratio, at 
which point it will terminate. The run-end ratios are particularly significant; 
restating this observation for them, in terms of anthyphairesis, as illustrated 
by this example, we see V 2 : 1 = H> 2> 2> 2> • • • 1; 1:1 = [1]; 3:2 = [1, 2]; 
7:5 = [1, 2, 2]; 17:12 = [1, 2, 2, 2], etc.62 

(f) The anthyphairesis of any incommensurable ratio of the form63 V/>: V# 
with p > q becomes periodic with the second term, and its periods exhibit a 
characteristic palindromic pattern: 

\/P:V4 = [no> nv n2> - • • 9 n29 nv 2n09 nv n29 . . . , nl9 nl9 2n09 . . . ] . 

(g) The anthyphairesis of any ratio of the form (p/q + ^(r/s)):l eventu­
ally becomes periodic, so can be calculated in a finite number of steps.64 

(h) The algorithm applied to the reciprocal of a ratio is closely related to 
the algorithm applied to the ratio. For example, if Anth(A9 E) = 
[n0, nl9 nl9... ], and if A < B9 then n0 = 0 and Anth(2?, A) = [nl9 n2,... ]; 
or if A > B, then n0 =£ 0 and Anth(i?, A) = [0, nQ9 nl9 n29 . . . ].65 

(i) The connection between the ordering of ratios66 and their anthyphairesis 
has a complicating feature that is clearly illustrated by the following exam­
ples: If n < m then [ / ! , . . . ]< [m, . . . ], while [p9n9.. .]> [p9m, ... ], and 
[p9 q9 n9. . . ] < [p9 q9 m9 . . . ], and so on, alternately, whatever numbers/?, q9 

etc. precede, and whatever different finite or infinite sequences succeed the 
first different entries n and m. 

Properties (a) to (e) will be proved and discussed in the Appendix, using an 
interpretation of this algorithm in cartesian coordinates due to H. J. S. Smith; 
(f) and (g) were proved by Euler, Lagrange, and Galois; (h) is obvious; and (i) 
can be deduced easily. 

62 This shows explicitly the calculation of the convergents of the continued fraction 
expansion of the real number y 2 is possible. Note also the symbolic use of the 
anthyphairetic definition of a ratio: 10:7 * [1, 2, 2, 2], etc. 

63 By yjp'.yjq we mean the ratio (side of a square of area/?):(side of a square of area q\ 
constructed using II, 14, for example; see notes 1 and 90. We shall always suppose 
hereafter that the two sides are incommensurable, and/? > q. 

64 This property is mentioned at this point for convenience; it is most unlikely to have 
been spotted by experiment. See §11 for a further discussion. 

65 The occurrance of n0 = 0 in any application could therefore be avoided by reciprocat­
ing. 

66 Here we follow Euclid in assuming, without further comment or proof, that ratios are 
totally ordered by size. 
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If anthyphairesis, or an associated procedure, was established as a method 
for defining ratio, an obvious problem would suggest itself, but would lead to 
the following surprising negative conclusion: 

(j) There appears to be no connection whatsoever between Anth(/?, q), 
Anth(>, s), and Anth(pr, qs) or Anth(pr + qs, qs). In other words, 
anthyphairesis is only very tenuously connected with the addition and multi­
plication of fractions.67 

This is a characteristic but surprising feature of anthyphairesis. The first 
algorithm on this problem, due to A. Hurwitz, dates from 1891 and only 
relates 9 to 20; and it is only relatively recently, with the increased under­
standing of algorithmic procedures arising from the interest in high speed 
computation, that simple general algorithms have been developed.68 The 
difficulty is a reflection of the deep and intractable feature that, apart from 
elementary properties of commensurable ratios and quadratic surds, and a 
few isolated results, almost nothing is known about the behaviour of the 
terms occuring in the anthyphairesis, even of a binomial like (\/2 + y3):l, 
or the simplest cube root Vl :1, the solution of the Delian problem, except 
that they can be calculated by simple arithmetical procedures. (For example, 
it is still not known whether the terms in these particular expansions are 
bounded, or normally distributed.) Gauss attempted to calculate the probabil­
ity distribution functions of the terms of the anthyphairetic sequence but his 
first numerical calculations led him to write, on February 5, 1799, that "Jam 
complicatae evadunt, ut nulla spes superesse videatur".69 Nearly two years later, 
on October 25, 1800 he recorded in his celebrated notebook that "Problema e 
calculo probabilitatis circa fractiones continuas olim frustra tentatum solvi-
mus".70 His success was only partial, however, as he describes in a letter71 to 
Laplace on January 30th 1812: 

Je me rappelle pourtant d'un problème curieux, duquel je me 
suis occupé il y a 12 ans, mais lequel je n'ai pas réussi alors à 

67 See Khinchnin (1964), p. 20: "There is, however, another and yet more significant 
practical demand that the apparatus of continued fractions does not satisfy at all. 
Knowing the representations of several numbers we would like to be able, with relative 
ease, to find the representations of the simpler functions of these numbers (especially, 
their sum and product). In brief, for an apparatus to be suitable from a practical 
standpoint, it must admit sufficiently simple rules for arithmetical operations; otherwise 
it cannot serve as a tool for calculation. We know how convenient systematic fractions 
are in this respect. On the other hand, for continued fractions there are no practically 
applicable rules for arithmetical operations; even the problem of finding the continued 
fraction for a sum from the continued fraction representing the addends is exceedingly 
complicated, and unworkable in computational practice". 

68 See A. Hurwitz (1891), M. Hall (1947), R. W. Gosper (1972) and G. N. Raney (1973). I 
am indebted to Mike Paterson for explaining these results lucidly to me and staging a 
demonstration of their operation with Meurig Beynon and a small programmable 
calculating machine. Here is one addition that they evaluated: [1, 1, 1 , . . . ] + [0, 3] = 
[1, 1, 19, 1, 1, 3, 1, 1, 19 , . . . ]. 

69 "They come out so complicated that no hope appears to be left." See Gauss, Werke, vol. 
X, pp. 553—554. 

70 "We are solving problems from the calculus of probabilities about continued fractions 
that once we attempted in vain." Op.cit., p. 552. 

71 Qp.c//., pp. 371—374. 
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résoudre à ma satisfaction. Peut être daignerés vous vous en 
occuper quelques momens: dans ce cas je suis sur que vous 
trouvères une solution plus complete. Le voici. Soit M une 
quantité inconnue entre les limites 0 et 1, pour laquelle 
tou[te]s les valeurs sont ou également probables ou plus ou 
moins selon une loi donnée: qu'on la suppose convertie en 
une fraction continue 

M = 1 

1 
af + a" + etc. 

