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1. Introduction. The theory of invariants of finite groups forms an inter
esting and relatively self-contained nook in the imposing edifice of commuta
tive algebra. Moreover, there are close connections between this subject and 
combinatorics, for two reasons: (a) the highly combinatorial tool of gener
ating functions pervades the study of invariants of finite groups, and (b) 
several direct applications of invariants of finite groups have recently been 
given to combinatorics. Here we give an exposition of the theory of invariants 
of finite groups with emphasis on the connections with combinatorics, which 
assumes a minimal background in commutative algebra and combinatorics 
on the part of the reader. It is hoped that such an exposition will appeal to 
several types of readers, (a) Those who simply wish to see a self-contained 
treatment of an elegant and fascinating subject. This might include coding 
theorists, physicists, and others who are beginning to use invariant theory as a 
tool in their own work, (b) Those who are interested in learning something 
about the revolutionary developments in present-day combinatorics. Until 
recently combinatorics has been regarded as a disparate collection of ad hoc 
tricks, but this picture is slowly changing under a determined effort to unify 
various branches of combinatorics and to understand their relationship with 
other branches of mathematics, (c) Finally, those who would like a relatively 
painless glimpse of certain topics of current interest in commutative algebra, 
such as the theory of Cohen-Macaulay rings and Gorenstein rings. For a 
really adequate understanding of these concepts it would be necessary to 
work in far greater generality and to introduce sophisticated machinery from 
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homological algebra. Thus, while our mundane treatment should not be 
construed as an "introduction to contemporary commutative algebra," it 
should make certain interesting and useful aspects of commutative algebra 
accessible to a wide audience. 

The paper is divided into ten sections. §1 contains the basic definitions and 
classical results about the ring R G of invariants of a finite group G acting on 
the polynomial ring R = C[x{,..., xm]. §2 is devoted to Molien's theorem, 
which gives a simple expression for the dimension of the vector space RG of 
forms of degree n left invariant by G. A common theme throughout this 
paper consists of reading off information about G and RG from the numbers 
dimc RG (or more precisely, from the generating function FG(X) = 
2(dimc RG)\n). In §3 we leave the classical theory and show that the 
elements of RG can be written in a certain explicit canonical form. The 
existence of such a canonical representation is equivalent to the statement 
that RG is a Cohen-Macaulay ring. §4 is devoted to groups G for which RG is 
generated by algebraically independent polynomials, the "groups generated 
by pseudo-reflections." Many of the remarkable properties of these groups 
are obtained by an appeal to Molien's theorem. Such combinatorial objects as 
the marriage theorem, the fundamental theorem of symmetric functions, the 
Stirling numbers of the first kind, and standard Young tableaux make a brief 
appearance. In §5 we present three applications to combinatorial problems 
which a priori seem to have no connection with invariant theory. These 
problems concern (a) the evaluation of certain sums involving roots of unity, 
(b) the "weight enumerator" of a self-dual code over GF(2), and (c) the 
theory of "multipartite partitions" or "vector partitions." The next four 
sections are devoted to the homological aspects of the invariant theory of 
finite groups. The basic object of study is the minimal free resolution of RG 

(as a module over some polynomial ring). We discuss what it means in terms 
of the minimal free resolution for R G to be Cohen-Macaulay, Gorenstein, or 
a complete intersection, and the connection between these properties, the 
internal structure of RG

9 the structure of G, and the generating function 
FG(\). Proofs for the most part are omitted. Included are discussions of such 
recent results as the characterization of Gorenstein RG solely in terms of 
FG(X), and the determination of the canonical module Q(RG). Finally in §10 
we consider the class of monomial groups and use our general theory to 
derive the famous Pólya enumeration theorem for groups acting on the 
domain of a set of functions. 

