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1. Introduction. The use of symplectic geometry to describe classical 
mechanics and to understand it on a deeper level has its origins in the work 
of Poincaré (1889), Cartan (1922), Siegel (1950) and Reeb (1951). By the 
1960s this topic was widely known and was available from several sources 
such as Mackey [1963], Sternberg [1964], Abraham [1967], Hermann [1968] 
and Godbillon [1969]. 

During the 1960s a new direction and impetus to the field arose when deep 
links between symplectic geometry, group representations, quantization and 
linear partial differential equations were found by Keller [1958], Segal [1960], 
[1965], Kirillov [1962], Maslov [1965], Egorov [1969], Kostant [1970], Souriau 
[1970], Hörmander [1971] and Duistermaat and Hörmander [1972], to men­
tion some of the key contributors. The subject is evolving rapidly and 
therefore a definitive treatise is not possible at the present time. Nevertheless, 
the books under review attempt to describe some of these new links. 

To penetrate to the basic ideas in either of the books requires extensive 
background preparation and a large investment of time. However, some of 
the key ideas are already present in the simplest examples. Therefore we shall 
spend some time discussing the one dimensional Schrödinger equation and 
the relation between classical and quantum mechanics. This will give the 
potential reader a glimpse at the theory and what type of results are obtained. 

2. The one-dimensional Schrödinger equation. Let V: R -> R be the poten­
tial, \p: R->C the wave function, and let E, h, m be constants (energy, 
Planck's constant and mass, respectively). Consider the stationary Schrö­
dinger equation: 

£;// = Exp 
where 

L4>--^r+V4> (S) 

and the Hamilton-Jacobi equation for Hamilton's principal function S: 
R-»R: 

±(S'f+V=E. (H-J) 

The Hamilton-Jacobi equation is related to Hamilton's equations 

. 3/ / . dH , m 

x=-w> p = —& (H) 

where H(x,p) = p2/2m + V(x\ as follows. Let x = p/m = dH/dp and let 
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p = S'(x). Then (H-J) holds for S iff (H) holds for (x,p). 
Two related central questions are: 
1. THE QUANTIZATION PROBLEM. HOW does one pass from classical objects 

to quantum objects? Here, 'objects' can refer to the equations themselves, to 
solutions, or to properties of the equations or solutions. 

2. THE CLASSICAL LIMIT. In what sense are solutions of the Hamilton-Jacobi 
equation a limit of solutions of the Schrödinger equation as h -> 0? 

Progress with these questions was made with the basic work of Weyl [1931], 
Birkhoff [1931], Van Hove [1951], Keller, Maslov, Souriau and Kostant. Van 
Hove showed that there is no general quantization having all the properties 
one would want. Van Hove also found some positive results that were 
rediscovered and extended by Souriau and Kostant in a procedure now called 
pre-quantization. In studying problem 2 using the WKB method, Keller and 
Maslov discovered the topological meaning of the corrected Bohr-Sommer-
feld quantization rules. The invariant they discovered is now called the 
Keller-Maslov-Arnold-Hörmander index. (Arnold's article [1967] was instru­
mental in explaining Maslov's ideas to mathematicians.) Our one-dimensional 
example will contain many of the features of the general case, in terms 
understandable without a lot of preliminaries. 

If S is a solution of (H-J), we try to solve (S) with 

* - e*'*. (1) 

Substitution of (1) in (S) gives 

»-I**à*B- (2) 

Equation (2) differs from (S) by a term of order h. Next, try 

$ = aeis/\ 

This time, if S satisfies (H-J) and a satisfies the transport equation 

2a'S' + aS" = 0 (3) 

(whose solution is a = (const.)/Vj^T) then 

which differs from (S) by a term of order h2. This procedure is usually called 
the WKB method (after G. Wentzel, H. A. Kramers and L. Brillouin, although 
it probably goes back to Liouville, Green and Lord Rayleigh). One may 
continue by writing an asymptotic series 

k=0 

and deriving higher transport equations. 
Suppose the energy surface for the classical system has the form shown in 

Figure 1. There correspond two solutions of (H-J): 
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p2/2m + V = E 

FIGURE 1 

S = ±fp(x)dx + C\ (5a) 

where />(x) = "\/2m(E — V) and C± are constants. From (3) we have 
corresponding amplitudes 

tf+ = 
[2m(E-V(x))] 1/4 

(5b) 

which diverge at xx and x2 and become imaginary outside the interval [xl9 x2]. 
The subtlety of questions 1 and 2 centers on the multiple valuedness of S 

and the presence of the turning points at xx and x2. To get around these 
difficulties there have been several approaches. 