Quelle est la probabilité, qu'en s'arretant dans le dével­
oppement à un terme fini, a(n\ la fraction suivante 

1 

a(n + 2) + e t c 

soit entre les limites 0 et x? Je la désigne par P(n, x) et j'ai en 
supposant pour M toutes les valeurs également probables 

P(0, x) = x; 

P(l, je) est une fonction transcendente dependante de la 
fonction 

2 3 x 
que Euler nome inexplicable et sur la quelle je viens de 
donner plusieurs recherches dans un mémoire presenté à 
notre société des sciences] qui sera bientôt imprimé. Mais 
pour les cas ou n est plus grand, la valeur exacte de P(n, x) 
semble intraitable. Cependant j'ai trouvé par des raisonne­
mens tres simples que pour n infini on a 

P(n, x) = log(l + x)/log 2. 

Mais les efforts que j'ai fait lors de mes recherches pour 
assigner 

P(n, x) - log(l + x)/log 2 

pour une valeur tres grande de n, mais pas infinie, ont été 
infructueux. 

Gauss never published his "raisonnemens tres simples", and the first proof of 
the assertion was published in 1928 by Kuz'min.72 Further developments of 
the problem are summarised in a comprehensive modern treatise on the 
theory of computation by Knuth73 and he concludes his section on 
anthyphairesis with: 

In view of the historical importance of Euclid's method, it 

72 See Khinchin (1964), pp. 71—83. 
73 Knuth (1969), §4.5.3. 
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seems fair to state that a determination of the asymptotic 
behaviour of rn [a parameter closely related to the number of 
terms in the anthyphairesis of a commensurable ratio] is the 
most important problem in the analysis of algorithms which 
is still unsolved. The world's most famous algorithm deserves 
a complete analysis! 

Our proposal, in §11, that Book X of the Elements may have been the first 
venture into this still uncharted jungle adds a new spice to the history of 
ancient mathematics. 

Finally, the experience gained by experimenting with the algorithm leads to 
an important insight: 

(k) The algorithm manipulates inequalities between ratios and this might 
suggest the theoretical tool, that it may be easier to prove (or define) equality 
between ratios by showing that inequality leads to a contradiction.74 Similarly 
the alternating run-end sequences might lead to the idea of the exhaustion 
proofs of Book XII. 

While our algorithm shows that the development of arithmetical procedures 
for performing anthyphairesis was well within the technical capacity of Greek 
mathematics, it seems highly implausible that they would have been able to 
give general proofs of results like (c), (f), and (g), since it is difficult to 
conceive of such proofs without using the much later developments of algebra 
and induction. Particular cases are possible; for example all properties of the 
algorithm for the example given of V^-l can be verified using the geometri­
cal analysis of the side and diameter given in the previous section. In fact the 
quotation from Proclus describing sides and diameters75 continues with 

And this is proved graphically in the second book of the 
Elements by him [sc. Euclid], 

followed by an almost verbatim quotation of II, 10; this proposition can be 
used to prove the properties. This example can be generalised to prove 
V(«2 + 1):1 = [n, 2n, In,. . . ]; the result that V 3 : 1 = I1* 1, 2, 1, 2, — ] 
can be proved geometrically and generalised two ways, to *\/(n2 — l):l = [(n 
- 1), 1, 2(n - 1), 1, 2(/i ~~ 1), . . . ] and V("2 + 2):1 - [n, n, In, n, 2n,... ]. 
These results are all special cases of the yet more general result that ^/(n2m + 
2n):y/m = [n, m, 2n, m, 2/i,. . . ] which itself can be proved geometrically by 
elaborations of the same method, based on manipulating gnomons around 
squares in the style of Book II of the Elements.76 Ratios whose periods 
contain three terms, therefore of the form [n, m9 m, 2m, m, m, 2m,... ], can 
be evaluated by the same methods; but, beyond this, the technique rapidly 

74 The reconstruction of a proportion theory intermediate between anthyphairesis and 
Book V, Definition 5, using inequalities and based on an examination of Archimedes* 
work, is described in Knorr (1977); an expanded version of this is to appear. A 
comparison of the formal detailed proofs of the propositions of proportion theory using 
anthyphairesis and V, Definition 5 is given in Appendix B of Knorr, EEE, pp. 
332—344. 

75 See §7 for the beginning of the quotation. 
76 The procedure is described in a forthcoming paper, Book II of Euclid9s Elements and a 

pre-Eudoxan theory of ratio, (to appear). 
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becomes too cumbersome and examples have to be treated case-by-case using 
different methods.77 

10. Theoretical and practical logistic We have argued that there was a well 
developed, though possibly informal, use of anthyphairesis to define ratio 
before the development of Book V-style proportion theory; we now propose 
that theoretical logistic (logistike) should be interpreted as the study of ratio 
during this period. This accords precisely with the usages we have considered 
in Plato, Archytas, and Aristotle, where it appears as an art closely related to 
geometry, in which important advances have recently been made, and which 
embodies the theoretical aspects of calculations.78 Let us check this interpre­
tation against two further passages of Plato where descriptions of the scope of 
arithmetic and logistic are given. First, at Gorgias 45IB: 

Suppose some one asked me about one or other of the arts 
which I was mentioning just now: Socrates, what is the art of 
numeration (arithmetike)! I should tell him, as you did me a 
moment ago, that it is one of those which have their effect 
through speech. And suppose he went on to ask: With what 
is its speech concerned? I should say: With the odd and even 
numbers, and the question of how many units there are in 
each. And if he asked again: What art is it that you call 
calculation (logistike)*! I should say that this also is one of 
those which achieve their whole effect by speech. And if he 
proceeded to ask: With what is it concerned? I should 
say—in the manner of those who draft ammendments in the 
Assembly—that in most respects calculation is in the same 
case as numeration, for both are concerned with the same 
thing, the odd and the even; but that they differ to this 
extent, that calculation considers the numerical values of odd 
and even numbers not merely in themselves but in relation to 
each other. 

Arithmetic as the study of the odd and the even is a clear description of 
Pythagorean pebble arguments,79 but what, hitherto, could one make of the 
sense in which logistic is being used? This description must have had a clear 
meaning to Plato and his audience since we find it repeated almost word for 
word, in the Charmides (166A): 

Thus reckoning (logistike), I suppose, is concerned with the 
77 See van der Waerden, SA, pp. 144-146. Further discussion, with examples and 

references, are given in Knorr, EEE, pp. 118—126. General proofs of the results of this 
section, together with a table giving the anthyphairesis of \/p: 1 for 2 < p < 50, are 
given in Davenport (1968), pp. 77—-113. 