The following notation is fixed throughout: 
N nonnegative integers, 
P positive integers, 
C complex numbers, 
[n] the set {1, 2 , . . . , n) where n E P, 
T c S T is a subset of 5, allowing T =0 or T = S, 
V © W direct sum of the vector spaces V and W, 
II, Vt direct sum of the vector spaces Vi9 

0>i, • • • ,yj) the vector space spanned b y y l 9 . . . ,yr 

Also throughout this paper V denotes an m-dimensional vector space over 
the complex numbers C, and x, , , • . , xm denotes a basis for V. Let GL(F) 
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denote the group of all invertible linear transformations M: V-*V. Once we 
fix the basis xx, . . . , xm we may identify GL(F) with the multiplicative group 
of all nonsingular m X m matrices with entries in C. Let R be the algebra of 
polynomials in the variables x{,..., xm with coefficients in C, i.e., R = 
C[JCJ, x29..., xm]. Thus the vector space of linear forms in R is just V. The 
action of M G GL( V) on V extends uniquely to an algebra automorphism of 
R, viz., if x denotes the column vector 

and ƒ G R, then (Mf)(x) = /(Mx). For instance, if 

M = 
1 

V2 
and ƒ(*,, x2) = x\ — x 2> 

then 

Mf(xu x2) = 
V2 

(x, + x2) 
V2 

( -* , + x2) X\ i jLX\Xy* 

Many questions in combinatorial theory and other fields can be reduced to 
the problem of finding all polynomials ƒ G R satisfying Mf = ƒ for all M in 
some finite subgroup G c GL(F). Such a polynomial ƒ is called an absolute 
invariant, or simply an invariant, of G. Clearly, the invariants of G form a 
subalgebra of R, which we denote by R G and call the algebra of invariants of 
G. Thus, 

RG = {ƒ G R:Mf = f for all M G G}. 

More generally, let X = ^((7) be the set of irreducible (complex) charac
ters of G. (The number of such characters is equal to the number of 
conjugacy classes in G.) The action of G on R can be decomposed into a 
direct sum of irreducible representations, i.e., R = I i r , where each T is a 
G-invariant subspace of R on which G acts irreducibly. If x £ A", then let i?^ 
denote the direct sum of those T's which correspond to the character x- R* *s 

called an isotypical (or isotypic) component of the action of G on R. Although 
the T's are not uniquely determined, the isotypical components R% are 
unique. Clearly R = I I x e ^ RG- I n particular, RG = i?e

G, where e denotes the 
trivial character. If T is an irreducible component and f E R, then the map 
T->fT given by multiplication by ƒ is clearly a G-module isomorphism. From 
this it follows that RG • i*^ c J^ , i.e., RG is an i?G-module. 

In the special case where x is linear (i.e., x is a homomorphism G -» C — 
{0}), then the condition f B RG is equivalent to M(/) = x(M)f for all 
Af G G. A polynomial ƒ G RG for x linear is called a relative invariant, 
semi-invariant, or X"^nvar^an^ We shall extend this terminology to tf^y 
irreducible character x- Thus ƒ G R is a x-invariant if ƒ G iî^, for any 
X G X(G). Although we will be primarily interested in absolute invariants 
(i.e., ƒ G RG), we will indicate to what extent the theory extends to x~ 
invariants. 
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The fundamental problem of the invariant theory of finite groups is to 
"determine" or "characterize" the algebra RG of invariants. A survey of the 
classical approach to this subject may be found in [Bu, Chapter XVII]. More 
recent work will be quoted in the course of this paper. We also mention the 
survey article by Sloane [SI]. There is considerable overlap between parts of 
this paper and of Sloane's. However, Sloane's emphasis is on applications to 
coding theory while we have a broader point of view. We now quote without 
proof two of the principal classical results concerning invariants of finite 
groups. For this purpose define the degree of G c GL(F) to be m = dim V 
and the order g of G to be the number \G\ of elements of G. 

1.1 THEOREM. If G has degree m, then there exist m, but not m + 1, 
algebraically independent invariants {over C). Equivalently, RG has Krull di
mension m. • 

1.2 THEOREM. Let G have order g and degree m. Then RG is generated as an 
algebra over C by not more than (g^m) homogeneous invariants, of degree not 
exceeding g. • 

A proof of Theorem 1.1 may be found in [Bu, §262]. It follows from the 
work of Hubert that RG is finitely generated, but the more precise Theorem 
1.2 is due to Noether (see [We, pp. 275-276]). Noether in fact showed that RG 

is generated by the (g^m) polynomials (\/g)lLM(=G Mf as ƒ ranges over all 
(gmm) monomials in the variables x„ • . . , xm of degree at most g. 

