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BY H. P. MCKEAN AND E. TRUBOWITZ 

Preface. In this paper we continue the investigations begun in McKean-
Trubowitz [1976] of infinite-genus hyperelliptic Riemann surfaces S which are 
constructed from the spectrum of a Hill's operator. Let q be a real infinitely 
differentiable function of 0 < { < 1 of period 1. The Hill's operator is 
Q = — d1/di1 + q(£). The periodic and antiperiodic eigenfunctions of Q 
determine an infinite spectrum X0 < A, < X2 < X3 < A4 < • • • Too of simple 
or double eigenvalues. S is formed by cutting two copies of the number 
sphere along the so-called intervals of instability marked off by such pairs of 
simple eigenvalues X2n-i < ^2n a s m a y occur. S is a hyperelliptic surface of 
genus g ( < infinity) equal to the number of such pairs. The purpose of this 
paper is to develop some of the function theory of S in the case g = infinity 
with special attention to differentials of the first kind, the Jacobian variety, 
and the Riemann theta function. McKean-Trubowitz [1976] introduced a 
Hilbert space of differentials of the first kind closely connected with the 
interpolation of certain classes of entire functions, defined the Jacobi map for 
divisors in "real position", and constructed the "real part" of the Jacobian 
variety. The present paper studies more refined Hilbert spaces of 
differentials; one such space of particular importance is populated by 
differentials with precisely "2 X (g = infinity) — 2" roots, just as in the 
classical case. The associated (infinite-dimensional) Jacobian variety and its 
theta function are also introduced. The basic properties of the latter include a 
variant of the Riemann vanishing theorem. A theta function formula of Baker 
[1897] and Its-Matveev [1975] is adapted to the present case and used to 
express the solution of the celebrated Korteweg-de Vries equation with peri­
odic initial data. Along the way, we prove period relations, derive an infinite-
dimensional analogue of Jacobi's identity for the theta function, embed S in 
its Jacobian variety, and prove the easy half of Abel's theorem. 

To the best of our knowledge the only previous work on transcendental 
hyperelliptic function theory is that of Hornich [1933], [1935], [1939] and 
Myrberg [1943], [1945]. These papers contain some discussion of square-
summable differentials of the first kind and their period relations. The 
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infinite-dimensional Jacobian variety and its theta function are introduced 
for the first time in the present paper. 

1. Preliminaries. Hill9s operator: Q denotes the Hill's operator -d2/d£2 + 
q(Q with potential q in C,00, the space of smooth real-valued functions of 
period 1. flqfë) d£ is assumed to vanish with a view to the simplicity of certain 
estimates. Let >>,(£, X) and y2(£, X) be the solutions of Qy = Xy with ^(O, 
*) = y2(0, X) = 1 and/,((), X) = y2(0, X) = 0. The discriminant A(X) is defined 
to beyx(l, X) + y'2(l, X). Most of the following basic material can be found in 
Levitan-Sargsjan [1975], Magnus-Winkler [1966], and McKean-Trubowitz 
[1976, §1]. 

The periodic spectrum is the sequence 
XQ < Xj < X2 < X3 < X4 • • • |oo 

of simple or double eigenvalues of Q arising from eigenfunctions of period 2 
(or 1); equality means that X2rt_j = X2n has a 2-dimensional eigenspace. For 
simplicity, let the periodic spectrum be purely simple, i.e., X2n_v < X2n (n > 1). 

The estimate 

K-i>K.-»V+0(l/n2) 
is noted for future use. The lowest eigenvalue XQ is simple and f^ the 
corresponding eigenfunction, is root-free and of period 1. The eigenfunctions 
/2w_i, f2n corresponding to X2n_v X2n have n roots apiece in [0, 1) and are 
periodic when n is even and antiperiodic when n is odd. The fn

9s are 
normalized by f If2 d£ = 1. The roots of A2(X) - 4 = 0 coincide with the 
periodic spectrum: in fact A(Xo) = 2 and A(X2/I_,) = A(X2/I) = 2(-1)" (n > 1). 
The intervals (—00, XQ), (XJ, X2), (X3, X4) , . . . are intervals of instability, 
so-called because no solution of Qy = Xy is bounded on the line if X lies in 
such an interval. The widths /„ = X2n - X2„_, (n > 1) are rapidly decreasing 
by a theorem of Hochstadt [1963]. 

The roots /i» (n > 1) of y2(l, /i) = 0 coincide with the eigenvalues of Q 
arising from eigenfunctions that vanish at £ = 0 and £ = 1. They interlace the 
periodic spectrum as follows: 

Xo < Xj < /ij < X2 < X3 < /i2 < X4 < • • • 

and are designated as the tied spectrum. The normalized eigenfunction 
corresponding to ju» is2>>2(£, ft,) X [/â>>2(& ft,) dÇ\~l/2; the number 

•'o 
is the Aith norming constant. The following estimates of y { and>>2 will often be 
used: 

.;,,(£, X) = cos V X £ + ^ ^ (*qdn+0(X-*) 
2vX Jo 

_ _x sinVX£ cosVX£ rt J ^,_ 1/2x 

• means 9/3/x. 
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forXfoo, and 

j ,(&X)- cosVX{[l+o(l)] 

sinVX{ - „ x 1 

j 2 ( f cA) - -^=-S [l + o(l)] 

for X X — oo. These estimates can be differentiated with respect to x and/or X 
and are uniform on 0 < x < 1. The functions y2(l, A) and A(X) are entire of 
order 1/2 and type 1. They can be expressed as 

*(M- n n V 
and 

A(A) = 2(Ao-X) II — ^ T - 1 ' + 2' 
n even W 77 

A ( X ) , 2 n
 ( A 2 " " X ) ^ ; - ' " X ) - 2 > 

n odd w A" 

respectively; in particular, /î  (n > 1) determines >>2(1, X), while XQ, X2W.!, X2lt 
(n even) or X2/I_1, X2w (/i odd) determine A(X). 

Spaces of entire functions. Two real Hubert spaces of entire functions are 
introduced for future use. First, 11/2 is the Hubert space of entire functions <J>, 
real on the Une, of order < 1/2 and type < 1, for which 

1 l/2W - [ °° 1<KX)|2X1/2 d\ < oo. 

Il/2(<t>> *M * /o°^X,/2 rfX is the inner product of the space Il/2. Let ^ e 
[X2*-!> X2J (n > 1) be any tied spectrum and let >>2(1, X) = IlOiVy^ft, — 
X). The functions >>2(1, X)[(X - /OJ>2(1, /OF1 (n > !) are *a *1/2- Let <J> e 
ƒ , /2. Then 2W>1|<K^)|2^2 is comparable3 to 11/2[<f>], and4 

i.e., <> can be interpolated off ^(n > 1). The same is true of the Hubert space 
7 3 / 2 C / 1 / 2 defined by 

!*/*[+]-J" frfk"*d\<«> 

with one modification: now it is the sum 2n>i|</>(ju>,)|2«4 which is comparable 
to /3/2[<f>]; see McKean-Trubowitz [1976, §5] for more information. 

The HilVs surface. The Hill's surface S for the potential q is constructed by 

3Here, comparable means a/,/2[<f>] < 2n>i|<KM>,)fy2 < */ l / 2 M» with a, b > 0, independently 
of <J> E ƒ l / 2 ; the word is used in the same way below. 

4The sums converge in norm and uniformly on compact subsets of C. 
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cutting two copies of the Riemann sphere along the intervals of instability 
and attaching all the lower lips on one sphere to the corresponding upper lips 
on the other and vice versa. S is the Riemann surface of the transcendental 
hyperelliptic irrationality R(X) = V(1/4)A2(A) - 1 . In particular, S has 
infinite genus. Figure 1 represents a topological model of S on which a 
canonical homology basis Al9 Bl9 A29 B29... has been drawn. 

FIGURE 1 

Potentials with a common periodic spectrum. Fix q0 E Cj00 and let M be the 
space of all potentials q E C™ with the same periodic spectrum \n (n > 0) as 
q0. M is compact in the topology it inherits from Cj00. Slit the nth interval of 
instability (\2n-\> 2̂«) anc* for q E M9 place nn E [\2n-v ^2n\ o n ^ e upper or 
the lower lip according as the radical Z?(/0 is positive or negative. A 
potential q in M is mapped thereby to the point p = (pl9 p29... ) of the torus 
of Figure 2 determined by pn = (jt̂ , R(l^)) (n > 1). This map is a 
diffeomorphism onto. Thus, M is a torus naturally diffeomorphic to a 
product of circles sitting inside the infinite product of S with itself; see 
McKean-Trubowitz [1976, §4] for more information. 