78 The statement that Theodorus is an expert in logistic (Statesman, 257A) and that he has 
taught the subject to Theaetetus (Theaetetus 145C-D) might seem at variance with our 
assigning the anthyphairetic definition of ratio to Theaetetus (see note 33). But the 
realisation that the procedure would constitute a definition of ratio would surely have to 
follow, perhaps as a late development, from familiarity with the use of the technique 
within geometry and number theory. (I am grateful to Myles Burnyeat for pointing out 
an error in an earlier version of this note.) 

79 See Burkert, LS, pp. 427—438, and Knorr, EEEt pp. 131—169. 
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even and the odd in their numerical relations to themselves 
and one another, is it not? 

There are striking features of the anthyphairetic definition of ratio to which 
this could be referring. First the ordering by size of two ratios does not follow 
a simple lexicographical rule, as with expansions of numbers to some given 
base, but has this rule reversed in the odd numbered places of the 
anthyphairetic sequence80—here we have "the even and the odd in their 
numerical relations to one another". Secondly, taking the successive run-end 
approximations generated by the anthyphairesis, we get increasingly accurate 
alternate under- and overestimates for a given ratio81—"the even and the odd 
in their numerical relations to themselves"—and finally the arithmetical 
relationships like82 3 x 5 — 2 x 7 = + 1 give a further meaning for "to one 
another".83 

It might be objected that these explanations are far too elaborate and 
complicated, and that Plato was referring to aspects of the study of odd and 
even that is preserved for us in the Elements at VII, Definitions 6—10 and 
IX, 21—34. But these are elementary propositions, deduced directly from 
straightforward definitions, and do not fit the description of "studies that 
demand more toil in the learning and practice we shall not discover easily nor 
find many of them" {Republic 526B; see §2). And further, all the features that 
we have been discussing—an independent definition of ratio, logistic as the 
study of ratio, the connection between logistic and geometry, the introduction 
of odd and even, and under- and overestimates—come together in two other 
long and important passages, from which we give short excerpts. At Republic 
509D—510E, Plato develops an involved geometrical analogy of a line 
divided in a given ratio, with each section again subdivided in the same ratio, 
to represent the relation between visible and intelligible objects. Glaucon 
remarks that he cannot understand, and the passage continues: 

Well, I will try again for you will better understand after this 
preamble. For I think you are aware that students of geome-

80 See §9, paragraph (i). 
81 See§9(a). 
82 See§9(c). 
83 Here is an additional way of differentiating between the even, the odd, and unity and 

elucidating "this trifling matter, of distinguishing one and two and three" {Republic 
522C) using anthyphairesis:We have seen in §7 that the anthyphairesis of the diagonal 
and side of a pentagon yields the sequence one, one, one, . . . ; and a slight modification 
of the first step the procedure for a square gives the anthyphairesis of side plus diagonal 
to side to be two, two, two , . . . . What about further such examples? It is indicated at 
the end of §9 that it can easily be guessed from arithmetical studies and proved that 
(n + V(*2 + 1)): * * [2/I> 2w> 2/i , . . . ], and this is well within the scope of early Greek 
mathematics; but a vast amount of arithmetical exploration would be needed to 
produce a similar result whose terms are odd. In fact—as we now can work out 
algebraically—if 9:1 * [n, n, n,... ], then 0 = \{n + y(/i2 + 4)), and the \ which here 
does not cancel out introduces unexpected complications into the calculations. To 
illustrate, (3 + y/\3)\\ = [6, 1, 1, 1, 1, 6 , . . . ], | V 1 3 : 1 - V> *> 4> 14> 4, 1, 2 , . . . ], §:1 
= [1, 2], but |(3 + V 1 3) : ! = [3, 3, 3 , . . . ]. Geometrically, the solution can be found as 
a fairly straightforward extension of the line divided in extreme and mean ratio; see the 
paper referred to in note 76 and a forthcoming paper A generalisation of the golden 
section. 
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try and reckoning (logistike) and such subjects first postulate 
the odd and the even and the various figures and three kinds 
of angles and other things akin to these in each branch of 
science, regard them as known, and, treating them as ab­
solute assumptions do not deign to render any further 
account of them to themselves or others, taking it for granted 
that they are obvious to everybody. 

And in the Protagoras (356A—357B) Plato develops an analogy with weight­
ing, also introduced in the Charmides after the passage quoted above, consid­
ering the weighting of pleasure and pain against themselves and against each 
other. The procedure is described by an analogy with what is clearly logistic 
although this word is not explicitly used: 

If the saving of our life depended on the choice of odd and 
even, and on knowing when to make a right choice of the 
greater and when of the less—taking each by itself or com­
paring it with the other, and whether near or distant—what 
would save our life? Would it not be knowledge; a knowl­
edge of measurement, since the art here is concerned with 
excess and defect, and of numeration, as it has to do with 
odd and even? 

The subsequent change from ratio theory to proportion theory also gives a 
possible explanation of the development of the meaning of logistic into 
practical calculation, and this would be worth investigating further. When 
ratio theory, based on anthyphairesis, was abandoned for Book V-style 
proportion theory,84 the interest in anthyphairesis as a mathematical proce­
dure would greatly diminish, and the details of its erstwhile connection with 
ratio would be forgotten.85 The precise meaning of the word ratio would be 
abandoned, then forgotten—V, Definition 3 would set the seal on that—and 
all results stated in terms of ratio would be interpreted and proved using the 
technique of the powerful new proportion theory. For examples of this shift 
of emphasis both Aristotle's Topics passage and Hippocrates' Quadrature of 
Lunes refer to ratio, but Alexander's commentary and the interpolated 
passages in Simplicius recast these statements in proportion theory.86 

84 Becker, Knorr van der Waerden point out difficulties in establishing the proofs of basic 
results in ratio theory—in particular, and most unexpectedly, in proving that A : C = 
B:C implies A = B. Knorr argues (EEE, pp. 261—273 and 332—344) that this would 
lead to the changeover to Book V-type proportion theory. 

