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A HIGHER DIMENSION GENERALIZATION 

OF THE SINE-GORDON EQUATION 

AND ITS BÀCKLUND TRANSFORMATION 
BY KETI TENENBLAT* AND CHUU-LIAN TERNG2 

The classical Backlund theorem ([1], [4], [5]) studies the transformation 
of hyperbolic (i.e. constant negative curvature) surfaces inR3 by realizing them 
as focal surfaces of pseudo-spherical Une congruences. The integrability theorem 
says that one can construct a family of new hyperbolic surfaces in R3 from a 
given one. Bianchi showed how to construct algebraically another family of 
hyperbolic surfaces from this family. 

It is well known that there is a correspondence betwen solutions of the 
Sine-Gordon equation 

b ( j b dx2 dt2 

and hyperbolic surfaces in R3 ([1], [4], [5]). Therefore Backlund's theorem 
provides a method for generating new solutions of SGE from a given one, and 
Bianchi's permutability theorem [5] enables one to construct more solutions by 
an algebraic formula. This technique has recently received much attention in the 
studies of soliton solutions of SGE [2] and has been used successfully in the 
study of solitons of other nonlinear equations of evolution in one space dimen­
sion. But generalizations to more space variables has been less successful. 

A natural generalization would be to find a transformation theory for hy­
perbolic (i.e. constant negative sectional curvature) submanifolds in Euclidean 
space. E. Cartan [3] showed that hyperbolic «-manifolds locally immerse in 
R2n~l, but not in R2n~2. Moreover, [3] he proved the existence of "line of 
curvature coordinates", in which all components of the second fundamental form 
are diagonalized. J. D. Moore [6] improved this result and we have: 

THEOREM 1 (É. CARTAN). Suppose M is a hyperbolic n-submanifold of 
R2n~x. Then locally M can be parametrized by its lines of curvature so that 
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I = Z (fifdul 
1 = 1 

n = t ' E ' btm(a^dufem, 
1=1 m — n + l 

where S"= 1(flJ-)
2 = 1 and ew + 1 , . . . , e2 / i - i is an orthonormal local frame 

field for the normal bundle of M. In particular, the normal bundle is flat. More­
over, 2JL j d/du; is the unique unit asymptotic vector in the first orthant. 

We call such coordinates "generalized Tchebyshef coordinates". 
DEFINITION 1. Let Et and E2 be two ^-planes in a 2k-dimensional inner 

product space (V, < >) and P: V —> Ex the orthogonal projection. Define a 
symmetric bilinear form on E2 by (vl9 v2) = (P(vx)9 P(i>2)>. The k angles be­
tween JFJ and E2 are defined to be 619 . . . , 0^, where cos20p . . . , cos20fc 

are the k eigenvalues for the selfadjoint operator A : # 2 —> E2 such that 
(üp v2) = U ü p U 2 > . 

DEFINITION 2. A line congruence between two w-submanifolds M and M* 

mR2n~1 is a diffeomorphism /: M —> M* such that for P E M the line joining 
P and P* = /(P) is a common tangent line for M and M*. 

For a line congruence l: M—> M* between two «-submanifolds in R2n~l, 

the normal planes vp and v$* at corresponding points P and P* are of dimension 
n - 1 and are perpendicular to PP*. Therefore they lie in a common 2n — 2 

dimensional inner product space, so there are n — 1 angles between them. 

DEFINITION 3. A line congruence l: M —• M* between two «-submani-
folds in R2n~l is called pseudo-spherical (p.s.) if 

(1) The distance (between P and P*) is a constant r9 independent of P. 
(2) The w — 1 angles between z;p and y** are the same and equal to a con­

stant 0, independent of P. 

(3) The normal bundles v and v* are flat. 

(4) The bundle map T: v —• P* given by the orthogonal projection com­
mutes with the normal connections. 

Then we have the following generalization of Backlund's theorem. 

THEOREM 2. Suppose there is a p.s. congruence l: M —• Af* ofn-sub-

manifolds in R2n~l with distance r and angle 0. Then both M and Af* have 

constant sectional curvature -((sin 0)/r)2. 

THEOREM 3. Suppose M is a hyperbolic n-submanifold in R2n~1 with 

sectional curvature K — -((sin 6)/r)2, where r and 0 are constants. Let yj , . . . , 

v® be the orthonormal base at PQ consisting of principal curvature vectors, and 

v0 = 2){L j c(vf a unit vector with ct ¥= 0 for 1 < / < «. Then there exists a 

local n-submanifold M* of R2n~x and a p.s. congruence l: M —> Af* such that 

if PQ = /(P0) we have PQPQ = ruQ and 0 is the angle between the normal planes 

at P0andP*. 
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The above results are joint work of both authors; the following results were 
obtained by the second author. 

THEOREM 4. Suppose l: M —• M* is a p.s. congruence of hyperbolic 
n-submanifolds in R2n~l. Then the generalized Tchebyshef coordinates (hence 
lines of curvature and asymptotic curves) correspond under I. 