R>0 

X2 A s J *4 O R<0 

FIGURE 2 

For fixed real X, let the vector field X be defined by Xq(Q = 
(<//</£)(3A(A)/9tf(ö). Then the flow etX generated by solving dq/dt = Xq 
preserves M9 and any two of these flows commute. Observe that the map 
q(Q -> Xq(£) is not local. The X's are Hamiltonian vector fields on M with 
respect to the Poisson bracket 

{F, G} - ƒ ! (dF/dq®Xd/dQ(dG/dq®) « 

between functions F and G of q9 i.e., X is the gradient d/dq of the 
Hamiltonian A(X) followed by the skew symmetric operator d/dÇ. The 
tangent space to Af at a point q is the span of the functions Xq; see §§3, 8 and 
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9 of McKean-Trubowitz [1976] for a complete discussion of these matters. 
There is an important hierarchy of local vector fields V„ (n > 1) on M 

which is constructed from the semigroup e~tQ. The trace 

tr(<T'0) = 2 *~K' 

has the asymptotic expansion5 

in which H_, = 1 and Hn (n > 0) is an integral over the period 0 < £ < 1 of 
a universal polynomial in q and its derivatives. The vector field V„ (n > 1) is 
defined by 

and induces a local Hamiltonian flow e*1* on M. The first three are V^ = q\ 
M2q = 3 W ' - \ q'"9 and V3q = (l5/2)q2q' - 5?'?" - (5/2)^'" + (l/4)<z'"", 
the flow induced by V2 being equivalent to the well-known Korteweg-deVries 
equation dq/dt - 3#4' - (1 /2)? '" . The general rule is 
V„? =(qD + Zty- ( | )Z> 3)(9Jy„_ i/9^). See Gardner, Greene, Kruskal-
Miura [1974] and McKean-Trubowitz [1976: 147-148] for more information; 
note that 

^ - ^ ( A a J ^ - â ^ (<>0) 

where # is a polynomial of degree i depending upon M but not upon q; see 
McKean-Trubowitz [1976: 176] for a proof. 

Differentials, Abelian sums, and the real part of the Jacobian variety for S. A 
differential d<b of the first kind on S is of the form $d\/R, <f> being a suitable 
entire function. Let I = 73/2 and introduce the subspaces (a) / , and (b) K, 
defined by the requirements (a) <KfO is rapidly decreasing, and (b) K[<p] =* 
2*>i|<K/0|2/#T2 < oo; /î  (/i > 1) is any tied spectrum; it does not matter 
which one is employed since <f>#(A) = 0(A"3/2) for <J> e ƒ. Notice that such a 
differential is completely determined by its real periods 

M*) - # (+/*) ̂  -2 p2* (*/*> <** (» > o 
since 4,fo) « 2<K^)Ix2

2:_R "' dX f o r suitable /i„ e p ^ , X2/1], so that An(^) 
» 0 (« > 1) implies <J> = 0 by interpolation. For future use, note that the 
period Bn(<f>) of the differential rf$ is the integral of rf$ around the oriented 
cycle Bn9 i.e., counterclockwise about the segment [\Q9 A^-il* 

The next topic is the dual space ƒ* of 7. To begin with, the periods An 

belong to ƒ f, and by the previous remark they span If; in fact, any x E I* is 

5(2/f - 3) • . . . • 3 • 1 is construed as 1 if n * 0 or 1. 
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uniquely expressible as 2n>ïxnAn with 2W > 1^«~2 < oo.6 Now let o„ = 
(̂ 2/i- i> 0) (n > 1) and let pn = (/î , ü ( / 0 ) (n > 1) be any sequence of points 
in "real position" on S, meaning that ^ E \k2n-\> 2̂/J- Then the Abelian sum 
*(<>) = 2n > i /o; <>//? Â defines an element of ƒ* provided the paths of 
integration satisfy *2n>\rn%n~2 < oo, mn being the number of full revolutions 
that the path from on to pn makes about the circle on which it lies. The sums 
obtained in this way fill out all of 7t. Now let Lt c ƒ* be the lattice of 
periods *2n>\mnAn with mn as above. Then P/Lj = $ is compact and in a 
very natural sense diffeomorphic to M, especially, the map q -» (pl9 p2> • • • ) 
->y = (x modulo L7) E 3 is 1:1. $ is the "real part" of the Jacobian variety 
for S; the nomenclature arises from the fact that the A -periods (5-periods) of 
a hyperelliptic surface with real branch points are real (purely imaginary), so 
that, for such a surface of genus g < oo, the full Jacobian variety 
C*/(periods) naturally breaks up into a "real part" R8/(A-periods) and an 
"imaginary part" Rg/V — 1 (5-periods). The same procedure can be applied 
to J and K: Hn>\XnAn E Z1* if and only if xn is of polynomial growth as «|oo 
and with this restriction on the winding numbers mn, P/Lj = 3 with a 
self evident notation; similarly, ^n>xxnAn E K^ if and only if Srt>1Jc2(«/rt)

2 < 
oo, and with this restriction on the winding numbers, K^/LK = $, too. 
Summarizing, 

P/Lj = / t / L , - tf/LK - 3 * M-
The final point to be discussed is the inversion of the Jacobi map q -» p -* 

x 6 ^ . Let j>20> ^) a nd /*>! be computed for q translated in the amount 
0 < £ < 1. Then7 8A(X)/8«(0 - Ĵ O* X) = n ^ w r ) " 2 ^ - X), and8 

d 9A(X) ,2(1,A) 
« - 2, 2/?(/*w) 

the estimate9 H ( / 0 = 0(n~l)ln being employed to justify the differentiation. 
Now let i// = (d/dÇ) dA(\)/dq(Q for fixed 0 < £ < 1. Then ^ E K: in fact, 
i// E / 3 / 2 by interpolation, and A'ty] < oo since iK/O — ""^(//J = 
Ô(/t~ *)/,,. Now, the inverse map is easy to write down. Let x E K* and let 
the potential with tied spectrum y^ = \2n-\ (n > 1) ^e distinguished as the 
origin of M. Then X# = JC(I//), #wa function of 0 < £ < 1, induces a vector 
field X on M and the inversion of the map 

q-+p^>xe%-tf/LK 

is achieved by the rule10 ex(origin) = q. This may be regarded as an 
exponential map of A^the tangent space of 3, onto M s gj; it is emphasized 
that unlike a classical exponential map the present map is never locally 1:1 as 

6I S\ln-xR'1 d*\ i s comparable to n for «îoo; see McKean-Trubowitz [1976: 199]. By this 
remark K[<t>] is comparable to 2n>l\AH(<l>)\2\nlH\~2. 

7McKean-Trubowitz[1976: 159]. 
%d\^/dx - 2A(ftl)/>s(l, n„); see McKean-Trubowitz [1976: 167]. 
9The mean-value theorem is used, together with the fact that A~(X) - (2X)~! cos 

VÂ+0(A-3/2)(Aîoo). 
l0For a general vector field V the flow ety on M is defined by solving the equation dq/dt « Vq 

for time t. 
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the unit ball of K* contains infinitely many periods from LK. This is just as it 
should be: M s $ is compact while the unit ball of K* is not. See McKean-
Trubowitz [1976: 213-218] for more about I*/Lt and P/L/9 the quotient 
K^/LK is not treated fully there, but the necessary details are easily supplied. 

2. General introduction. In this paper we study the transcendental hyperel-
liptic Hill's surface S, introduce the associated theta function and establish 
some of its basic properties. An outline of our main results is given below. 

Differentials. Let H be the Hubert space of all differentials d<b = (<£//?) d\ 
with 

ff[+]-V=T/ d<ï>Ad$ = 4f | * ' 2 

d area < oo, 

<(> entire and real on the line. In the finite genus case, apart from the reality 
condition, H is exactly the space of differentials of the first kind. In the 
present case, H is good for some purposes while / and K are better suited to 
others. It turns out that the most natural space of differentials is K 
+ V —1 H ; this will be clarified below. We now summarize the facts 
concerning H which appear in §§3, 5 and 6. 

To begin with H c Ix/1 and 

•2 

ra + b da db, 
_ „ /•oo _ /»oo ra + b 

irH[<t>]=4f b'2[ ƒ d$\ 
J0 • ' -oo \Ja I 

from which it follows that 

L[<t>] = 2 \An(<t>)\2 log(l/ln) < a constant multiple of H[<j>]; 
n>\ 

ln < l is assumed for simplicity .Conversely, if <f> G 13/2 and L[<f>] < oo, <J> is in 
H ; in particular, K c H. The periods An, Bn (n > l) are in Hf, and you have 
the Riemann period relation 

H[+] = - 2 ^ ^ ^ " 2 An(<t>)Bn(<t>) 
n>\ 

for differentials rf$ of class H n /3 / 2 . The same relation is true for 
differentials in H \ 13/2 with a technical interpretation of the sum. Now, just 
as in the compact case, if <f> G H and either An(<$>) = 0 (n > l) or Bn(<f>) = 0 
(n > l), then <f> = 0. Finally, H has a natural basis ly Œ K9(J > l) such that 
i4,-(ly) = l or 0 according as / = j or not, and 

( * » ! / ) * - - 2 V = T * , ( * ) ( y > l ) . 