85 Thus, in Euclid we find it only in VII, 1—3, X, 2—4, and as a technique to be applied 
very occasionally within proofs. One view of the consequences of its use, in a restricted 
form, in V, 8 is given in Zeeman (1974). This proposition stands out from its context, 
both in content and style; but Malcolm Brown believes on stylitic grounds that it comes 
from an older, pre-Euclidean source, contrary to what Zeeman asserts. 

86 The passage in Alexander's commentary: "Those magnitudes are in proportion to each 
other of which the anthyphairesis is the same", which we tentatively attributed to 
Eudemus, would appear to contradict this, since we would also expect Eudemus to give 
the ancient ratio-theoretic definition. But, as Knorr observes (EEE> p. 230): "Alexander 
nowhere explicitly cites this work [Eudemus' History of Mathematics]; but his discus­
sion of Hippocrates' quadrature suggests that materials from Eudemus did reach him 
via intermediaries. See Simplicius, In Physica, ed. H. Diels, p. 56—57." This introduces 
a possibility of corruption. 
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Notwithstanding this, the terminology of ratios was retained, probably be­
cause of its convenience and didactic value but, as its anthyphairetic meaning 
was forgotten, it would come to be thought that only the ratio of two 
commensurable magnitudes could be defined, in terms of 'multiple, part, or 
parts'. Eventually, since the ratio of commensurable magnitudes is a ratio of 
numbers, logistic, or ratio theory, would be perceived only as the study of 
manipulations of fractions;87 and any vestigial connection with anthyphaire-
sis that remained would be rejected because of the near impossibility of 
relating anthyphairesis with addition and multiplication.88 

11. A new perspective on Book X. We have interpreted Pappus' testimony89 

that 
[Theaetetus] was in my opinion the chief means of establish­
ing exact distinctions and irrefragable proofs with respect to 
[the commensurable and the incommensurable, the rational 
and the irrational continuous quantities] 

as explicit evidence for assigning to Theaetetus the development of a proce­
dure for defining ratio (logos) using anthyphairesis, and proposed that logis-
tike was the name given to this theory. Now let us examine the associated 
usage of alogon, without ratio. The word is introduced in X, Definition 3: 

With these hypotheses [i.e. the Definitions 1 and 2 of com­
mensurable/incommensurable and commensurable/in­
commensurable in square], it is proved that there exist 
straight lines infinite in multitude which are commensurable 
and incommensurable respectively, some in length only, and 
others in square also, with an assigned straight line. Let then 
the assigned straight line be called rational (rheton), and let 
those straight lines which are commensurable with it, 
whether in length and in square or in length only, rational, 
but those which are incommensurable with it irrational 
(alogori). 

Denote the rational, the assigned straight line, by p; then another line is 
called rational (rheton, expressible) if it is of the form90 (p/q)p or -\/(p/q)p; 

87 See the quotation from Proclus in §2. The view that 'elements' were an aspect of the 
study of anthyphairetically defined ratios is developed in a forthcoming paper Equa­
tions, neusis-constructions, and Euclid''s elements: An anthyphairetic interpretation. 

88 Periodically the anthyphairetic approach would be rediscovered. For example, some 
Arab mathematicians of the 9th to 12th centuries proposed it as a simpler explanation of 
ratio than Euclid's (see Plooij (1950)), and in the 1930's Becker recast Book V in terms 
of it, basing his work on a close scrutiny of the historical record, but strongly influenced 
by his philosophy of mathematics. 

89 See §5 for the full quotation. 
90 We are here not using Heath's notation, described in his note to X, Definition 3 in 

Euclid, EE III, pp. 11—12. Heath does not name 'the rational', the assigned straight 
line, and uses p to refer to any rational line, i.e. any line commensurable in length or 
square with the rational. We reserve p for the name of 'the rational', and hence any 
rational will be of the form yjkp, where k * p/q. (Recall that \/kp is shorthand for the 
side of the square with area kp2; see notes 1 and 63.) The reason for this is explained in 
note 92. 
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but the rest are not called arrheton, but alogon, without ratio. Why two words 
for the same idea? A possible answer may be that Euclid has here conflated 
two ideas, each leading to separate problems, neither of which fits naturally 
into the new Book V proportion theory.91 We have previously noted that 
there may have been philosophical problems with an anthyphairesis whose 
calculation could not be performed in a finite number of straight-edge and 
compass constructions; let us suppose that the procedure was prohibited in 
such cases so that, for example, the binomial92 (V^P + V^p) was without 
ratio, alogon, with respect to p. We are now confronting a problem analogous 
to that facing the first discoverers of incommensurability,93 but from the 
position of greatly increased confidence bestowed by a conceptual framework 
within which the problem can be analysed and turned into a fruitful and 
creative subject of study: to develop a new technique for handling the alogoi. 
The result is a huge research programme of examining lines which arise from 
manipulations of the assigned line p, so see which lead to lines which are 
alogon with respect to previously constructed lines, and then to describe them 
by relating them to their construction out of segments with logos \ this is what 
we find in Books X and XIII,94 and which is also possibly what Proclus was 
referring to when he wrote95 of the 

great and unlimited complexity, such as the material that 
Apollonius has elaborated at considerable length about un­
ordered irrationals. 

In this description, however, we have presumed a solution of, or at least a 
working hypothesis concerning, the preliminary problem of characterising 
those ratios which have a logos, and this is where the rheton enters the 
argument. As we observed in §8(f), the striking pattern of the anthyphairesis 
of a ratio of the form ^/pp:^/qp can be guessed from an arithmetical analysis 
well within with scope of Greek mathematics; but a general proof of this 
result, and the further result characterising ratios whose anthyphairesis be-

91 The translation of the different words into the same English root and the choice of a 
word with a closely related but different meaning do not help our understanding. The 
proposal by van der Waerden (SA, p. 169) to translate rhetos as expressible', and alogos 
as 'unreasonable' would be a great improvement. 

92 Heath's notation, which allows him to write a binomial as p + y/kp, blurs the 
distinction between lines, in our notation, of the form yfcp + y i p and kp + y/lp. 
Since Euclid's practice in Book X is to regard the definitions as applying to the general 
case only, this second line does not have a name, even within the subdivision of 
binomials given in Proposition 48—53 and their associated Definitions, and so does not 
fall within the classification of Book X. 

