BOUNDARY REGULARITY AND EMBEDDED SOLUTIONS FOR THE ORIENTED PLATEAU PROBLEM

BY ROBERT HARDT AND LEON SIMON

Any fixed C^2 Jordan curve Γ in \mathbb{R}^3 is known to span an orientable minimal surface in several different senses. In the work of Douglas, Rado and Courant (see e.g. [3, IV, §4]) the minimal surface occurs as an area-minimizing mapping from a fixed orientable surface of finite genus and may possibly have self-intersections. In the work of Federer and Fleming (see e.g. [4, §5]) the minimal surface, which occurs as the support of an area-minimizing rectifiable current, is necessarily embedded (away from Γ) but was not previously known even to have finite genus. Our work in [7], which establishes complete boundary regularity for the latter surface, thus implies that there exists an orientable embedded minimal surface with boundary Γ . In fact:

THEOREM 1. For any compact orientable n-1 dimensional C^2 embedded submanifold N of \mathbb{R}^{n+1} , there exists an orientable bounded stable minimal embedded $C^{1,\alpha}$ (for all $0 < \alpha < 1$) hypersurface M with boundary N so that the closure of M in \mathbb{R}^{n+1} equals $M \cup S$ for some compact set $S \subset \mathbb{R}^{n+1} \sim N$ of Hausdorff dimension $\leq n-7$.

Using the existence theory for area minimizing rectifiable currents [4, 5.1] and their interior regularity theory [5, Theorem 1], Theorem 1 follows from our boundary regularity result [7, 11.1]:

THEOREM 2. If U is an open subset of \mathbb{R}^{n+1} , T is an n dimensional absolutely area minimizing locally rectifiable current in U, and ∂T is an oriented embedded C^2 submanifold of U, then, for some open neighborhood V of spt ∂T in U, $V \cap$ spt T is an embedded $C^{1,\alpha}$ hypersurface with boundary for all $0 < \alpha < 1$.

W. K. Allard [1, §5] has proven such regularity near points on the boundary of the convex hull of spt T. Boundary regularity in n = 2 for the *unoriented* problem [4, 5.3.21] (and so the existence of possibly nonorientable embedded minimal surfaces with boundary) also follows form his work. For $k \ge 2$, $C^{k,\alpha}$

Received by the editors June 21, 1978.

AMS (MOS) subject classifications (1970). Primary 49F22, 49F10; Secondary 49F20, 53A10

Key words and phrases. Minimal surface, absolutely area minimizing rectifiable current, tangent cone, excess.

¹Partially supported by NSF Grant MCS-7701747

smoothness (analyticity) in Theorems 1, 2 for $C^{k,\alpha}$ (analytic) boundaries follows from [8, 1.10]. In proving Theorem 2, we obtain:

THEOREM 3. Any compact orientable n-1 dimensional embedded minimal submanifold of $S^n = \mathbb{R}^{n+1} \cap \{x: |x| = 1\}$ with boundary $S^n \cap \{(x_1, \ldots, x_{n+1}): x_n = 0 = x_{n+1}\}$ must be a great hemisphere.

[2, Theorem A] shows that spt T above may have an n-7 dimensional *interior* singular set and that the analogue of Theorem 3 for submanifolds without boundary is false. For n=2, Theorem 2 implies:

THEOREM 4. For any C^2 Jordan curve Γ in \mathbb{R}^3 , there exists a nonnegative integer G_{Γ} so that:

- (1) The Douglas-Courant type, genus g least-area problem [3, IV, 4.1, 4.4] for Γ has no solution whenever $g > G_{\Gamma}$.
- (2) There exists a Douglas-Courant type genus G_{Γ} least-area solution for Γ , and any such solution is embedded.
 - (3) The number of such solutions is finite if Γ is $C^{4,\alpha}$.

There are also a priori bounds on G_{Γ} , the number of solutions, and the absolute value of the Gaussian curvature of any solution.

SKETCH OF PROOF OF THEOREM 2. To obtain regularity near a point $a \in \text{spt } \partial T$, we assume a=0 and first prove that the support of some oriented tangent cone at 0 is contained in a hyperplane. For n=2, this follows from the monotonicity formula [1, 3.4], interior regularity [5], and the planar nature of geodesics on S^2 . For n>2, an inductive argument using linear barriers is required. Letting $H_{\pm}=\mathbb{R}^n\cap\{(y_1,\ldots,y_n)\colon \pm y_n>0\}$ and rotating, we assume that for some positive integer m the oriented tangent cone is the sum of m times $H_{+}\times\{0\}$ and m-1 times $H_{-}\times\{0\}$, both taken with the usual orientation $e_1\wedge\cdots\wedge e_m$. Since the case m=1 has been treated by Allard $[1,\S 5]$, we henceforth assume $m\geqslant 2$.