The next topic, the subject of §4, is the roots of a differential of class / . In 
the case of finite genus g, a differential of the first kind has exactly 2 X g -
2 roots. The same is true for differentials d$ of class J on S once you 
determine the order to which d$ vanishes at oo and can count infinite sets of 
points on S. At oo, the expansion 
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<t>(\) ~ JT V V = T R (X) 2 cn(<}>)X^9 

n>\ 

^ *(X2/-l) 

holds on "nice" circles centered at XQ of radius rfoo with |r — \ | > 1 (i > 1). 
The important thing here is the estimate 

\R ( r e^ 3 1 9 ) \~e y / ' lsin(*/2)l 

on "nice" circles. Now, by analogy with the compact case, the parameter 
f = À~1/2 can be used as a "local coordinate" at oo provided you approach 
oo via "nice" circles. Thus, 

</<!>--2\^T 2 cJ2ndS 
n>\ 

on "nice" circles, so it is natural to say that d$ has a root of order 2m at oo if 
Cj = 0 (J < m) but cm 7*= 0; m may be infinite. 

The finite roots of d$ come in pairs of complementary points on 5. 
Therefore, you need only count the roots of d$ on one sheet, or what is the 
same thing, the roots of <j> in the plane. To do this, introduce an intrinsic 
descending sequence of subspaces lco~n of 11/2 defined by I°°~n[<j>] = 
f£\<t>\2\2n+l/2 d\ < oo (n > 0). A function in 7°°\ Z00"1 requires for its 
interpolation a point on every handle of S, e.g., A2/-1 0 ^ 1)> while a function 
jnjoo-/!\joo-(/i+i) r e q U j r e s oniy oo - n such points, i.e., any n, but no more, 
of the points A2|_1 can be left out. We say that d$ has 200 - 2m — 2 finite 
roots on S if the 00 — m — 1 projections suffice to interpolate j°°-m~l but 
not ƒ °°~m. Of course the projected roots can be multiple and need not be real 
so that the Lagrange-type interpolating sums introduced in §1 must be 
replaced by a more general prescription. There is only one natural way to do 
this, and it is spelled out in §4. With these preliminaries, a differential d$ of 
class J with a root of multiplicity 2m < 00 at 00 has 2 00 — 2m — 2 finite roots, 
i.e., 2oo — 2 roots in all. 

The roots of a differential of the first kind defined on a Hill's surface S 
constructed from a potential with double eigenvalues can be counted in 
almost the same way. There is one important modification: in the presence of 
double eigenvalues S has "fewer" handles, so the descending sequence of 
spaces l°°~n must be changed. 

Let \ ,x , 1 < n < m < 00, be the double eigenvalues. Now, the nth space in 
the chain is by definition all entire functions <J> for which II^=1(1 - V \ f ) x 

<J> is in I °°-n. Functions <J> with (II^=11 - V \ T ) X ^ i n / ^ W 0 0 " 1 require 
one point on each handle of S for their interpolation, and so on. When all but 
2g + 1 < 00 of the eigenvalues are double the modified I °° is the g-dimen-
sional space of polynomials over C of degree g — 1. This is just as it should 
be since the genus of S is now g. It seems that the appropriate I °° should be 
designated as the "genus" of S. 

The last topic is differentials with infinitely hard roots at 00. In §4, we show 
that a differential # E ^ o n a Hill's surface for a real analytic potential has 
a root of infinite order at 00 if and only if <£ is identically zero. This is not 
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true in general: the statement is false for potentials which vanish on an interval. 
This may be elucidated by means of a remarkable connection between the 
local vector fields on M and the coefficients 

<*(*) - 2 2 OH^-OMO, A2/-i)K-i (n > 0). 

Regard cn as an element of AT1" and let i/> E K be defined by i//(A) -
(d/dO(dA(\)/dq(0) for fixed 0 < £ < 1. Then 

V,? = <?'(£) = 2c0(*), 

= 4C10/0 + 2 ( À O + 2 / k ^ , ) , 

and in general, the nth local field \ln is a linear combination of Cj (0 < j < n) 
so construed. McKean-Trubowitz [1976: 196] proved that the local fields span 
the tangent space at any point of M if and only if the c„'s span K*, which is 
the same as to say that nontrivial functions $ E K with infinitely hard roots 
at oo do not exist. But if q E M vanishes on an interval so will all the V„#'s, 
and these cannot span the tangent space to M at q as the latter contains, e.g., 
(d/dQ(dk(\0)/dq(Q) - - A'(A0)[/0

2(£)]' which vanishes only twice. 
The theta function. The Riemann theta function for a hyperelliptic surface 

of genus g < oo with real branch points is an entire function 0 of z E Cg 

defined by 

0(z) = 2 e
27rVZT n'2 enVZ1 Qln\ 

nez* 
in which Q denotes the quadratic form based upon the Riemann matrix of 
the surface and the sum is over the character group of the real torus R8/Z8 

comprising the exponentials exp 2TTV —1 n- x (n E Zg). In the present case, 
the finite sums <f> = 2flf lf fill out the lattice dual to LK> and the corresponding 
exponentials exp 2w V — 1 x(<p>) comprise the dual group of the real torus 
3 = K^/LK. Now, by analogy with the classical case, the theta function, CD, 
for the Hill's surface S is defined for z » x + V ^ y 6 ^ + V^HT Ht by 
the formula 

CD(Z) = 2 ^ ' W e- ("/2) / /W, 

the summation being over the dual lattice described above. The fundamental 
estimate 

for x + V - 1 y E K* + V - 1 if1" justifies this definition, and it is easy to 
check that © satisfies the customary identities 

©(* + 4 . ) - © ( * ) » 

CD(z + 5„) = e -2*V=7U<u + <i /2 )^( i j ] o ( ^ 

completing the analogy. 
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Let z, « z(l,) (/ > 1) and observe that 

n[+] - *[2 «,i.l - -2V^T 2 4,(2 *i,)*.(2 «A) 

- -2V^T 2 ",*,(!>, 
'J 

= - 2 V ^ T 2 n&jtij = - 2 V ^ T ö [ « ] , 

Ö being the Riemann matrix for S. With this notation, o assumes the 
classical form 

o ( z ) = 2 ^ ^ - e ^ ö W 

in which the summation is over all tame points n E Z00. We now outline the 
basic properties of CD which appear in §7. 

First of all, © is continuous on K* + V - l H*, smooth on /* 
+ V— 1 //*, and any translate of CD by a point in K* is analytic on 
H* + V - 1 H*9 i.e., if x E #+, then ©(JC + z) is an analytic function of 
z E H* + V — 1 //*. The classical theta function for a hyperelliptic surface 
with real branch points is strictly positive on the real part of the Jacobian 
variety and so it is here: © is strictly positive on K\ This is important for the 
variant of the Riemann vanishing theorem of §8. 

There is also an analogue of the Jacobi transformation. To motivate it 
consider an elliptic curve for a Weierstrass /̂ -function with periods 1 and 
V^H" t91 > 0. Here, 

0 ( z ) = 2 e2irVzri"* e-"'"2, 
nE:Z 

and the Jacobi identity states that 

Vt n^Z 

Let dP(x) • f-*/2?-**2/' dx be the Gaussian measure on R with variance 
t/2m « (l/2fl-V-l ) X (the Riemann matrix for the elliptic curve). Then the 
Jacobi identity may be restated as 

f 0(x) dx - -J=- f 2 e-**-"*" dx = 2 * ( £ + ") 
•'f \t JE n n 

for £ c [0, 1), the latter being regarded as the real part of the Jacobian 
variety. In the present context, let P be the Gaussian probabiUty measure on 
R °° with covariance matrix 

let 0 < x\ < 1 be congruent to xt mod 1, and let I (x) be the measurable map 
from x « (Xj, x2> . . . ) ER°° to the torus K*/LK « 3 defined by ƒ(*) » 
2w>i*i4,,. Then the Jacobi transformation states that 
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f o </(Haar measure of 3) = P(I~lE)9 

where E is any measurable subset of 3f. 
The vanishing theorem and the Baker-Its-Matveev formula. Let p be any 

point on S and pl9 p2, • • • »
 a sequence of points in real position. The 

functional11 *<,(<J>) = Jt^ d® + Jo d® belongs to A^ + V 1 7 ! #+ and the 
Abelian sum *2n>xxn of JCW(̂ >) = ƒ{£ rfO (« > 1) is in À^, with the restriction 
on the winding numbers explained in §1. Now, following Riemann, we 
consider the function f(p) = o(x^ — *2n>\Xn). ƒ is multivalued and analytic 
on S, changing by an exponential multiplicative factor when continued 
around a cycle. Thus, its zeros are well defined; moreover, it is not identically 
zero since ƒ(—oo) = o(-^2n>\Xn) is positive. The vanishing theorem states 
that ƒ vanishes simply at pn (n > 1) and no place else, in perfect analogy to 
the classical theorem of Riemann. In §8, the present vanishing theorem is 
used to show that the map from points p on S to functionals JĈ (<J>) = ƒ£ rf<& in 
K* + V— 1 Ht, mod periods of that class, is an embedding of S into the full 
Jacobian variety, i.e., K* + V— 1 H* mod periods of that class. 