93 Cf. Gorgias (465A): "And I refuse the name of art to anything irrational." 
See Knorr, EEE, p. 278: "In Elements XIII we encounter the proofs of the irrationality 
of several Unes produced in association with the construction of the regular solids. To a 
modern reader, these applications of the theory of irrationals seem disingenuous; 
commentators take note of these theorems, to be sure, but they find little of significance 
in them". Then (pp. 279—284) he gives a new interpretation of Proclus' testimony that 
Eudoxus "by means of analysis increased in number the theorems about the section 
which took their start from Plato", based on the analysis of the magnitudes arising in 
the construction of an icosahedron in a sphere whose radius is the rheton. 
Proclus' Commentary p. 74 (Friedlein's pagination); the work by Apollonius to which he 
refers is now lost. See also Pappus Pt. I, par. 1 (quoted in §5). 

94 
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comes periodic and so is finitely computable (i.e. the unnamed set of ratios of 
the form (p/q)p + ^/(r/s)p:p—see §8(g)) would seem to be beyond their 
techniques of proof.96 The set of the rheta then represents an intermediate 
vantage point; even if it were not possible to prove the result that V/>P: VtfP 
always had an almost palindromic form, it would be reasonable to proceed 
with the development of the subject on the hypothesis that this was the case, 
separating off the implications of such a hypothesis from the problem of its 
proof,97 and leaving the question of general periodic anthyphairesis for later 
consideration. 

In this connection, consider further the final passage of the quotation from 
Pappus: 

It was Theaetetus who distinguished the powers which are 
commensurable in length from those which are incom­
mensurable (i.e. in length) . . . as is stated by Eudemus the 
Peripatetic. 

(The word 'power', clearly coming from the Greek dynemis, is often mistrans­
lated as 'square root' or 'surd' in such contexts. Its meaning is unambiguously 
'second power': two 'powers', or squares, are commensurable 'in power' when 
their areas are commensurable; and commensurable 'in length' when their 
linear measurement, e.g. their sides or their diagonals, are commensurable.98) 
This passage is usually taken as a reference to X, 9—a characterisation 
relating the ratio of two commensurable lines to the ratio of their squares 
—and this proposition is attributed to Theaetetus by a scholiast. However 
there is an objection to this interpretation, that Theodorus' lesson99 in Plato 
(Theaetetus 147C—148B) in which Theaetetus is described as developing his 
ideas on incommensurable roots finishes with an explicit indication that 
Theaetetus realises that this type of argument will apply to third powers as 
well: 

And a similar thing holds for solids 

and so is not characteristic of the dynemis, the second power. A slight textual 

96 Could the disorismi be connected with the problem? See Proclus' Commentary pp. 
66—68 (Freidlein's pagination), extracted in Thomas, SGM I, pp. 144—161: "Younger 
than Leodamus were Neoclides and his pupil Leon, who added many things to those 
known before them . . . ; he [Leon] also discovered diorismi, showing when the problem 
investigated can be solved and when not". Proclus also places Leon chronologically 
between Theaetetus and Eudoxus. 

97 This is now standard practice within mathematics. To give current examples: in number 
theory, the Riemann hypothesis is still unresolved, though in algebraic geometry, the 
Weil conjectures have been proved; and in functional analysis, the basis problem now 
has a counterexample. 

98 See Knorr, EEE, pp. 65—69 for a full discussion of dynamesis. A similar confusion 
occurs with our use of 'square': to 'square a rectangle' (II, 14) means, in effect, to 
construct the square root of its area. 

99 The first half of Knorr, EEE, is devoted to a discussion of the early theory of 
incommensurability and deals in detail with this passage. His Chapter III examines the 
text closely and sets up interpretive criteria; Chapter IV reviews all previous reconstruc­
tions of Theodorus' lesson; and Chapter VI proposes a new reconstruction. The later 
contributions of Theaetetus and Eudoxus are analysed in the second half of the book. 
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amendment100 introduces an alternative interpretation, not open to this ob­
jection: it is possible to 'distinguish the lengths which are commensurable in 
power from those which are incommensurable (i.e. in power)' by anthyphaire-
sis, since the former are those exhibiting the striking, almost palindromic, 
pattern [n0, nv n2, . . . , n2, nv 2n0, nv n2, . . . , n2, nv 2/z0, . . . ] described in 
§9(f), and precisely such a distinction is the purpose of X, Definition 3, 
between the rheton and the alogon. Support for such a reading is provided 
later in the Commentary, where we read (Part II, Paragraph 17) that: 

Those who have written concerning these things (i.e. of 
irrationals), declare that the Athenian, Theaetetus, assumed 
two lines commensurable in square and proved that if he 
took between them a line in ratio according to geometric 
proportion (the geometric mean), then the line named the 
medial was produced, but if he took the line according to 
harmonic proportion (the harmonic mean), then the apotome 
was produced. We accept these propositions, since Theaete­
tus enunciated them. 

This gives a clear indication, based on ancient authority, that Theaetetus 
started his classification from the dichotomy of commensurable in square 
/incommensurable in square, and not the distinction commensurable in 
length/incommensurable in length given by X, 9. 

The aim of this section has been to put forward a new type of explanation 
of the motivation for the classification of irrationals of Book X. The new 
insights into pre-Euclidean mathematics developed by Knorr follow from 
recognising and pursuing the inescapable fact that the construction and 
classification of incommensurables was a problem of central importance 
during the fourth century; but the impulse behind this problem remained 
unexplained.101 We have shown how it can be interpreted as an attempt to 
resolve an easily stated, credible, surprising, and central feature of 
anthyphairesis. But, with the development of Book V proportion theory, the 
urgency of the problem disappeared, and its statement became artificial; even 
the distinction between commensurable and incommensurable in length is not 
made in Book V, and when it is considered in X, 5, the proof is flawed 
because Euclid fails to invoke Book V proportion theory.102 Simon Stevin 
remarked on this lack of motivation 400 years ago:103 

100 I propose this amendment in ignorance of its plausibility in the sequence of translations 
and transcriptions through which the manuscript has passed. We have argued in §10 
that the early anthyphairetic foundation of mathematics was forgotten, and that this 
process was hastened by the influence of the Elements; hence a misunderstanding of 
Eudemus by Pappus is another possible source of error. J. P. Hodendijk has assured me 
that there is absolutely no justification in the Arabic text for making this amendment. 

101 Cf. Knorr, EEE, p. 4: "On the basis of one assumption I will find it possible to perceive 
the motives for the foundational work within the Greek mathematical discipline itself. 
This assumption is that the study of incommensurable magnitudes was a field of interest 
in its own right." 

102 See §3. 
103 Quoted in Euclid, EE, III, pp. 8—9; but see J. Klein (1968), pp. 186—197 for a 

discussion of Stevin's bias against Greek mathematics. 
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La difficulté du dixiesme Livre d'Euclide est à plusieurs 
devenue en horreur, voire jusque à l'appeler la croix des 
mathématiciens, matière trop dure à digérer, et en la quelle 
n'aperçoivent aucune utilité. 