Using [4, 5.4.2], we now see that the normalized height

$$h(r) = \sup\{|x_{n+1}|/r: (x_1, \dots, x_{n+1}) \in \text{spt } T, |(x_1, \dots, x_n)| \le r\}$$

has lower limit 0 as $r \downarrow 0$. After establishing that h(r) is comparable (except for a boundary curvature term and a slight change in r) with the cylindrical excess $\operatorname{Exc}(T, 0, r)$ of [4, 5.3], we may apply the interior regularity theorem [4, 5.3.14] in vertical circular cylinders which do not meet spt ∂T . From this, one finds C^1 domains $\Omega_{\pm} \subset H_{\pm}$ which are mutually tangent at the origin so that over $\Omega_{+} \cup \Omega_{-}$, spt T separates into graphs of real analytic minimal-surface-equation solutions:

(1)
$$u_1^+ \le u_2^+ \le \cdots \le u_m^+$$
 on Ω_+ , $u_1^- \le u_2^- \le \cdots \le u_{m-1}^-$ on Ω_- .

Concerning the boundary behavior of each u_i^{\pm} , one may, at this stage, only conclude that

(2)
$$\lim_{\Omega_{+} \ni y \to 0} |u_{i}^{\pm}(y)| + |Du_{i}^{\pm}(y)| = 0.$$

The goal of the middle third of [7] is the specific estimate

$$\limsup_{r\downarrow 0} r^{-\frac{N}{2}}h(r) < \infty.$$

Besides involving many well-known concepts of geometric measure theory (monotonicity, excess, blowing-up) and well-known nonparametric regularity estimates (DeGiorgi-Nash, Schauder), the work here includes a new estimate on the radial derivative of each u_i^{\pm} and a new comparison between spherical and cylindrical excess.

Using (3), we verify that Ω_{\pm} , u_i^{\pm} may be chosen so that

(4)
$$\Omega_{\pm} \text{ is a } C^{1,1/10} \text{ domain, } u_i^{\pm} \in C^{1,1/4}(\operatorname{Clos} \Omega_{\pm}).$$

Under conditions (1), (2), and (4), the $C^{1,\alpha}$ Hopf-type boundary point lemma of Finn and Gilbarg [6, Lemma 7] implies that $u_1^+ = \cdots = u_m^+$, $u_1^- = \cdots = u_{m-1}^-$. For a small open ball B about 0, we then subtract off the oriented component, which meets the graph of u_1^+ , of the regular points of $B \cap (\operatorname{spt} T) \sim \operatorname{spt} \partial T$ to obtain an area minimizing $S \in \mathbb{R}_n^{\operatorname{loc}}(B)$ with $\partial S = 0$ and $\operatorname{spt} S = B \cap \operatorname{spt} T$. The proof is completed by using the interior regularity theorem [4, 5.3.18] which implies that (since $h(r) \to 0$ as $r \downarrow 0$) spt S is, near 0, an embedded real analytic minimal submanifold.

REFERENCES

- 1. W. K. Allard, On the first variation of a varifold: boundary behavior, Ann. of Math. (2) 101 (1975), 418-446.
- 2. E. Bombieri, E. DeGiorgi, and E. Giusti, Minimal cones and the Bernstein problem, Invent. Math. 7 (1969), 243-268.
- 3. R. Courant, Dirichlet's principle, conformal mapping, and minimal surfaces, Intersciences, New York, 1950.
- 4. H. Federer, Geometric measure theory, Springer-Verlag, Berlin and New York, 1969.
- 5. ———, The singular sets of area minimizing rectifiable currents with codimension one and of area minimizing flat chains modulo two with arbitrary codimension, Bull. Amer. Math. Soc. 76 (1970), 767-771.
- 6. R. Finn and D. Gilbarg, Asymptotic behavior and uniqueness of plane subsonic flows, Comm. Pure Appl. Math. 10 (1957), 23-63.
- 7. R. Hardt and L. Simon, Boundary regularity and embedded solutions for the oriented Plateau problem, Ann. of Math. (to appear).
- 8. C. B. Morrey, Jr., Multiple integrals in the calculus of variations, Springer-Verlag, Berlin and New York, 1969.

SCHOOL OF MATHEMATICS, UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MINNESOTA 55455

MATHEMATICS DEPARTMENT, UNIVERSITY OF MELBOURNE, PARKVILLE, VICTORIA, 3052, AUSTRALIA