1. Use analytic continuation methods to avoid the turning points. This 
approach was developed by Zwaan (see Kemble [1937]). 

2. Approximate the potential by a linear one near each turning point. 
Schrödinger's equation then yields an Airy function which is asymptotically 
matched by Bessel functions (Langer and Jeffreys). 

3. Use a modified WKB method near the turning point and an asymptotic 
expansion (Maslov). We shall describe this method shortly. 

There are other approaches too. For instance, Miller and Good [1953] 
effectively used area preserving maps to deform Figure 1 into that for a 
harmonic oscillator. The same idea was used by Maslov [1965] for higher 
order approximations. 

To deal with the behavior near xx and x2, we replace \p = aeiS/n by a 
superposition of such expressions, i.e. by 

^(JC) = f°° a(x9 a)e
iS{x'a)/h da. 

(This integral is called an oscillatory function; the theory of such integrals 
parallels that of Fourier integral operators.) 
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To simplify \p slightly, we consider 

/

oo 
a(x, a)e*ax-™Vh da. (6) 

- O O 

Then 

X e i l « - 7 t « ) ] / » A f ( 7 ) 

The classical method of stationary phase states that 

\ ceif/h 

J] exp|— s g n / J — P ° c ( x , « y ^ « > / ^ a = \ A 2 ^ 2 e x p ( ^ s g n / J ^ + 0 ( / O (8) 

where the sum is over all a such that fa = df/da vanishes; these critical points 
are assumed to be nondegenerate, i.e. faa = d2f/da2 ¥* 0. The equation (8) 
may be found in virtually any text on asymptotic expansions and most books 
on complex variables. Guillemin and Sternberg's book contains a nice proof 
of (8). 

Applying (8) to (7) and requiring Lip — E\p = 0(h) gives the condition 

a2 

iL- + v(x) = E whenever x = - T'(a) (9) 

i.e. the graph of - T' as a function of p is contained in the energy surface. 
Here we have the Hamilton-Jacobi equation with the roles of x and p 
reversed, which is indeed appropriate near the turning points xx and x2-

If we apply (8) to the formula (6) we get 

xp(x) = Vi^h 2 T
 e^l£1 + 0(h) (10) 

* - - r ' (#o Vf\p) 
so xp ~ hl/2 and Lxp - Exp~ h3/2 if (9) holds (with a = p). 

We now seek to represent \p near xx and x2 using functions Tx and T2 by 
equations (9) and (10) and seek to represent \p on the ± portions by using 
equations (2) and (5). We are, in effect using a superposition of two WKB 
approximations. 

Notice that 

±(px+npy)=p+±x+np)^P 
so both S àiidpx + T(p) are given by integrating/? with respect to x; i.e., 
they are both actions. 

Since x = - T'(p) along the energy curve in Figure 1, we see that 
T"(p) > 0 on the + side and T"(p) < 0 on the - side. Thus the term 

e-inS&iT"(p)/4 (11) 

in (10) jumps, or suffers a phase shift, as/? crosses the x-axis. 
In Figure 2 we show the different regions and functions being considered. 
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FIGURE 2 

Observe that the term '\/Tf\p) in (10) is the same as the term [2m(E -
V(x))]1/4 occurring in (5b). If we absorb the phase shift (11) and 
Vlïrh a(x,p) of (10) into d±, the solutions will match, except for higher 
order terms. However, there is an obvious consistency condition; when we 
circumnavigate the energy curve, we must end up where we started. In fact, 
matching at points 0 Q) and Q) fixes all the constants, and ® will match up 
only if the phases in (11) match. The phase changes in the exponentials 

eiS/h and ei(px " r^»/ f t 

are given by 

\§pdx 
since both S and px — T(p) are given by integrating p, as we have said, 
where j> is the line integral over the energy curve. (In hamiltonian mechanics, 
p dx is the canonical one form and its differential dp A dx is the symplectic 
form.) The phase change due to the term (11) is 