Now let x = 2n>\Xn = Sn>i/5", as above. Then Baker's formula12 adapted 
to infinite genus is 

°--^x) +„?A 2*0)^ 
where the prime signifies differentiation in the direction 2c0 G K\ corres­
ponding to the infinitesimal translation Vxq = q'. Its-Matveev [1975] 
discovered a simple way to invert the Jacobi map for finite genus Hill's 
surfaces using the theta-function. Their formula is derived from Baker's by 
one more differentiation. Let x G S and let q G M be its image under the 
exponential map. Then the infinite genus Its-Matveev formula is 

q(i) - - 2 ^ logo(x + 2fitr0), 0 < € < 1. 

In §§8 and 9, the vanishing theorem and Baker's formula are proven by 
approximating the surface 5 by finite genus hypereUiptic surfaces. If a good 
estimate of o at oo were available, this approximation would be unnecessary; 
see Remark 1, §8. 

Finally, in §10, we prove the easy half of Abel's theorem in this infinite 
genus context. 

3. Square summable differentials of the first kind. Let p = (X, R (X)) be a 
general point of the Riemann surface 5, let the integral function <j> be real on 
the line, and let d$(p) be the corresponding differential of the first kind: 

1 !o is the point (XQ, 0) on S. 
12Baker [1897: 232]. 
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A real Hubert space H of such differentials is defined by the requirement13 

V^T ƒ d<&/\d$ = 4J \<t>/R\2daxeai = H[<l>] < oo. 

It is handy to speak of d$ or <f> as belonging to H, indifferently, meaning the 
same thing. The purpose of this article is to prepare for future use some 
elementary facts about H. Notice, first, that \R{re'^T0)\ < e^implies 

,2 

area 
IT |«>-A|<1 

<\H[ï}f \R(u>)\2d area 

<#[<*>] 2Vr 

so that <J> E ƒ/ is of order < 1/2 and type < 1. The result is confirmed and 
improved in 

THEOREM 1. H c /1 / 2 , i.e., every function <f> E H is of order < 1/2 aw/ type 
< 1 vWf/i /Sr|<KA)|2A1/2 d\ < oo. 

LEMMA 1. Let h(u>) be analytic in the upper half-plane « = a + V —1 b, 
b> 0, and let 

f°° da f °° db\h(o))\2< oo. 
• ' -oo A) 

Tteii h(u) * ffe^Hix) dx with f$\h(x)\2 dx/x < oo. 

PROOF OF THE LEMMA. The proof may be modeled on Dym-McKean [1972: 
162]. The main task is to prove that 

P l l l - P \h(a+V^ïb)\2 da < oo 
• ' - o o 

is a decreasing function of b > 0 by expressing h(u>) for fixed 
<o = a + V - 1 fc as the integral of [2nV- 1 (<o' - (o)]^1/^') over a pair of 
horizontal lines, one above and one below <o. The conclusion is that \\h\\b is 
over-estimated by the sum of its values on the upper and lower lines. The 
contribution from the upper line is eliminated by noting that ƒ ƒ da db\h(oo)\2 

< oo entails lim*f,J|A|L = 0. This implies that h(o>) is of the stated form. 
PROOF OF THE THEOREM. Let <f> E H. Then h(có) = <o<J>(to2)/iî((o2) satisfies 

the conditions of Lemma 1, whence 

*>4>(to2) - R (<o2) f °° e^^h (JC) dx 

with fâffîdx/x < oo. Now R2(o)2) is an integral function of exponential 
type. Besides, it is bounded on the real line and over-estimated by e2,w| on the 
imaginary half-line co «V^H" b9 b > 0. Thus, e2vrrîfa7?2(w2) is bounded in 
the upper half-plane, by the Phragmén-Lindelöf principle, and 

l3d$ is the complex conjugate of d$. The factor in front of the second integral is 4 not 2 
because S is a double covering of C. 
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e^^u) = O(1) X f°° e^^h (x) dx (a) 
•'O 

with k{(A>) = (o<>(co2). \\k\\\ may now be over-estimated by a multiple of 

e4b[°° e~2bx\h (x)\2 dx < oo 
' O 

for b > 0, and a similar estimate prevails for b < 0; in particular, 

/ ^ | | * | | i * < o o , 

and it is easy to deduce 

11*113 = \ Jf00 \<t>(X)\2Xl/2d\ < oo (b) 

by the methods employed in the proof of Lemma 1. The rest of the proof is 
easy: (a) implies that ev'trT<%(<o) fulfills the conditions of Lemma 1. Thus, 

evzrïuk(o)) « f°° ev z r T i"*+(jc) dx with f °° \k+\2 — < oo 

plane, 

and evenTo°|A:"f|2 dx < oo, by (b). The same kind of formula can be obtained 
for e~yfz^iak(ai) in the lower half-plane, the upshot being that in the whole 

k(u>) = ƒ l e^^k^x) dx with Ç \k\2 dx < oo, 

or, what is the same by the oddness of k(co) = <o<K<o2), 

Jo VX 
The fact that <f> is of order < 1/2 and type < 1 is now plain. 

LEMMA 2. 

PROOF. The function A(<o) = <f>(cù)/R(ù)) fulfills the conditions of Lemma 1 
and so can be expressed as 

h(u) = f°° e ^ ^ t f (JC) dx with f °° |A (x)|2 — < oo. 
JQ JQ X 

By the reality of <1>2/R2 on the line, 

H[<t>] = 8 f ° ° dfar°°d6|A(«)|2 

• ' - o o •'O 

- 16* f" db r e'^lh (x)\2 dx = 8v(°° \h(x)\2 — . 
JQ JQ JQ X 

Now begin from the other end: 

J
ra + b ra + b /•oo ./—r pv—lfex __ i A 

f rf$=f h(u)du=f ev^iax^——=^-h(x)dx, 
a Ja Jo V ^ T * 
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as is easily verified by performing the integration a little way up in the half 
plane and coming down with the help of 

,2 

r 
JQ 

eyT=\bx _ ! 
\h(x)\2dx < oo. 

It is immediate that 

f b~2db\ da\\ 
JQ • ' -oo \Ja 

f' 

/•oo 
ib2<n\ 

eV^\bx . 

X 

s by evaluation of 

eV=Tbx_ , 

X 

2 

db 
b2 ' 

- 1 

7T 

X 

\h (x)\2 dx, 

and comparison with the previous formula for H[tf>]. 
USAGE. L[<t>] = 2i>x\Aitt>)\2 logO//,) with // = X 2 | - X 2 / _ 1 (i > 1); for 

simplicity it is assumed that lt < 1 (/ > 1) throughout. 

THEOREM 2. L[<j>] < oo if <j> G H. 

PROOF. <f>(À) is real on the line while R(X) is real if A2/-i < ^ < ^2/ 0 > 1) 
and imaginary otherwise, so by Lemma 2* 

l b l2 

f # | > ] > 2 [ f b~2 da db\ f* d<P\ 
4 i>\ J J \Ja I 

> 2 f Sb-2dadbX\A^)\\ 

in which the double integral in the /th summand is taken over the part of the 
ab-plane described by A2/_2 < a < ^2/-i a n d A2/ < 0 + 6 < A2l+i. The Pr°of 
is finished by evaluation of 

f**-1 da fX2i+l~ab-2db = log ^ 2 / + l ^ 2 / - l ^2/ ^ 2 / - 2 

^2/ ~~ ^ 2 / - l ^2i + l "*" ^ 2 / - 2 ^ 2 / - 2 J\n-a 

and the estimate A2|, Aji-i = i2ir2 + 0 ( 1 / / 2 ) (/too), leading to 

' K + o(i)] 
$*[• ]> 2 M,(*)l2i°g-

/ > 1 ^2/ ""~^2i-l 

THEOREM 3. If <f> E ƒ 3 / 2 a/a/ (ƒ L[</>] < oo, then <}> E H, also; in particular, 
H D K. 