For many purposes Noether's result gives a satisfactory answer to the 
problem of determining RG. We can ask, however, for more precise infor
mation, viz., a complete description or enumeration, without repetitions, of all 
the invariants. There are two possible approaches to this problem: (a) find a 
canonical form for the elements of R G, or (b) determine all the relationships 
among the generators of RG. We shall discuss both of these approaches 
toward describing R G. 

We conclude this section by supplementing Theorems 1.1 and 1.2 with a 
related result which is easily proved by classical techniques, though an 
explicit statement is difficult to find in the literature. 

1.3 THEOREM. Let x £ ^(G) . Then RG is a finitely-generated RG-module. 
In fact, RG is generated by homogeneous polynomials of degree not exceeding g. 
D 

2. Molien's theorem. To enumerate all the invariants explicitly, it is con
venient and natural to classify invariants by their degrees (as polynomials). 
More precisely, if A: is a field then we define an N-graded k-algebra to be a 
finitely generated A>algebra B (always assumed to be associative, commuta
tive, and with identity), together with a vector space direct sum decomposi
tion 

B =:
 BQ © J9j £B 2>2 ® * * * * 

such that B0 = k and2?f-2̂  C Bi+J. We call Bn the nth homogeneous part of B, 
and an element ƒ E Bn is said to be homogeneous of degree n9 denoted 
d e g / = n. Now note that the polynomial ring R = C[xx,..., xm] has a 
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familiar grading R = R0 © Rx © R2 © • • • , where Rn consists of all homo
geneous polynomials of degree n, in the usual sense. If ƒ G JR„ then Mf G Rn 

for all M G GL(F). It follows that for any subgroup G c GL(F), RG has 
the structure RG = i?0

G © tff © • • • of an N-graded C-algebra given by 
R£ = RG r\ Rn. Hence to determine RG it suffices to determine each RG. 

More generally, if B is an N-graded ^-algebra, then define a Z-graded 
B- module to be a finitely-generated 2?-module A, together with a vector space 
direct sum decomposition 

A = U A,., 
IGZ 

such that Bi&j C Ai+J. The assumption that A is finitely-generated guarantees 
that A = Ui>io A, for some i0 G Z. If we set (RG)n = RG n i?„, then this 
gives i?^7 the structure of a Z-graded R G-module. 

If A = n „ e z Aw is a Z-graded module over the N-graded /^-algebra B9 then 
it follows that dim* A„ < oo since B is finitely-generated as an algebra and A 
is finitely-generated as a 2?-module. The Hubert junction H(A, •): Z -» N of A 
is defined by H(A, ri) = dim^ Aw, and the Hubert series (sometimes called the 
Poincaré series) of A is the formal Laurent series 

F(A,A)= 2 H(A,n)\n. 
« 6 Z 

A theorem of Hilbert, embellished by Serre, implies that F(A, A) is a rational 
function of A. See, e.g., [A-M, Theorem 11.1] or [Sm] for further details. 

When A = RG we call x( l ) _ 1^(^^, A) the Molien series of the pair (G, x) 
and write FG>X(X) = x ( l ) " 1 / r ( ^ , ^)- When x is trivial we call F(RG, A) the 
Molien series of G and write FG(\) = F(RG, A). Note that xO) is just the 
degree of the irreducible representation of G afforded by x- Hence the 
coefficient of A" in FGx(X) is equal to the multiplicity of the character x in the 
action of G on Rn. Clearly we have 

2 x(i)^,xW = (i-Afw 

It is very helpful in analyzing RG to know the Hilbert function H(RG, n\ 
since then we can check whether a tentative listing of invariants is complete. 
Often, moreover, one is only interested in the Hilbert function H(RG, ri) 
itself, and not in the actual elements of (RG)n. A classical theorem of Molien 
[Mo], [Bu, §227], [Bo, p. 110], [SI, Theorem 1] gives an explicit expression for 
the rational function FGx(X) and thereby ties together invariant theory with 
generating functions. 

