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BOUNDARY REGULARITY AND EMBEDDED SOLUTIONS 

FOR THE ORIENTED PLATEAU PROBLEM 

BY ROBERT HARDT1 AND LEON SIMON 

Any fixed C2 Jordan curve F in R3 is known to span an orientable minimal 
surface in several different senses. In the work of Douglas, Rado and Courant 
(see e.g. [3, IV, §4]) the minimal surface occurs as an area-minimizing mapping 
from a fixed orientable surface of finite genus and may possibly have self-inter­
sections. In the work of Fédérer and Fleming (see e.g. [4, §5]) the minimal 
surface, which occurs as the support of an area-minimizing rectifiable current, is 
necessarily embedded (away from T) but was not previously known even to have 
finite genus. Our work in [7], which establishes complete boundary regularity 
for the latter surface, thus implies that there exists an orientable embedded mini­
mal surface with boundary T. In fact: 

THEOREM 1. For any compact orientable n - 1 dimensional C2 embed­
ded submanifold NofRn + l, there exists an orientable bounded stable minimal 
embedded C1 i<x (for all 0 < a < 1) hypersurface M with boundary N so that the 
closure of M in Rn + x equals MU S for some compact set S C Rn + 1 ~ Nof 
Hausdorff dimension <.w-7. 

Using the existence theory for area minimizing rectifiable currents [4, 5.1] 
and their interior regularity theory [5, Theorem 1], Theorem 1 follows from our 
boundary regularity result [7, 11.1]: 

THEOREM 2. If U is an open subset ofRn+l, T is an n dimensional abso­
lutely area minimizing locally rectifiable current in U, and dT is an oriented em­
bedded C2 submanifold of U, then, for some open neighborhood V of spt dT in 
Uf V n spt T is an embedded C1 >0i hypersurface with boundary for all 0 < a 
< L 

W. K. Allard [1, §5] has proven such regularity near points on the bound­
ary of the convex hull of spt T. Boundary regularity in n = 2 for the unoriented 
problem [4, 5.3.21] (and so the existence of possibly nonorientable embedded 
minimal surfaces with boundary) also follows form his work. For k > 2, Ck,0L 
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smoothness (analyticity) in Theorems 1, 2 for C*'a (analytic) boundaries follows 
from [8, 1.10]. In proving Theorem 2, we obtain: 

THEOREM 3. Any compact orientable n - 1 dimensional embedded mini­
mal submanifold of Sn = Rw + 1 H {x: |x| = l}with boundary Sn n {(xv . , . , 
xn + j): xn = 0 = #„ +j} musf &e a gratf hemisphere, 

[2, Theorem A] shows that spt T above may have an n - 7 dimensional 
interior singular set and that the analogue of Theorem 3 for submanifolds without 
boundary is false. For n = 2, Theorem 2 implies: 

THEOREM 4. For aw/ C2 Jordan curve F in R3, there exists a nonnegative 
integer GT so that: 

(1) The Douglas-Courant type, genus g least-area problem [3, IV, 4.1,4.4] 
for T has no solution whenever g > Gr 

(2) There exists a Douglas-Courant type genus Gv least-area solution for Y, 
and any such solution is embedded. 

(3) The number of such solutions is finite if V is C4'0; 

There are also a priori bounds on Gr> the number of solutions, and the 
absolute value of the Gaussian curvature of any solution. 

SKETCH OF PROOF OF THEOREM 2. To obtain regularity near a point a E 
spt dT, we assume a = 0 and first prove that the support of some oriented tan­
gent cone at 0 is contained in a hyperplane. For n = 2, this follows from the 
monotonicity formula [1, 3.4], interior regularity [5], and the planar nature of 
geodesies on S2, For n > 2, an inductive argument using linear barriers is re­
quired. Letting H± = Rn O {(y%i . f f ,yn): ±yn > 0} and rotating, we assume 
that for some positive integer m the oriented tangent cone is the sum of m times 
H+ x {0}and m-\ times H„ x {0}, both taken with the usual orientation 
et A ' " A e w . Since the case m = 1 has been treated by Allard [1, §5], we 
henceforth assume m>2. 

Using [4, 5.4.2], we now see that the normalized height 

h{f) = sup{|xw + l|/r: (x%9 . , , , xw + 1) E spt T, \(xv . , , , xn)\ < r} 

has lower limit 0 as r I 0. After establishing that h(r) is comparable (except for 
a boundary curvature term and a slight change in r) with the cylindrical excess 
Exc(r, 0, r) of [4, 5.3], we may apply the interior regularity theorem [4, 5.3.14] 
in vertical circular cylinders which do not meet spt 97". From this, one finds Cl 

domains Q,t G H± which are mutually tangent at the origin so that over £2+ U 
£l~9 spt T separates into graphs of real analytic minimal-surface-equation solu­
tions: 

(1) u*<U2 < ' ' * < w* on J2+, u^<u^< • • " <Um-i o n ^ - -
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Concerning the boundary behavior of each uf, one may, at this stage, only con­
clude that 

(2) lim \uf(y)\ + \Duf(y)\ = 0. 
£l±By-+Q 

The goal of the middle third of [7] is the specific estimate 

(3) limsupr~%ft(r)<oo. 

Besides involving many well-known concepts of geometric measure theory (mono-
tonicity, excess, blowing-up) and well-known nonparametric regularity estimates 
(DeGiorgi-Nash, Schauder), the work here includes a new estimate on the radial 
derivative of each uf and a new comparison between spherical and cylindrical 
excess. 

Using (3), we verify that £2±, uf may be chosen so that 

(4) £l± is a C1 '1 '1 0 domain, uf G CM/4(Clos £2±). 

Under conditions (1), (2), and (4), the C1'0 Hopf-type boundary point lemma 
of Finn and Gilbarg [6, Lemma 7] implies that u\ = * • • — um , uj = • • • = 
um-i' ^o r a s m a^ °Pen ^a^ B about 0, we then subtract off the oriented com­
ponent, which meets the graph of u\9 of the regular points of B n (spt 7) ~ 
spt 37 to obtain an area minimizing S G Rx

n
oc(B) with dS = 0 and spt S = B O 

spt T. The proof is completed by using the interior regularity theorem [4, 5.3.18] 
which implies that (since h(r) —* 0 as r I 0) spt S is, near 0, an embedded real 
analytic minimal submanifold. 
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