PROOF. <j> E 7 3 / 2 may be interpolated off either A2l_, (/ > 1) or A2. 0' > 
l),14i.e., 

,4McKcan-Trubowitz [1976: 174]. 
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m - 2 
*(A2,) /,(i,X) x2J-K 

in which 

and 

jZi A - H *~\> y'i(l,\2J) 

*(U)-II WW.-A) 
i > l 

/I(1,X)-(A0-X)II W ^ - X ) 
» i 

are computed for the origin of Af, namely that q whose tied spectrum is 
p» = X2w_, (w > !)• The product of these two sums is substituted into the 
integral for H[<j>] and R2 = >>i j>2 is used to obtain 

H[<t>] = 4 f |<f>/*|2rfarea 

#V>1 

x f af area 
Jc K X - A o X X - ^ . X X - ^ r 

Now X^ — y V (/Too), while |>>2(1, X2/_,)| is comparable to i~~2 and/fO, \y) 
is comparable to 1, with the result that H[<j>] is controlled by 

j i ^ - , ) ^ ) i - y / c l ( > . w l - | ) ( > . M . 
The integral is of the form15 

rfarea 
'c KA-e.XX-^XX-^)! I 

•*ƒ. 
M2 

F |4(/> - *!)(/> - *2)(/> - e3)\ 

2 X area F 

rfarea 

—2V — 1 X the product of the periods of the ̂ -function 
dp te2 dp 

•>r .t. « *i '2 V(*i~/>)(/>-*2)Q>-*3) *3 fai-p)(ei-PKP-*ù 

l5F is the fundamental cell for the/?-function with real values e,, e2» *3 a t half-periods; an extra 
factor 1/2 appears in line 3 because/? is of degree 2. Notice that the reality of el9 e2, e3 makes the 
complex period ofp pure imaginary; this is used in line 4 of the computation. 
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This evaluation is used to estimate the integral on the diagonal [i = j] and off 
the diagonal [i^j], separately: on the diagonal, i = y , and with \ = a, 
^2i-1 = b* ^2/ = c> ^ e integral is seen to be comparable to16 

i fc dp fb dp i r aP x r 
J h , ÎT\ I \7I TT Ja 

= r V x O 

h }/(c-p)(b-p) J« ^{p-a){b-p){c-p) 

b 
c-b _ 

Off-diagonal, a simpler estimate prevails, the integral being comparable to17 

*b dp 

i log- = 0[r2iog(i//,.)]. 

[min(/,y)] ' x f 
J a a i(p - a)(b - p)(c - p) 

and so to 

[rmn{i,j)YXX\e-f\-V\ 
The upshot is that H[<j>] is controlled by 

1 < ij 

The off-diagonal sum is easy to deal with: <£ G 73 /2 , so 2|<J>(^2/-i)l^4 < °°> 
2|*(XV)|2/ < oo, and 

S W^-OI^WMI/tminC/,;)]"1!/2 - / r 1 / 2 

L t+j 

is bounded by the product of the former sums and twice 

S i'2(j2 - i 2 ) " 1 - 2 <~2 2 (*2 + 2 ^ ) _ , < TT2/36 < oo. 
l<i<y' J > 1 A:>1 

The on-diagonal sum is just as easy: <J> e I3/2 implies that <f>'(X) = 0(1/X 2) 
for Afoo, so that if X = X2/_i o r 2̂/> ^ e n ^ e discrepancy between 
2<f>(A)JA2

2;_R~l and AÉ(4>) = 2/^;_i</>iî~1 is of magnitude i~\ the integral 
j\*_R~x being comparable18 to /. Thus, ^ ( ^ / - I M ^ / ) ! ' 2 m aY be over­
estimated by a multiple of |4(<|>)|2 + /~6//2, the upshot being that the on-
diagonal sum is controlled by L[<p] < 00, since lt is of rapid decay for /joo. 
The proof is finished. 

SUMMING UP. Let <f> G L signify that L[<j>] < 00. Then Il/2 n LD H D 

P/2 n L; in particular, L D K, so H D K. Thus, / / lies somewhere between 
11/2 and A'. In case /„ > ae"^2 (n > 1), you have 13/2 c i / since L[<J>] is now 
majorized by 2 | 4 , f a ) | V . This condition is satisfied by, e.g., the Kronig-

16The contributions to the second integral from the vicinity of a and from the vicinity of b are 
appraised separately. 

17a, by c denote AQ, \2i-1, \2J in order of magnitude. 
,8McKean-Trubowitz [1976: 199]. 
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Penney model for electrons in a one-dimensional conductor in which q is a 
periodic Heaviside function and ln~\/n. 

AMPLIFICATION 1. The method of Theorem 2 may also be used to verify 
that if <t> E H, then 2/>1|5l(<>)|2/"2/|. < oo. 

PROOF. By Lemma 2, 

ïiï[*]>r° da 2 f^-a b-2db\r+bdJ 
4 • ' -oo , > i J\2i-x~-a K* I 

>(° daZ f*"" 6 - 2 ^ | i W 

- I 2 I^WplogCA /̂̂ .̂ ). 
* i>\ 

The proof is finished by the appraisal 

log(X2//A2/_,) ~ («r)~2/, as /Too. 

AMPLIFICATION 2. The method of Theorem 3 may be used to verify that if 
<t> E ƒ1/2, L[</>] < oo, a/w/ S^iKOWl2/ log / < oo, then <f> E H. 

4. Roots of a differential of the first kind. It is a fact of classical function 
theory that a differential of the first kind on a Riemann surface of finite 
genus g has precisely 2g — 2 roots. The purpose of this article is to confirm 
this fact for differentials d$ of class / on a Hill's surface. Now the genus is 
infinite, so it is necessary to devise a mode of counting "2 X (g = infinity) -
2" roots. It is also necessary to ascribe a multiplicity to the vanishing of d<!> at 
oo though there is no local coordinate, in the usual sense of the word, at this 
point. 

LEMMA 1. Let <j> E / and let 

^ <H^2/-l) 

,> i y2K[>A2i-\) 

Then 

/!>0 

on nice circles, i.e., circles centered at \ of radius rjoo with \r — \ | > 1 
(i > 1). 

PROOF. <J> E / may be interpolated off A2/_, (/ > 1) by the familiar recipe: 

m = s <K*2/-i) 1 

The rapid decrease of <f>(A2/-i) ( 't00) *s n o w u s e d to justify expanding in 
inverse powers of A, and the proof is finished by noting that, on nice circles, 

* 2 f t ) A Q - X A 2 , -A t 
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AMPLIFICATION 1. The branch points (\, 0) (/ > 1) pile up at the point oo, 
so that S cannot be given a conventional complex structure there. However, if 
t> approaches oo via nice circles or, e.g., via the left half-plane, then the branch 
points are not very visible, and if you always approach oo in this way, 
I = X~I/2 is a perfectly adequate local parameter, just as in the case of a 
hyperelliptic surface of finite genus. Now, by Lemma 1, a differential d$ of 
class J has an expansion 

c\ c2 

A X2 rf$(*))~\-3/2V^T c0 + - + — + d\ 

= £3Y=1 [c0 + cj2 + c2f
4 + • • • ] X - 2 « / f 3 

on nice circles, so it is natural to speak of d$ as having a root of multiplicity 
In at p = oo if c}, = 0 (J < n) but cn ̂  0. It is quite possible that n = oo; this 
case will be commented upon below. 

The finite roots of rf$ come in pairs, so if p is a root, the complementary 
point p' on the opposite sheet of S is too.19 Thus, it suffices to count the roots 
of d$ on a single sheet, or equivalently, to count the roots of <j> in the plane. 
To do this, it is necessary to introduce the class I °°~n of integral functions of 
order < 1/2 and type < 1 with J 0 0 " ^ ] - Jo\<KX)\2*2n+x/1d\ <oo. Clearly, 
ƒ » = ƒ i/2 D /oo-i D /0o-2 N o w t o interpolate <J> e I00 = 11/2 requires 
a point on every handle of S, e.g., A2/-i 0 > 1) will do, and no fewer points 
suffice. The notation I°°~n is meant to convey that to interpolate this smaller 
class, any n points \2i-\

 may be left out, but no more. This is immediate from 
the remark that n?«,(A -(A2,-i>K*) i s of class Il/2 if and only if $ e I00"". 
These notions lead naturally to the provisional statement that a differential of 
the first kind has 2oo — In — 2 finite roots on S if the oo — n — 1 projections 
of these roots in the plane suffice to interpolate I°°~n~xbut notI°°~n. Naturally, 
the projected roots need not belong to the intervals of instability [A2/-i> ^2/] 
(1 > 1) or even be real, so the mode of interpolation needs to be clarified. 
Fortunately, there is only one natural way. Let & (1 > 1) be the roots of 
<f> e J. The latter is of order < 1/2 so 2 | tyl"1 < 00. Thus, for any integral 
function ^, 

1 r wiwn , ,m v „ . TT x~* 
i ^ f f / pPrtRrt * " ^ " 2 * r t & IF» • 

the integral being taken about a circle of radius r ^ | ft — A<J (/ > 1) centered 
at Xo, and the sum over the roots so enclosed. This assumes the simplicity of 
the roots: for a root of multiplicity m + 1, the corresponding summand must 
be prefaced by (w!)""!3m/3ftm. Be that as it may, it is natural to say that ^ 
can be interpolated off the roots of <j> if f(ip/<t>)(\ - ft)"1 dp, = o{\) as rfoo 
nicely, i.e., via the radii of nice circles. 