2.1 THEOREM. Let G be a finite subgroup of GL(F) of order g, and let 
X G X(G). Then the Molien series FGx(X) is given by 

FG«(X) = ! £ G det(/-AM)> « 
where I denotes the identity transformation and x & ^e complex conjugate 
character to x* 
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PROOF. Let W be any finite-dimensional vector space over C, and let H be 
a finite subgroup of GL(W) of order h. Let W% denote the isotypical 
component afforded by x- Thus x(l)~1dimc W" is just the multiplicity of x 
in the action of H on W. From the rudiments of the representation theory of 
finite groups we conclude 

x O ^ d i m c W ^ - i 2 x(M)(trM), (2) 
h M(EH 

where tr denotes trace. 
Now given M E G c GL(K), let pu..., pm be its eigenvalues. Since M 

has finite multiplicative order it follows that there exist m linearly indepen
dent eigenvectorsy l9... 9ym belonging to p„ . . . , pm, respectively. Consider 
the action of G on Rn, the nth homogeneous part of R. The C1"*"̂ "1) distinct 
monomials y ? ' . . ,y%» of degree n are eigenvectors for M (acting on Rn) with 
corresponding eigenvalues pf» . . . p%". Hence for this action of M we have 

t r M = S P i a , . . . p > 
ö,+ • • • +am = n 

Therefore by (2), 

X(l)-lH(RG,n) = ± S X(M) E PV---Pa
m", (3) 

where p1? . . . , pm are the eigenvalues of M acting on F. Since l/det(7 - AM) 
= 1/11(1 - piX) . . . (1 - pwX), the right-hand of (3) is just the coefficient of 
A" in 

7 X 0 ) - 1 2 x (M) /de t ( / -AM) , 

and the proof follows. • 
Molien's theorem breaks down over fields in which g = 0. In fact, the 

entire theory of invariants of finite groups becomes much more complicated 
and much less understood in characteristic /?. For an inkling of the problems 
which can arise, see [A-F]. 

2.2 EXAMPLE. AS a simple first application of Molien's theorem, we prove 
the nonobvious result that each R£ ^0. In the expression (1) for FGx(A), 
exactly one term (corresponding to M = I) has a pole of order m at X = 1, 
while the other terms have a pole of order < m. Hence FGx(\)=£0, so 
R° *0. 

2.3 EXAMPLE. Let G = {ƒ, M, M2, M3}, where M = [_? £]. The Molien 
series of G is given by 

FcW-i 1 . 2 . 1 
(1 - X)2 1 + X2 (1 + X)2 

= ( l + X 4 ) / ( l - * 2 ) 0 - * 4 ) - (4) 

The form of this Molien series suggests that there may be invariants 9X E 
R£, 02 E Rf, r] E Rf9 such that every invariant ƒ E RG can be written 
uniquely in the form p(0l9 0^ + 17 • q(9v 92), where /? and q belong to 
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C[xl9 x2]. More succinctly, we could write this condition as 

RG = c[01? e2] © îj• c[9l9 e2] = c[0„ e2](i © i,) (5) 
the sum © being a vector space direct sum (or a C[9X, 02]-module direct sum). 
Using (4), it is in fact not difficult to show that (5) holds for 0X = x\ + x\9 

I/O = = X\X,2y t\ = = X\X>y AlAT. 

The preceding example raises many theoretical questions. Consider RG for 
any finite subgroup G of GL( V). Suppose we can find algebraically indepen
dent homogeneous invariants 0l9 02,. .. 90m of degrees dl9 d2, ..., dm9 respec
tively (i.e., 0, G RG)9 and a set 171? ry2, . . . , i\t of homogeneous invariants of 
degrees ^ , e29 . . . , et9 respectively (i.e., 7j, G RG)9 such that if S = 
C[Öj, 029..., 0J , then i*G = r^S © i\2S © • • • ®r\tS. It is then clear from 
the definition of FG(X) that 

M*) = ((2 ^) / f l ( l -A«) . (4) 

Mallows and Sloane [M-S] conjectured that the converse statement is true, 
i.e., if FG(X) can be written in the form (6), then we can always find the 
appropriate invariants TJ, and Oj. This conjecture, however, is false, as pointed 
out in [SI, p. 101] and [Sta2, Ex. 3.8]. For instance, let G be the group 
generated by diag(-l , — 1, 1) and diag(l, 1, /), where 12 = — 1. Thus G is 
abelian of order 8, and we have FG(X) = 1/(1 - X2)3. However, RG = 
C[x\, *2> *3]0 © x\x2)> which cannot be expressed in the form C[0{9 0l9 03]9 

The question then arises as to whether there is some way of writing FG(X) in 
the form (6) such that 

RG=UirliC[0{9...90m]9 

where 0j G RG, TJ, G RG
9 and the 0/s are algebraically independent over C. In 

other words, do there exist m algebraically independent homogeneous 
elements 0l9 . . . , 0m G RG such that i?G is a finitely-generated free 
C[0l9 . . . , 0m]-module? This question immediately leads to the subject of 
Cohen-Macaulay rings. 