Bianchf s permutability theorem generalizes to 

THEOREM 5. Let lx: M% —* M", l2: M% —+ M% be two p.s. congruences 
in R2n~x with angles dl,82 respectively. If 0 x "fi 62> then there exists a unique 
hyperbolic n-submanifold M3 ofR2""1 and p.s. congruences lx: Mx —> M3, 
l2: M2 —* M3 with angles 62,61 respectively. 

For the analytic part of this theory, one needs to find the appropriate 
partial differential equations. 

In what follows M will be a hyperbolic w-submanifold (with curvature ~~1) 
in R2n~-1^ and (u19 . . . , un) etc. as in Theorem 1. Associate to M a map 
A = (ati): Rn —• 0(n) defined by 

axj^aj, 1 <ƒ< / ! , 

aU = b?+i~laj ' l<J<n,2<i<n. 

Then A satisfies the following second order system given by the Gauss and 
Codazzi equations: 

duj \au duJ 'i \au dui 

+ r r r r Z ~r ir -zr = au*. 
3 K , U W 3"i/ *t l*a?. ^k to* U l' k¥=i,j (lik k uuk 

i*h 
o / l àau\ 1 dau dalk G S G E aTTI a T~~ = "H 5 — > '» A fc distinct, 

Aflw aw/7 *i*«i 

tyk_%± daik 
^ , 1, J, k distinct. 

out au ôu( 

Conversely, the complete integrability of the Gauss and Codazzi equations im­
plies that there exists a hyperbolic n-submanifold of R2n~l for a given solution 
of GSGE, so there is a correspondence between {hyperbolic n-submanifolds of 
R2n-1} and {A: Rn —> OQi)9 solutions of GSGE}, and the correspondence 
is unique up to a left-translation by a constant 0(n - 1) matrix or a diagonal 
0(n) matrix. For n = 2, we have A = (cos f sin * J and GSGE is 320/3w? -

v ' ' vsin 0 —cos 0 ' ^ 1 

920/9^2 = sin 0 cos 0, hence GSGE is a generalization of SGE to higher dimen­
sions. 
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Let /: M —* Af* be a p.s. congruence with angle 0, ex, . 
orthonormal frame field on M such that the induced normal connection with re­
spect to normal frame en + 1, . . . , e2n_1 is zero, and v19 . . . , vn the ortho-
normal frame field on M consisting of principal curvature vectors. Suppose ei — 

2yL J*/,-iy, for 1 < / < n, then X = (x-j) is the corresponding 0(w)-map for M*. 
Hence one has the following analytic formulations of the geometric theorems: 

THEOREM 6. Let A = (atj): Rn —* O(w) Z?e a solution of GSGE. Then the 

following first order completely integrable system: 

BT(6) (dX)Xf + X $ X ' = ZS^'Z) - ZX4ÔX* 

gives a new solution for GSGE, where <£> = (0«) zs rte Levi-Civita connection 

1-form on M, in fact 0/;. — \\au dalj./dui dUj - l/a^ daxildu- du-, d = 
amg(dux, . . . , dun), and D = diag(csc 0, cot 0, . . . , cot 0). 

THEOREM 7. Suppose AQ is a solution of GSGE and At's are solutions of 

GSGE obtained from A0 by solving BT (d() for i = 1,2. Then a fourth solution 

A3 can be obtained by the following algebraic formula: 

(*) A3A~1=(-D2 +DlA2A~1)(D1 - D2A2A^)~lJ, 

where Dt = diag(csc 0 / ? cot 0.9. . . , cot 0.), and J = d iag( - l , 1, . . . , 1). 

REMARK 1. 

/ Dx -D2\ 

is an element in 0(n, n), a group which acts on 0(n) by linear fractional trans­

formation, hence the right-hand side of (*) belongs to 0(ri). 

REMARK 2. For n = 2, BT(6) is the classical Backlund transformation for 

SGE: 

_ ^ __£. = c o t Q c o s a sin 0 4- esc 0 sin a cos 0 
oi/j ou2 

da 30 n . _ 
-I T— = - cot 0 sin a cos 0 - esc 0 cos a sin 0, 
ou2 dut 

where 

( cos 0 sin 0\ /cos a cos a\ 

) , x = l 
sin 0 -cos 0 / \sin a -cos a / 

The formula (*) above is called Bianchi's superposition formula by physists, and 
becomes 
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0 3 - 0O COS 62 ~~ COS B ! 0 2 - 0 j 
tan —T-=cos(ö2-ö1r

1 t a n ~r~ 
where 

/ cos <p( sin 0A 

^sin 0f -cos 0,.y 
Ï 

If ,4 is taken to be the identity everywhere one gets a trivial ("vacuum") 

solution of GSGE. Applying BT(6) with varing initial conditions to this solu­

tion gives families of solutions including the one dimensional solitary wave solu­

tions of GSE. Finally, applying the superposition formula (*) consecutively to 

these families gives further families of solutions which generalize the n-solition 

solutions of SGE. A fuller discussion of these solutions will appear elsewhere 

together with a proof of the above theorems. 

The authors would like to thank Professor S. S. Chern for many helpful 

suggestions. 
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