THEOREM 1. Let d$ be a differential of the first kind, of class J, with a root of 
multiplicity In < 00 at 00. Then d$ has 2oo - In - 2 finite roots, i.e., 
2oo — 2 roots in all. 

I9If p is a branch point [p « £'], the root is of multiplicity 2. 
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LEMMA 2. | / ? ( r e ^ ' ) | ~ exp Vr |sin(ö/2)| on nice circles. 

PROOF OF THE LEMMA. The estimate X2i-v ^2/ — |2^2 + 0(i~2) (/|oo) easily 
leads to the result. Recall that f\q = 0. Then the product for Ü2(X) = 
Ĵ O» ̂ XviO» ̂ ) m a y be compared to 

r- ^2 

sinVX 
VX - n ( ' - ^ ) -

with the result that 

| * ( A ) 

sinVX 

2 
A — A 2 i - 1 1 

\ - 1V 1 
1 A-A» I 
1 X - 1V 

The rest is elementary. 
PROOF OF THE THEOREM. |^(X)||/?(X)|"1 = [c + o(l)]r_,,"3/2 on nice circles 

with nonvanishing c. Now, for ^ e ƒ 00"',~1, 

00 
•'O • ' - o o 

SO 

i//(<o2)co2/,+3 = ƒ smwjo£(jc)</jt with f |^ (JC)|2 dx < 00, 
•'O ' O 

by the Paley-Wiener theorem, i/>(<o2) being of exponential type. Thus, 

^(\) = \-»-3/2 f1
 sinVX^(jc) dx9 

and 

I 1 / 2 

|^(\)| = |x|-«-3/2|"j1 IsinVXxp^cJ1 |^(x)|2rfjc] 

for X = r e ^ * . By Lemma 2, ^(re^1"*)! — expVr |sin(0/2)| on nice cir­
cles, so f(f/<t>)(\ - /i)"1 dp = 0(r-w"7 /4 X rw+3/2) = 0(r~^4) for nice r. 
This confirms that I00-"-* can be interpolated. Contrariwise, the function 
*K*) = Ĵ O» A)n^/(X - \2i-\V

l i s o f c l a s s I0°'n a n d cannot be interpola­
ted: 

m _J_ X—V2(1,X) t 

<>(X) ~ c X-"-3/2iî(X) ~ c 

on nice circles, so (lirV^Ty^^/^X - /A)~ ,4I— 1/c ^ 0 (rfoo). The 
proof is finished. 

The rest of this section is devoted mostly to the case that d$ has an 
infinitely hard root at 00 and to the geometrical interpretation of c, G Z1". 

THEOREM 2. d$ E J has a root at 00 of multiplicity In < 00 if and only if 
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^ ^ ƒ oo-/t̂  Tfe statement is ajso valid if2n = oo with the interpretation that in 
such a case <j> belongs to 1° = Dw>i/00~'1. 

PROOF. It suffices to deal with finite n. Let <j> E I °°~n. Then 

|<J>(re^=:T*)| = 0 ( r - « - 3 / 4 e V ^ | s i n ( ö / 2 ) | ^ 

as in the previous proof, so that, by Lemma 2, |<J>(\)| |i^(A)|_1 = 0(r~n~3/4) 
on nice circles and d$ has a root at oo of multiplicity > 2n, n + 3/4 being 
larger than «4-1 /2 . Now let d$ have a root of multiplicity 2/z. Then 
Cj(<t>) = 0(j<n),so 

^ <K^2/-i) XS-i 
•(A)-A"" 2 n n x » 

the sum representing a function ^ of class J c / °°, by the rapid decrease of 
<J>(A2/-i) ('T

00)- Th™* I°°~n[<t>] = /°°M < 00. The proof is finished. 

THEOREM 3. In the real analytic case,20 lt < ae~ bi ( / | 00) and differential d$ of 
class K with an infinitely hard root at 00 vanishes identically. 

PROOF. Let <J> e K. Think of c,(</>) as they'th moment of a complex mass 
distribution placing mass ^(A2|_,) [y2(h ^2/-i)]_1 a t ^ e P°^nt ^v-i 0" > *)• 
Now |^(X2/_,)| = 0(4), A ^ , - i V , and 1^(1, A2/_1)| > 0 ( r 2 ) , so 

= o(^(2y + 2) ! ) = 0(y) OT00), 

by Stirling's approximation, and 2|c,(<J>)|~1/2y = 00. Now the vanishing of 
cj(4>) (J > 1) entails the vanishing of ^(X2/-i) 0 > 1) by a criterion of 
Carleman [1926], so </> vanishes, too. The proof is finished. 

Now let Vy (J > 1) be the hierarchy of tangent vectors to M defined by 
Vi? - q', y2q = 3qq' - 0/2)?'", and, for general n > 2, by21 

and recall the association between such V E T(M) and x E J* explained in 
the introduction: 

*(*)-2 ƒ****. 
in which ft. = (ft-, i?(ft,)) (/ > 1) represents the image of the origin of M 
under the action of ey. 

THEOREM 4. The element Vj E J* corresponding to V, is a linear combination 
of ct (1 < j); for example, vx = 2c0, w>Me t?2 = 4q + 2(A0 + 2n>14)c0 . 

PROOF. The formula of McKean-Moerbeke [1975: 232] states that 

20SeeTrubowitz[1977:§3]. 
2lD = '. 
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v*"2 .?, W < 2 , i ) 73ÏÏ5J' 
in which ps = (/*>, /?(//,,)) (i > 1) corresponds to q E Af and ĵ O» X) = 
n ^ i O V ) " ^ ^ - X). Let fy be regarded as a function of 0 < t < 1 moving 
under the Vy-flow, starting at fy = ot. Then, f or $ E / and any pn (n > 1) in 
real position 

Cj-i(<l>) being formed as in Lemma 1 but with interpolation off the ixn (n > 1) 
at hand rather than off /î  = A2/I_i (n > 1). Now evaluate at the origin 
I)"* " ^2«-i: * > !]• Then the new cy _,(<£) agree with the old and the stated 
result is obtained; in particular, for y' = 1, vx = 2c0 while for y = 2, t?2 = 4cj 
+ 2(A0 + 2n>iln)c0; see McKean-Trubowitz [1976: 223] for more 
information. 

AMPLIFICATION 2. The c/s (J > 1) are now seen to have an interesting 
geometrical interpretation: they correspond precisely to the local flows in­
duced by V, (J > l)onM. McKean-Trubowitz [1976:196] proved, in a different 
language, that V, (J > 1) span T(M) if and only if c, (J > 1) span K*. This 
spanning is now seen to be equivalent to the nonexistence of differentials of 
the first kind, of class K, with infinitely hard roots at oo. 

5. Period relations. The purpose of this article is to prove that the classical 
period relations of Riemann22 hold in the present case with the proper 
technical interpretation. d$ is any differential of the first kind. A,(<» is the 
integral of d$ clockwise about the segment [A2i_i> ^n\ as before, while /?,(</>) 
is the integral of d$ counter-clockwise about the segment [XQ, À2#-il- ^t(4d *s 

real and !?,(<£) is imaginary, by the reality of <j> on the Une. 

THEOREM 1. If $ E H, then H[<f>] = -2V:=T2l>1^l(<J))5/(<rt with a 
technical interpretation of the sum, e.g., if en denotes the maximum of 

.2 n I 
rfarea + 2 \ ^ r T 2 M*)Bi(&)\ J\\\<r | K 

i - l 

for r E [\2n, A2/Ï+1L then S« len < 00; in particular, l i m ^ ^ « 0. 

REMARK. A more natural interpretation of the sum is given in §6, where a 
natural duality between the ̂ 4's and B9s is explained. 

PROOF. Let D be the region depicted in Figure 3, below, comprising a disk 
centered at AQ of radius r — XQ with \2n < r < A2/1+1, cut along the segment 

22Siegel[1971: 109]. 
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[\Q, r], let B be its boundary, regarding the cut as having two banks, and let C 
be just the circle. 