3. Cohen-Macaulay rings. Let B = B0 © B{ © • • • be an N-graded A>alge-
bra, as defined in the previous section. We denote by dim B the Krull 
dimension of B9 i.e., the maximum number of elements of B which are 
algebraically independent over k. Equivalently, dim B is the order to which 
À = 1 is a pole of the rational function F(B9 X) [Sm, Theorem 5.5]. If 
m = dim B9 then a set 0l9..., 0m of m homogeneous elements of positive 
degree is said to be a homogeneous system of parameters (h.s.o.p.) if B is a 
finitely-generated module over the subalgebra k[0l9..., 0m], This implies 
that 0l9..., 0m are algebraically independent. It is easy to see that 0{9..., 0m 

is an h.s.o.p. if and only if the quotient algebra B/(0V ..., 0m) is a finite 
dimensional vector space over k. A basic result of commutative algebra, 
known as the Noether normalization lemma, implies that an h.s.o.p. for B 
always exists (e.g., [A-M, p. 69], [Z-S, Theorem 25, p. 200]). We now come to 
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another standard result of commutative algebra. 

3.1 PROPOSITION. Let B be as above, and let 9X,..., 9m be an h.s.o.p. for B. 
The following two conditions are equivalent. 

(i) B is a free module {necessarily finitely generated) over k[9x, . . . , 9m]. In 
other words, there exist r j , , . . . , t\t E B (which may be chosen to be homo-
geneous) such that 

* « £ ! , , * [ * „ . . . , 0m]. (7) 

(ii) For every h.s.o.p. \}/x,..., \f/m of B, B is a free k[^x,..., \pm]-module. 
If condition (i) (and therefore (ii)) holds, then the elements t\x,..., v\t of B 

satisfy (7) if and only if their images in B/(9X, — , 9m) form a vector space 
basis for B/(9X,...99J. Q 

A proof that (i) and (ii) are equivalent can be found, e.g., in [Se2, Theorem 
2, p. IV-20] (using somewhat different terminology). The latter part of the 
above proposition is an easy consequence of (i). An N-graded ^-algebra B 
satisfying (i) and (ii) above is said to be a Cohen-Macaulay algebra. Hence the 
question raised at the end of the previous section can be rephrased: Is RG 

Cohen-Macaulay for finite G c GL( V)! The first explicit answer to this 
question appeared in [H-E, Proposition 13], although it was apparently part of 
the folklore of commutative algebra before [H-E] appeared. 

3.2 THEOREM. For any finite G c GL(F), RG is a Cohen-Macaulay algebra. 

PROOF. We first claim that we can write R * RG © U, where U is an 
/^-module. If ƒ e R let $(f) = ( l / g ) 2 ^ e c

 Mf- (* i s t h e so-called Reynolds 
operator) Now <j>2 = <ƒ>, and it follows that we can take {/= {ƒ Ei?:<f)/=0} 
= { ƒ - * ƒ : ƒ E J?}. 

We next claim that R is a finitely-generated i?G-module. This claim is 
equivalent to the classical result that R is integral over RG, i.e., every element 
of R satisfies a monic polynomial with coefficients in RG. (For the equiva
lence of finite generation to integrality, see, e.g., [A-M, Chapter 5].) For the 
sake of completeness we give the standard proof that R is integral over RG. 
Let ƒ e R, and consider the polynomial Pf(t) = ïïMeG(' ~" M(f)). The 
coefficients of Pf(t) are symmetric functions of the M(f)% so elements of 
RG. Moreover Pf(t) is monic, and Pf(f) = 0 since t - ƒ is a factor of Pj(t). 
Hence ƒ is integral over RG, as desired. 