2 X f -(-*)]-. 
so the consistency condition is 

1 
«r yP dx — m = 2im 

i.e. 

i p dx , 1 
(12) 

The 1/2 is the correction to the Bohr-Sommerfeld rules which one sees, for 
example, in the harmonic oscillator solution. Equation (12) is the quantization 
condition. 

The generalization of (12) reads 

2=l£fl*'-U-2wh 
integer (13) 
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where Iy is the Keller-Maslov-Arnold-Hörmander index of a closed curve y. 
This topological invariant is thus arrived at via the WKB method. To 
properly understand it in higher dimensions requires a lengthy excursion into 
the theory of lagrangian submanifolds. However, our simplified example 
shows that starting with a study of the asymptotic limit h -» 0, one is led to 
quantization conditions; i.e. questions 1 and 2 with which we began this 
section are intimately related. 

3. Dictionary. The overall aims of quantization and geometric asymptotics 
become clearer if one has in mind some of the classical-quantum correspon­
dences. To this end, we present the table below. (See S&wianowski [1971].) 

The basic classical object is a symplectic manifold (T*X, co) and the 
quantum object is the intrinsic Hubert space % = L2(X) of half densities on 
X. The dictionary sets up a correspondence between operations on each. 

(a) 

(b) 
(c) 
(d) 
(e) 
(0 
(g) 

(h) 
(i) 
(J) 
(k) 

(1) 
(m) 

(n) 

(o) 

(P) 

(q) 

(r) 
(s) 

(t) 

Classical Mechanics 1 

immersed lagrangian submanifold 
A^>(T*X,Ù>) 

A = graph of dS 
multiplication by ( -1) on fibers 
(T*X9 -co) 
cartesian product 
disjoint union 
lagrangian submanifold 
A c (T*x, ux) x (r*r, ~<oy) 
composition of canonical relations 
graphs of canonical transformations 
Hamilton-Jacobi equation 
coisotropic submanifold 
Q c T*X 
reduced space Q/Q± 

reduction of lagrangian 
submanifolds 
symplectic action (hamiltonian 
G-space) 
coadjoint orbits (homogeneous 
hamiltonian G-spaces) 
reduction of phase space by a 
symmetry group 
momentum mapping 

polarization 
special symplectic structure 

change of special symplectic 
structure (Legendre transformation 
in the sense of Tulczyjew [1977]) 

Quantum Mechanics 

element ^ e L2{X) or <%'(X) 

$ = eiS/h 

complex conjugation 
dual space 
tensor product 
direct product 
(possibly unbounded) operator 
homL2(Y)ioL2(X) 
composition of operators 
unitary operators 
Schrödinger equation 
involutive system of linear 
differential equations 
solution space 
projection onto solution space 

unitary representation 

irreducible representations 

multiplicities of irreducibles 
occuring in a given representation 
associated representation of 
the group algebra 
complete set of observables 
representation of a complete 
set of observables 
Fourier integral operator 



BOOK REVIEWS 551 

4. The two books. Both of the books under review discuss quantization in 
detail, although the emphasis is different in each case: Guillemin and Stern­
berg concentrate on differential equations, Wallach on representation theory. 

Both books use the formalism of metaplectic structures and half-forms 
developed by Blattner, Kostant, and Sternberg. In fact one of the unique 
features of Geometric Asymptotics is the use of half-forms to replace half-den­
sities and the Maslov bundle in the theory of Fourier integral operators and 
oscillatory functions. This approach, which represents original work of the 
authors (and which is not published elsewhere) requires extensive algebraic 
preparation, but it does simplify many calculations. 

Guillemin and Sternberg present much more that is new. A Radon-trans­
form approach to the wavefront set was earlier described only briefly in a 
note by Guillemin and D. Schaeffer. In the chapter entitled Geometric aspects 
of distributions, the authors make clear the elementary nature of some trace 
formulas which are often considered to be rather deep. There is also a nice 
discussion of the Plancherel formula for certain noncompact semisimple Lie 
groups. 