The only other development since Stevin's time is that the contents of Book X 
have been translated into algebra and forced into a Procrustean bed of the 
solution of special types of fourth-degree equations. Any alternative explana­
tion to this would be worth some consideration; and one that arises directly 
out of the earlier proportion theory is surely worth a close scrutiny. 

Appendix: Approximates by rational numbers, and continued fractions. 
A 1. Introduction. 

If with a pair of rectangular axes in a plane we construct a 
system of unit points (i.e. a system of points of which the 
coordinates are integral numbers), and draw the line y = 0x, 
we learn from the theorem that if (x, y) be a unit point lying 
nearer to that line than any other unit point having a less 
abscissa (or, which comes to the same thing, lying at a less 
distance from the origin), y/x is a convergent to 0; and, vice 
versa, if y/x is a convergent, (x, y) is one of the 'nearest 
points'. Thus the 'nearest points' lie alternately on opposite 
sides of the line, and the double area of the triangle, formed 
by the origin and any two consecutive 'nearest points', is 
unity. 

Thus H. J. S. Smith (1876) described a vivid geometrical interpretation of 
the continued fraction algorithm for finding best rational approximations 
(and, in the final paragraph of his paper, a method of solving the 'Diophan-
tine' equation px — qy = ± 1 in integers). F. Klein (1908), regretting that 
continued fractions were only taught occasionally in schools, urged an 
extension of this approach on his audience. Recently T. Fletcher (1973) has 
simplified and brought it again to the attention of teachers. Here again I 
would like to explain the procedure, since it demonstrates vividly the theory 
lying behind anthyphairesis. 

I shall proceed by describing three algorithms, and show how they are 
related.104 

A 2. Approximating by rationak. 
PROBLEM 1. Given a real number 0, find rational numbers q/p approximat­

ing 0, possibly together with an indication of whether they are under- or 
overestimates. For example V 2 4= 17/12 and 71755875/61735500 > 43/37. 
For convenience, we only consider positive numbers 0. 

In the integer lattice (Smith's 'unit points') draw the line j> = Ox; we look 
for lattice points such that the line joining them to the origin has slope close 
to 9. We can identify these lines by their end-points; the point A = (/?, q) will 
correspond to the line y = qx/p9 and the approximation q/p (see Figure 1), 
and we distinguish q/p from its other representations 2q/2p, etc. 

104 The first algorithm has already been considered, in an arithmetical form, in §9. 
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C = (p + r, q + s) 

FIGURE 1 

ALGORITHM 1. If (p, q) is an underestimate and (r, s) is an overestimate for 
0, then (p + r, q + s) will be a better approximation than that original 
estimate lying on the same side of y = 0x. Start with (1, 0) as underestimate 
and (0, 1) as overestimate, and thus generate a sequence of rational ap­
proximations to 0. 

EXAMPLE. When 6 = ^/3, we have q/p § \ /3 according as 3p2 ^ q2. The 
algorithm generates the sequence (illustrated in Figure 2): 

under over 
0.0) 
(1,1) 

(2,3) 
(3,5) 

(7, 12) 
(11, 19) 

(0,1) 

0,2) 

(4,7) 

(15, 26) 
etc. 

FIGURE 2 

At each stage, the vector sum of the current estimates is taken (e.g. (2, 3) + 
(1, 2) = (3, 5)); it is tested (52 < 3.32, so it is an underestimate) and allocated 
to the appropriate column where it becomes the new estimate. 
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Note how, if (/?, q) and (r, s) are the current estimates, then p < r and 
q < s, or p > r and q > s, where both inequalities are strict, the step after the 
starting estimates have been superseded. Thereafter any estimate lies above 
and to the right of any earlier estimate. 

The algorithm works quickly, directly, and easily in any situation where the 
test for an over- or underestimate can be applied, for example with roots and 
logarithms.105 To analyse it, we use the following result.106 

PICK'S THEOREM. The area of a simple polygon whose vertices are lattice 
points is {half of the number of points on the perimeter + the number of points 
inside — 1). 

If A and B are the current estimates, generating the new estimate C (see 
Figure 1), call OAB the approximating triangle and OACB the approximating 
parallelogram. 

PROPOSITION 1. The approximating triangle and parallelogram contain no 
points of the integer lattice. 

PROOF. Each step of the algorithm replaces the approximating triangle 
OAB by O AC or OBC, and each of these triangles is half of the approximat­
ing parallelogram OABC; so the area of the approximating triangle is un­
changed, and it starts with A = (1, 0), B = (0, 1) and area \. Since 3 lattice 
points are vertices, and it has area | , it can have no lattice points inside. 

FIGURE 3 

105 See note 61. 
106 For proof, see, for example, Coxeter (1961), pp. 209-210. 



RATIO IN EARLY GREEK MATHEMATICS 839 

FIGURE 4 

(Note: The thickness and areas of the parallelograms in all of the figures, 
except Figure 2, are exaggerated for clarity.) 

A characteristic sequence of steps of the algorithm is illustrated in Figure 
3: the estimates A = (/?, q) and B — (r, s) give rise to a run of underestimates 
A,A',...,A(k~l\ followed by a new overestimate Bx. Each of the triangles 
OAA\ OA'A", . . . , OA^k~l)Bx, being half of their corresponding parallelo­
grams, will contain no lattice point. Hence neither the triangle OABx, nor 
OBx(kB)—which has the same area and the same number of perimeter lattice 
points—will contain any lattice points. Similarly none of the parallelograms 
in the tessellation determined by OABx(kB) will contain any lattice points. 
The alternative situation, where A and B give rise to a run of overestimates 
B9 B\ . . . , B(k"l) is illustrated in Figure 4. 

COROLLARY 1.1. If A = (/?, q) is an underestimate, then there is no better 
underestimate with denominator < p. A similar result holds for overestimates. 

PROOF. Let B be the current overestimate, and Bx the first subsequent 
overestimate, preceded by the sequence A, A',..., Aik~l) of underestimates 
(see Figure 3, and Figure 4 for the easier case k = 1). Then OABx contains no 
lattice points, and it also contains the triangle determined by q/p < y < Ox 
and x < p. The absence of a lattice point in this latter triangle shows that 
there is no better underestimate than q/p with denominator not greater than 

PROPOSITION 2. If q/p and s/r are the current estimates for 0, then their 
errors are less than \/pry and one of these estimates will have error less than 
\/2pr. 
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PROOF. The error in each estimate is less than 

det 
1 0 Ol 
1 P q\\ 

.1 r s\\ 

= — x area of approximating triangle = — . 
pr pr 

Since 9 lies between q/p and s/r it will differ by less than \/2pr from the 
closest. 