Now let 0X,..., 0m be an h.s.o.p. for RG (existence guaranteed by the 
Noether normalization lemma). Since R G is finite over C[9X,..., 9m] and R is 
finite over RG, it follows that R is finite over C[0„ . • . , 9m], so 9X,..., 9m is 
an h.s.o.p. for R. Since xx,... ,xm is also an h.s.o.p. for R and R is clearly a 
free C[xx,..., xw]-module, it follows from Proposition 3.1 that R is a free 
C[9X9..., 0,J-module. Moreover, it follows from the decomposition R = RG 

0 U that R/(9X, ...,0m) = RG/(9V ..._, 9m) 0 U/(9XU + • • • +9mU). 
Choose a homogeneous C-basis r}x,..., % for R/(9X,..., 9m) such that 
j / j , . . . , % is a C-basis for RG/(9X,..., 9m) and fjt+x,..., % is a C-basis for 
U/(9XU + • • • +9mU). Lift rjj to a homogeneous element TJ, of RG if 
1 < i < / and to a homogeneous element TJ, of U if t + 1 < i < s. By 
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Proposition 3.1 we have R = 11} TJ,C[0I, . . . , 0m], so RG = 
U'i Ï?,C[#I> • • • > 9m]. Hence RG is a free C ^ , . . . , 0J-module, so i?G is 
Cohen-Macaulay. D 

We now wish to give an explicit description of a certain h.s.o.p. \pl9..., \pm 

for RG. We will in fact show directly that R is a free Q ^ , . . . , t//m]-module, 
so it will follow from the proof of Theorem 3.2 (circumventing the use of 
Proposition 3.1) that RG is a free C [ ^ , . . . , ^w]-module. We will require the 
following result from commutative algebra [H-E, p. 1036], [Sm, Proposition 
6.8]. Since a direct, elementary proof is lacking in the literature, we include 
such a proof here. 

3.3 LEMMA. Let B be an N-graded k-algebra of Krull dimension m9 and let 
0,,. • . , 0j be algebraically independent homogeneous elements of B of positive 
degree. Set C = k[0l9..., 0\. Then B is a free C-module if and only if0i+\ is 
not a zero-divisor in B/(0l9 . . . , 0,) for 0 < i < j — 1. Moreover, given that B 
is a free C-module, then B is finitely-generated as a C-module iff = m. 

PROOF. Induction ony. First assume j = 1, and let 0 = 0X. Let W be a 
vector space complement in B of the ideal 0B. The statement that 0 is not a 
zero-divisor in B is equivalent to saying B = W + 0W + 02W + • • • , i.e., B 
is a free &[0]-module (with basis consisting of a A>basis for W). Now assume 
the lemma for y = / - 1. It is clear that B is a free k[0l9..., 07]-module if 
and only if B is a free k[0l9..., 0/_,]-module and B/(0l9..., 0/_1) is a free 
/c[0/]-module. By the induction hypothesis (including the casey = 1), the first 
assertion of the lemma follows. 

Now suppose j = m and let y be a (graded) vector space complement in B 
to the ideal (0l9..., 0m). Hence B = HM Yu9 where u ranges over all mono
mials in 0{9..., 0m. We want to show dim^ Y < oo. Linearly independent 
elements of Y remain linearly independent in D = B/(0l9..., 0W). If dim* Y 
= oo, then D contains a homogeneous element ƒ of positive degree which 
isn't nilpotent. Thus the elements fu are linearly independent in B for all 
i > 0 and all monomials u in 0l9..., 0W, so 0 1 ? . . . , 0m9 f are algebraically 
independent. This contradicts the definition of m as the largest number of 
algebraically independent elements of B. • 

Now choose linear forms ƒ„ . . . , fm G V as follows. Pick ƒ, ¥" 0. Once 
ƒ „ . . . , ƒ have been chosen, pick fi+l not to be in any of the /-dimensional 
subspaces <Af, f l 9 . . . , M^> of V9 where M„ . . . , A/, E G. (Such a choice is 
always possible since V is not a set-theoretic union of finitely many proper 
subspaces.) Let f i l 9 . . . , fi(H be the distinct images of f under G. (Hence if Ht is 
the subgroup of G fixing ƒ•, then at = \G\/\Ht\.) Define ^ = fji2 • • • J^. 
Clearly^ e RG. 

3.4 PROPOSITION, iî (and hence RG) is a finitely-generated free 
C[\pl9... 9 \f/m]-module. 

PROOF (based on a letter from E. Dade to N. Sloane and on a conversation 
with N. Sloane). By Lemma 3.3, it suffices to prove that ip/+1 is not a 
zero-divisor in R/fyi* • • • » ̂ i ) - I n ot l ier words, if 