In keeping with the teaching purpose of this "Mathematical Survey,'* 
Guillemin and Sternberg have included substantial introductory material on 
optics in order to motivate the subsequent theoretical development. Unfor­
tunately, the exposition here (and sometimes elsewhere in the book) often 
defeats the authors' purpose by being extremely difficult to follow. The 
difficulty is compounded by the presence of numerous minor inaccuracies1 

throughout the book. 
For example, in the treatment of the Sommerfeld radiation conditions on p. 

12, the order estimates for integrals over spheres should be o(l) and o(R _ 1) , 
rather than o(R~2) and o(R~3) as printed. (This was pointed out to us by 
Sternberg in a telephone conversation.) But even with this correction made, 
the reader must be very careful to distinguish the term "eventually outgoing" 
on p. 12 from the less precise "outgoing wave" on p. 2. In fact, the wave 
wk(t9 r) on p. 2 is not eventually zero (since it does not satisfy the wave 
equation at the origin of R3, where there is a source). One might expect the 
expert reader to be on the lookout for such distinctions, but they make the 
going extremely rough for newcomers to the subject (as, for example, the 
students in a graduate course taught by one of the reviewers using Geometric 
Asymptotics). 

Despite the difficulties, we still recommend the book very highly for its 
wealth of content, with the suggestion that the reader use it in conjunction 
with other sources, such as Duistermaat [1974], Leray [1978], the original 
papers, and the book of Wallach, to which we now turn. 

The main goal of Symplectic geometry and Fourier analysis is a presentation 
of the Kirillov theory of unitary representations of nilpotent Lie groups, 
which led to the Auslander-Kostant theory for solvable groups. Closely 
related to quantization, this is one of the most spectacular applications of 
symplectic geometry; Wallach brings this out very clearly. Kostant's notes 

iSome of these, we understand, were due to difficulties in type-setting and production 
which were beyond the authors' control. 
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[1970] have been the standard reference for this subject, but Wallach's 
exposition is certainly easier going. During the preparations for the Kirillov 
theory, Wallach's book overlaps that of Guillemin and Sternberg on the 
topics of "homogeneous symplectic manifolds," "the metaplectic representa­
tion" and "quantization." In each case Wallach is less thorough, but more 
readable. 

An appendix on quantum mechanics by Robert Hermann gives an over­
view of quantum mechanics as a separate discipline from classical mechanics, 
emphasizing the symplectic viewpoint and its connections (both historical and 
mathematical) with representation theory. This appendix is informative and is 
enlivened by its author's usual addition of personal and historical comments, 
but it does have some deficiencies. For example, no answer to the stated 
question "why a Hubert space?" is given; i.e., Gleason's theorem is not 
discussed. Also, the author speaks as though the symplectic approach to 
quantum mechanics as an infinite dimensional hamiltonian system has not 
been developed. (As far as we know, this first occurs in Segal [1965], Marsden 
[1968] and Chemoff and Marsden [1974].) 

5. Outlook. The books under review are certainly valuable additions in the 
effort to expand our knowledge about symplectic geometry and its applica­
tions. However, we can already see research (much of it due to the authors 
themselves) quickly outrunning these books. 

There must be more one can do with Fourier integral operators. From 
Guillemin and Sternberg's book and Duistermaat [1974], clear relationships 
with caustics and the elementary singularities (catastrophe theory) are 
brought out. These ought to have extensions to bifurcation theory in general. 
Fourier integral operators and the machinery surrounding them have also 
barely begun to make a dent in other applied areas, such as high frequency 
gravitational waves and shocks. 

The reader should be aware of the applications of Fourier integral opera­
tors to classical partial differential operators in addition to those discussed in 
the books under review and in Hörmander [1971]. At the hands of people like 
Melrose, Taylor, Ralston and Majda, deep results on the expansion of 
solutions of the classical wave equation near a caustic have been obtained. 
We refer to Taylor's excellent book [1979] for details. 
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