The approximations occur in runs of under- and overestimates, as 
illustrated in Figures 3 and 4. Call those estimates occuring at the ends of 
runs (e.g. A{k~l) in Figure 3, Bik~l) in Figure 4, and 5/3 for y/3 in the 
example) 'run-end estimates'. 

COROLLARY 2.2. If q/p is a run-end estimate, its error is less than l/p2, and 
one of every pair of consecutive run-end estimates has an error less than half of 
this* 

PROOF. The next step gives an estimate s/r with r >p. 

COROLLARY 2.3. If q/p is a run-end estimate, and the subsequent run is n 
steps long, its error is less than \/np2. 

PROOF. The subsequent run-end estimate s/r has r > np. 
Hence the algorithm generates the best possible rational approximations to 

the slope 0 for a given range of denominators—in other words, it minimises 
\q/p — 9\—and we see that run-end estimates preceding long runs are likely 
to be particularly good. 

FIGURE 5 

\r p = ps ~- qr\ 
Pr 
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The theorem referred to by Smith minimises \p0 — q\ over a different range 
of p9$; this corresponds to the different problem of finding successive points 
(p, q) lying closest to the line y = Ox. The result is as follows: 

PROPOSITION 3. If A = (/>, q) and B = (r, s) are consecutive run-end esti­
mates, withp < r, q <s, then \q — p6\ < \q' — p'0\for pf < r and all q'. 

PROOF* Consider the case illustrated in Figure 4, where BSk"x^ is now 
relabelled B (see Figure 5). The set (£, TJ) with \t\ - £0\ < \q - pB\ will be a 
strip centered on y = Ox with A on its boundary; it will contain B, and no 
other lattice point the range p < p' < r. Now, applying a similar argument to 
the left of A, we see that the strip will contain no lattice point preceding A 
(i.e. with JP' </>). Hence A will be the closest lattice point toy = Ox in the 
range 0 < p' < r. 

Since the run-end estimates lie on alternate sides of y = Ox, we get: 

COROLLARY 3.1. The successive closest lattice points to y = Ox occur on 
alternate sides. 

A 3. Continued f ructions. The simplest kind of continued fraction—all that 
we need consider—is an expression 

„o + . 9 

+ "» n2 + . . . 

where all the denominators nt are positive integers. Truncating the expression 
at each step gives the successive convergents 

1 1 
n® «o + —> no + p , etc., 

1 nt + — 
"2 

a sequence of rational numbers. In a nonterminating continued fraction the 
limit of this sequence—if it exists—is the number represented by the fraction 
and the fraction is the expansion of this number; it will soon become evident 
that the sequence always converges when the nt are positive integers. For 
convenience, write a continued fraction as 

1 1 r i 

PROBLEM 2. Given a real number 0, expand it as a continued fraction. 

ALGORITHM 2. Write 0 as an integer part and a fractional remainder, 
0 = n0 + 9V If 0, ^ 0, repeat with 1/0,: 1/0! = «t + 02, and continue, 
1/02 = ni + ö3> e t c -

If we neglect the remainder 0*+,, so 0̂  =4= \/nk then, substituting back, we 
get 

1 1 
0==/în + 

0 " " , + " " U k 

thus the convergents provide approximations to 0. If any # H , = 0, then 0 is 
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given by a terminating continued fraction, which is clearly a rational number; 
conversely, it is easily seen that if 0 is rational, the algorithm terminates, since 
two steps reduce the size of both numerator and denominator of the 0's. 

Some examples will illustrate the algorithm. 
(a) 0 = V2 = 1 + (V2 - 1) where 0 < (y/2 - 1) < 1, (y/2 - l )"1 = y/2 

+ 1 = 2 + (V2 - 1). So 0X = 02 = • • • = V 2 - 1; n\ = n2 =" ' * ' = 2> 
^ i 1 1 1 

V2 = i + I T 2T I T - - - ' 
and this has convergents j , | , f, j | , —, etc. The denominators and numera­
tors here are the successive side and diameter numbers.107 

(b) £(V5 + 1) - 1 + 1(V5 - 1); (i(V5 " I)) - 1 = Î (V5 + 1) = 1 
+ £(V5 - 1). So 

' : ( V 5 + . ) - l + ' * ' 2 V V y 1 + 1 + 1 + * * - ' 
with convergents {, f, f ? f ? etc.. This, the 'golden number', is the number 
with the simplest nonterminating continued fraction and the poorest ap­
proximation by its convergents, the quotients of successive Fibonacci num­
bers. 

These examples illustrate simple cases of a theorem of Lagrange, that the 
continued fraction of anything of the form (p + ^/q)/r (p, q, and r integers) 
will eventually be periodic, and the periods of y # will all begin with the 
second term. High-order roots need to be evaluated step by step; the 
procedure is easy, but this time no general formula for the nt can be derived. 
For example: 

(c) 

3 + 1 + 5 + 1 + 1 + 
with convergents {, f, f, ff, ff> etc. 

(d) The continued fraction expansion of m can be calculated by finding a 
sufficiently good rational (or decimal) approximation, and expanding that as 
a continued fraction. This gives 

~ . J_ _ i I I L J L 
m 7 + 15+ 1 + 2 9 2 + 1 + 1 + " - ' 

with convergents 3, y , | § , fff, . . . . 
If Algorithms 1 and 2 are both performed on the same number, it becomes 

immediately apparent that they are very closely related. Specifically, if the 
geometrical procedure generates the sequence of run-end estimates 
[0/1, 1/0], q0/p0, qx/px, q2/p2, q3/p3,... for 0, then pk/qk is the fcth 
convergent of the continued fraction expansion 0, 

1 1 
0 = nn + 0 nx + n2 + 

the denominator nk is the run-length preceeding the run-end estimate qk/pk, 
and so the error in truncating at the kth convergent is < l/nk+xpk; even k 

107 See §§7 and 9. 
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gives an underestimate, odd k gives an overestimate; and alternate errors 
decrease monotonically to zero, so the convergents do converge to 0. Truncat­
ing before a large denominator should give particularly good approximations 
(e.g. 22/7 and 355/113 for if). 