D 

\ \ n \ r \ n t + 1 

FIGURE 3 

Let23 $(A) = ƒ* d$, the integral being performed without crossing the cut so 
that $ is single valued in D, and let $ = $rcal + V - 1 ̂ ag . Then, by 
Stokes' theorem, 

-iV^l ( j^r </area= f < /$A^$ 
JD \&\ JD 

= 2 \ ^ n r i p2< [$ imag(+)-$ imag(-)]^rcal 
, « i «'A21-1 

+ 2 V ^ T / $ i m a g ^ r c a l , 

in which $ (+) [$(- ) ] denotes the value of $ on the upper [lower] bank of 
the cut, and the fact that d$ is purely imaginary in [\2J, Â2y+ J (J < n) is used 
in line 4. The sum may be identified as -2?,̂ ,(</>)!*,(<J>); the final integral 
may be overestimated by 2L2(r) with L(r) = fc\d$\, the point being that 
$ ( - r ) is real so that $imaig(-r) = 0 and |Oimag| < L(r) on the circle C. The 
stated period relations result by appraisal of L(r). 

LEMMA l.24 fâL\r)dr/r < 00. 

PROOF. f^L2dr/r is compared to H [</>]: 

2irf°°rdrf d9\<t>\2\R\'2 « | //[</>] < 00. 

PROOF OF THEOREM 1 COMPLETED. Let 4̂ be the annulus A2„ < r < X2«+i 
Now 

^o is the point (AQ, 0) G 5. 
^MyrbergfüMSïtf]. 
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4 M | rfarea + 2 \ ^ n r 2 4(*)*,(*) < 2L2(r), 

^ < 4 / | rfarea + ^ * - = - ƒ ^ 2L2(r) * , 

and 2/1 "~ xen is controlled by 

1 rA2"+I L2(r) * - 2 0(n~2) f ̂  L2(r) * 
J*2n n>\ J*2n «>1 (^2/i+l "~^2n) 

= f°° L2(r)0(r'l)dr< oo, 
•'O 

by Lemma 1. The proof is finished. 

COROLLARY l25If<t>EH and ifAfâ) = 0 (i > 1), //^n <J> = 0. 

COROLLARY 2.If<j>GH and if Bfâ) = 0 (/ > 1), /Aew <|> = 0. 

AMPLIFICATION 1. If <f> G 73 /2 n H, more can be said. Then (a) $(oo) exwto 
i/i a technically satisfactory sense, (b) 2$(oo) = S/^i^/fa), a«rf (c) 
H[<p] = — 2V —1 S/^i^.^JS,.^) vwYA actual convergence of the sums. 

PROOF. The statements (a), (b), (c) all follow from the existence of $ ( - oo) 
and from the fact that L(r) tends to 0 if, e.g., r\oo via the midpoints of the 
segments [\2n, A2/1+1]; for example, (b) follows from the estimate 

2(° d$+j: Afc) < L(r)9 

which is obtained by integration about the boundary of the region depicted in 
Figure 4, the cuts being regarded as 2-banked, as for Figure 3. 

FIGURE 4 

25The same is true if <f> e Il'2 D H because 2|<K/Ol2*'2 is comparable to ƒ <?|<f>(A)|2A1/2 d\. See 
McKean-Trubowitz [1976: 204] for a similar argument. 
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Now h(o)) = co2<f>(o)2) is an even integral function of exponential type < 1. 
Thus, 

h(u>) = f cos œx h (x) dx with f \h (x)\2 dx < oo, 
•'o Jo 

i.e., 

•'o 
COsVXjC £, x , 

r h (x) dx9 

and the existence of $(— oo) follows from the estimate | JR | -— v̂T̂ T for 

X 4 — 00: ƒ Z^olrf$| is overestimated by a multiple of 

= f'l*M|o|i°8'i4 
' O I * 

d* < 00. 

The proof is finished by a similar estimation of L(r) as rfoo via the midpoints 
of the segments [X2n, A2/I+1]: on such circles C, |JR| ~exp Vr |sin(0/2)|, by 
Lemma 4.2, so L(r) is bounded above by a multiple of 

r r ^ r £ |A ( x ) | ^ = 0(1) (rToo). 
0 •'O ' 

6. Lattices and quotients. The purpose of this article is to investigate the 
lattices 

^real : 2lf ni^i> A m a g : 2L W I ^ I > 

the sums being formed with integral nt (1 > 1) and viewed as elements of H 
or of V —1 H by means of the natural duality between H and H *. 

LEMMA 1. /f Aas a natural basis ly G K (J > 1) swc/* f/wzf 4(1,) — \if i— j 
and A;(lj) = 0 otherwise. The functions \j are uniquely determined thereby: (<J>, 
l,)^ = - 2 V - 1 £,(<>) (ƒ > 1) m ffe inner product of H. 

AMPLIFICATION 1. The fact that A^IJ) = 1 if i = j and vanishes otherwise 
implies the existence of points ^ E [A2/_I, A2I] (I > 1) such that ly(ft-) X 
2fx* R ~l dp = 1 if i = 7 and vanishes otherwise. Thus, 

Wx2j[*ir'*-n Az* 
by interpolation. The differentials d$j = ljR~l dX (J > 1) comprise a 
normalized basis of the differentials of the first kind. 

PROOF, BJ E H*. Pick 1, G H so that (<J>, 1,) = -2V^=T5y(<)). Then 
At(lj) = 1 if 1 = 7 and ^,(1,) = 0 otherwise, by the period relations of 
Theorem 5.1. The fact that \j E A' is plain from this; moreover, the 
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uniqueness of \j is seen from Corollary 5.1. The proof is finished by noting 
that if <f> E H is perpendicular to ly (J > 1), then Bj(<f>) = 0 (J > I) and 
<f> = 0 by Corollary 5.2. Thus, ly (J > 1) spans H ; see Amplification 4, below, 
for a more satisfactory sense in which ly (y > 1) is a basis of H. 

THEOREM l.26 The image of H under the 1:1 map A: <ƒ>-> a, = Agfa) (i > 1) 
is /Ae domain D(QX/1) C £ #ƒ A positive selfadjoint operator Q1^2 in E. Let 
0 = (0i/2)2 j ^ Q maps D(Ql/2) 1:1 <wto a space D(Q~^2)DE 
isomorphic to the dual of D{QX^2). The latter is the image of H under the 1:1 
map V— 1 BiQ-^bj = V - 1 J8/(̂ >) (i > 1), 0/w/ f/œre is a natural pairing 
between D(Q1/2) = AH andD(Q~^2) = V ^ T BH such that Qa = V ^ T é 
and21 

H[<>] = S < % ^ - Q[a] 

H v > i 

AMPLIFICATION 2. ( V - l /2)(? is the Riemann period matrix of the present 
theory in view of [A^lf): i, j > 1] = the identity and Qtj = (1,-, 
I,)* = - 2 V ^ T Eft) = - 2 V = 7 5,(1,).28 

PROOF OF THE THEOREM. AH c is since H c Il/2 and |/l(<f>)|2 = 2a2 is 
comparable to Il'2[<t>] = /o°|<>(A)|2A1/2 <A < oo in ƒ'/2. Now #[£] defines a 
positive quadratic form on AH which is closed_as it stands, i.e., AH is closed 
relative to the graph distance \A{$)\ + ^H[<f>] , the latter being comparable 
to yH[^] , itself; moreover, yi// is dense in E by Lemma 1. This permits the 
identification of AH as the domain D (Q1/2) of a positive selfadjoint operator 
Ql/2 in E, leading to the formula H[<f>] = l^Qyaj with Q = (g1 / 2)2 and 
öy = (1/, I,) in the inner product of H. Regard g as a map of D(Q1/2) to its 
dual D(Q~l/2). Now the ith component of 0^4(1,) is Q0 = (1,., 
1,) - -iV^l Biilj), so - 2 V ^ M £ maps ly E /ƒ into i )(ö"1 / 2) . It is 
required to prove that V - 1 5 m p̂s the whole of H onto D(Q~1/2). This is 
easy. - 2 V - 1 5 defines an element of the dual space of AH = D(Q1/2) by 
means of the formula (</>, 1.) = - 2 V — 1 J3,(<J>). Thus, B(<f>) may be identified 
as an element of Z>(ô~1/2)> a nd every such element arises in this way, H 
being selfdual. The proof is finished. 

AMPLIFICATION 3. Q dominates a multiple of the diagonal matrix [logO//,): 
i > 1] by the final step in the proof of Theorem 5.2; in particular, Qfl < 
constant X [logO/^)]"1, and sp Q~l < oo in, e.g., the real analytic case 
[// < ae~bi\, compare Theorem 2, below. 

™E is the space of points x =* (JC,, x2,... ) with \x\2 = 2 * 2 < oo. 
27The sums have to be interpreted with caution, e.g., Q[a] — Stf/f^a, is short for \Q1/2a\2, 

alias the inner product a • Qa in the natural pairing. 
28Siegel [1971: 111] may be consulted for the classical case. 
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COROLLARY l.29 2/%4 converges in H* if and only if n E D(Q ~1 /2), i.e., 
C" 1 W-2^" 1 ^<«>. 