These results follow from the following result which is suggested by an 
examination of Figures 3 and 4. 

PROPOSITION 4. Writing the convergents of 

1 1 

as 
«o 
Po 

then 

n0 T 

1\ 
P\ 

« t + 1 

«1 + 

nl 

n2 + 

n0+l 

« i 

nk + i4k + 

> 

Ik-

1i 

Pi 

_, 

Pk+l nk+\pk+pk-\ 

PROOF. We proceed by induction. The case k = 1 follows immediately 
from evaluating q2/p2. The general case follows by observing that 

Pk+i 
— 

= 

n0 + 

n0 + 

mqk_ 

mpk-
nk+\ 

1 
nl + 

1 

-l + 9k-i 

-1 +Pk-2 

Ik + 1k-\ 
nk+\pk + Pk-X 

1 / , 1 nk+\nk + ! \ - where m = /i. + = -*±±-* 

(by the inductive hypothesis) 

(simplifying and using the inductive 

hypothesis again). 

REMARK. For the sake of clarity and vividness, this result has been stated 
with less than adequate precision. For example we should establish that 
simplifying the kth convergent always leads to a fraction pk/qk expressed in 
its lowest terms, and specify that this is the representation used in the 
proposition; also the introduction of m, not an integer, leads to a nonsimple 
continued fraction. Formally, the pk and qk are best considered as polynomi­
als in the indeterminates «0, nl9..., nk and the proof establishes tha t^^ j = 
nk+\Pk + Pk-v 4k+\ = nk+i4k + Qk-v A31 e a sy manipulation then shows that 
Pk+i9k -PkVk+i = (-1)**1 and thus, inductively, that pk+l and qk+x are 
coprime, either as integers or as polynomials. In fact the polynomials pk and 
qk are irreducible.108 

A formal treatment can be found in many textbooks on number theory, for example, see 
Davenport (1968), pp. 77—113; Stark (1978), pp. 181—256 follows a geometrical 
approach close in spirit to ours. For the more advanced theory see Khinchin (1964). 
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A 4. Anthyphairesis. 
ALGORITHM 3. If a and b are two homogeneous magnitudes write a — n0b 

= bx with bx < b2. If bx ¥= 0, write b — nxbx = b2 with b2 < bx, etc. If at any 
stage bk = 0 the process terminates; this, it is very easy to see (and it is 
proved in X, 3) corresponds to the situation where a and b are commensur­
able, and gives the standard procedure for determining their common 
measure; otherwise a and b are incommensurable (X, 2). 

This process is very similar to Algorithm 2. In fact, if we assign real 
numbers to the two magnitudes so that the ratio a:b is identified with the 
number a/b = 0, and apply Algorithm 2 we get a/b = n0 + 0X where 
0 < 0X < 1, so a - n0b = bx, where bx = 0xb < b, \/9x = nx + 92 where 0 < 
92 < I so b — nxbx = b2 where Z>2 = 92bx <bx, etc. Hence the sequence of 
integers [n0, nx, . . . ] thus generated by anthyphairesis is the sequence of 
denominators of the continued fraction expansion of a/b. Note however how 
anthyphairesis can be effected without having resource to representations of 
ö, b, or a/b as numbers in the case where, for example, a and b are two 
rectilinear magnitudes, using the theory of application of areas. 

Write Anth(a, b) = [AÎ0, nl9 n2,. . . ] to denote the anthyphairesis of a 
and b. 

A 5. Examples. Let us analyse the arithmetic behind examples of §7 in the 
light of these results. 

(a) Anth(7921, 4050) = [1, 1, 21, 1, 2, 29, 2]. Aristarchus wants a lower 
bound for the ratio. Now the upper bound [1,1] will be unusually good, since 
it precedes a long run of 21 steps; the next upper bound [1, 1, 21, 1] will be 
better, and the next step of Algorithm 1 will give a lower bound whose a 
priori accuracy is the same (see Figure 4). Hence 

7921:4050 > [ 1 , 1,21,2] =88:45. 

The next case is more straightforward: 
Anth(71755875, 61735500) = [1, 6, 6, 4, 1, 2, 1, 2, 1, 6]. (In fact, both num­

bers are divisible by 3375, giving the ratio 21261:18292). Truncating at 
[1, 6, 6] will give an underestimate, 

71755875:6173550 > [ 1 , 6, 6] = 43:37. 

(b) The continued fraction expansion of -\/3 (see §A2) is \ / 3 = 
( 1 1 2 1 2 1 with convergents I ^ l l w ^ I i ^ M ^ ^ M 
[ i , l, z, i, z, . . . j , wiui cuiiveigciiis» j , j , 3 , 4 , u , 15, 4 1 , 5 6 , 153, 209 , 5 7 , , 7g0 , 
| f | [ , . . . . The ninth and twelfth will be under- and overestimates respectively. 

A shorter and more plausible procedure is to use 3V3:1 = \/27:l = 
[5, 5, 10, 5, 10,. . . ], with convergents f, f , W> ^ > ^ t h i r d a n d 

fourth terms of this sequence will be under- and overestimates respectively; 
dividing the sequence by 3 gives every third term of the sequence of 
convergents of \ /3- l and> *n particular, the two required rational approxima-
tions.109 

109 This was pointed out to me by D. T. Whiteside. The suggestive simple pattern of this 
example—dividing the convergents of 3\/3:l by 3 gives every third convergent of y3:1 
—does not generalise to other cases, as evaluating the convergents of y5:1» y20:l and 
V45:l will illustrate, though obvious heuristic considerations will lead to improved 
procedures for finding rational approximations to quadratic surds. 
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(c) The procedure of 'bringing down to small numbers' referred to by Hero 
is almost certainly that used by Aristarchus in the first example above, and so 
would be equivalent to converting a truncated anthyphairesis into a quotient 
of two integers. 

(d) The anthyphairesis of the diameter and side of a square was evaluated 
in §6 and A2: 

Anth(diameter, side) = [ 1, 2, 2, 2, . . . ], 

and thus has convergents j , f, | , j | , etc., the quotients of successive side and 
diameter numbers. 

Now consider the error analysis of the side and diameter numbers de­
scribed by Theon of Smyrna and Proclus. Theon emphasizes the result 
d£ — 2s\ = ± 1, and Proclus observes that this can be established using II, 
10. We can extend this further, by observing 

<4+i dk 2s\-dl ± 1 
5 

Sk+l Sk SkSk+\ SkSk+\ 

and this is precisely our Proposition 2, applied to this particular case.110 
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