COROLLARY 2.29 2^,5, converges in Hf if and only if n E D(ö 1 / 2) , i.e., 
OM — ^tiiQyiy < oo; fÂaf happens only if n is tame. 

PROOF. Q dominates a multiple of the identity, so Q[n] < oo implies 
In? < oo. 

COROLLARY 3. Every x E H* can be uniquely expressed as 2x,^- with (xl9 

x29...)ED(Q-1/2). 

COROLLARY 4. Every y E V - 1 H^ can be uniquely expressed as SJVBJ 
mth(yl,y2,...)ED(Q1/2). 

AMPLIFICATION 4. Corollary 4 implies that ly 0' > 1) is a basis of if in a 
more satisfactory sense than indicated before: (<f>9 ly) = —2V— 1 !*,(</>), so, 
by Corollary 4, every <j> E H can be uniquely expressed as a sum of ly's with 
coefficients from D (Q1/2). 

AMPLIFICATION 5. Lreal may now be identified with the integral points in 
D(Q~l/2). Note that the factor space H/Lre&l lies inside the real part S of 
the Jacobian variety of 5, the point being that an injection into g » K^/LK 

of the general coset x + Lreal E H/LTe&{ is provided by the inclusion map 
x + Lrcal-^x + L r Limag may be similarly identified with the (necessarily 
tame) integral points in D(Ql/2). The factor space V - 1 H/L^^, or 
some variant of it, plays the role of the imaginary part of the Jacobian variety 
of S. 

THEOREM 2.30 H/LH is compact if sp Q ~l = SftT 1 < °°-
V— 1 H/L^T[H is never compact or even of finite diameter. 

PROOF. Let sp Q'1 be finite. Let x = (x„ x2,... ) E D(Q~l/2) and let 
n « (ni, n 2 , . . . ) be the integral point selected by chance according to the 
rule:31 

n/ = [xi] W^h probability 1 — x, + [x,] 

= [x,] + 1 with probability xf - [ * , ] , 

independently of n, (ƒ ^ 0- Then32 E(xi) = x„ £(x, - n,)2 < 1, and for 
tame x, n is also tame with probability 1 and 

EQ~x[x - n] = 2 E{x, - xtùQïlixj - n,) < sp g" 1 < oo, 

leading to the appraisal 

min Q~x\x - nl < spg" 1 , 
nez>(e-'/2) L J 

^/i, (i > 1) is integral 
*°H/LH is provided with the natural distance d(a9 b) * inf vHla-b-cl , the infimum 

being taken over c E LH. 
3l[x] is the integral part of x. 
32E is the mean or expectation. 
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first for tame x and then33 for general x E D(Q~!/2). Now fix d •» 1, 2 , . •. 
and let/? be the projection x -* (xl9 ... 9xd909...). Then 

Tnu2, Q~lkl "fi* ~ nJ < Tnu2, C"1^1 "'X* " n)3 nei>(0~1/2) ne/)(ö-1 / 2) 

i>d 

so that H/LH can be identified with the cell [0, Vf modulo a ball of diameter 
not more than '2i>dQîi~x- The compactness of H/LH is plain from this. Now, 
for V —1 H/L^\H9 the relevant quadratic form is Q itself, and by 
Amplification 3, the diameter of the factor space is underestimated by a 
multiple of 

max min £ k*0A)(*» - n,)2> j £ logOA). 

The proof is finished. 
AMPLIFICATION 6. H/LH was injected into S i11 Amplification 5; it is 

conjectured that it is the same as $ if it is compact, e.g., if sp Q ~! < oo. To 
prove this, it would be helpful if the functional JC(<J>) = 2 />i/S; d<b could be 
extended from K to H for £, (/ > 1) in real position on S. The appraisal 
It < ae~bi3/2 suffices, and possibly even /, < ae~bi

9 but it is unclear how to do 
it in any generality. 

7. The theta function. The theta function is defined for z E K* + V - l H* 
by the formula 

°(z) = 2 e2*7^*^-*"/2^1, 
the summation being taken over the class of finite sums ^ = 2 ^ 1 , : the 
so-called tame elements of H. Recall that 

. . .2 

H[$] - 4 ƒ | . L/area - - 2 V ^ T 2 " , 0 ^ * ~ 2 V ^ T g[>] 

and let z# * z(l,) (i > 1); in this language, o takes the more recognizable 
form 

CD(Z)= 2 e ^ ^ ^ ö K 
tarnen 

The purpose of this article is to prove that the summation makes sense and to 
derive for future use the most elementary properties of o . 

LEMMA 1. Let x + V 7 ! ; e ^ + V"1 7! H\ Then 

2 | ^V^U4>)+V^,M]-(W/QHWI < c o n stant X e**H{y\ 

PROOF. By Theorem 3.2, 

/ / [ * ]> c 2 ^logOA) 

33p (g -1/2) is the closure of tame points relative to the distance 
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with a positive constant c. Let c = 1 f or simplicity; it makes no difference to 
the proofs. Also, keep in mind the usage established in §3 that lt < 1 (i > 1). 
Now 

\e2vV^[x(<t>) + V^y(<t>)]-(n/2)H[<t>h _ £-27ry(<*>)-0r/2)#W 

< e4^Wexp(7r/4) 2 nflogli9 

the elementary inequality lab - (l/l)b2 < 4a2 - (1/4)Z>2 being employed in 
line 2. Thus, the sum is over-estimated by the product of e4*1*^ and 

s n if2 < n s r2/2 

tame /i / > i i > 1 m * ~ °° 

- n [i + 0(1^)] < oo 

since lt is rapidly decreasing. The proof is finished. 

COROLLARY 1. CD(*) is well defined on Kf + V - 1 H*. 

COROLLARY 2. Lef (p„ £2> • • • ) be in real position on S, as for the Jacobi 
map, and let p be any point on S. Then the functional 

x(4) = ƒ" d<S> - 2 f ' d* = *„(*) - 2 *,(*) 

belongs to K* + V ^ T H\ as may be seen by splitting the integral from oo to 
p into 1 pieces:34 ƒ£, = /^^ + ƒ£. 7%e .//rsf piece defines an element of 
/3/2t c tf9 wfaie the secondpiece belongs to # f + V - 1 H^. Thus, <D(XP -
2/>i**) is well defined. 

The transformation properties of o are just as in the classical case. This is 
the content of 

THEOREM 1. Let z E K* + V - 1 Hf, fe/ 4 , E /ft Zœ any real period, and 
let Bn E V - 1 H* be any imaginary period. Then 

©(z + An) = OD(Z), 

<D(Z + 5„) - ^-2.V^T[z(U + ( i /2)^(U] o ( z ) ; 

in particular, by the first rule, CD is periodic in K^, i.e., it is really a function on 

PROOF. The first rule is self evident. The second is derived as in the 
classical case. The sum for CD is rearranged by substituting <J> + 1„ for <f>; this 
is permitted because \n is tame. Now, 

Mo is the point (Ae, 0) e S. 
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©(*) " 2 ^2irVrî'*fo+I«>e-<»/2)i5rl*+iJ 

. ^V^T[z(U+(i /2)^(U] 0 ^ z + Bj 

The identity (<f>, l„) = - 2 V : = T £„(<>) is used in the third line. 

THEOREM 2. o » continuous on K* + V - 1 #*, smooth on J* 
+ V— 1 H*9 and any translate on CD iy a /raw* in AT1" à analytic*5 on the 
complexification ofH^. 

PROOF that <D if continuous on & + V :=T #*: l*?^* - e ^ ' l < 2|£ 
- ry|d for any 0 < 5 < 1, so for xx and x2 E if *, and 

l » ( * i ) - ©<*2>l < 2 l * 2 * ^ * ' ^ - e2.V3T,2(^)|e-(V2)//W 

tamen 

Now for x E Kf and *, » JC(1#) (/ > 1) 

l*(*)P <2 *ft22 H2A2 « *[*]2 *7ft 
so the final sum is bounded by the product of 2K\xx — x2], raised to the 5/2 
power, and 

,a/2 

S nJllf x n if 

< 2 n [i + ^A2fV 
tame « / > j 

<n I [(I + «2A2)]8/V. 

It is required to prove that this quantity can be made finite by proper choice 
of 0 < 5 < 1. But for / < 1 and 5 < 1/2, 

2 (1 + n2/l2)*/2l»2 < 1 + 4 2 (n/lfln2 

= 1 + 0 ( / 1 / 2 ) , 

and that does the trick. 

PROOF that o is smooth onJ*+ V^T H^: The differentiability of © is 
confirmed by estimating ^\x(4>)\pe"iv/2)H^] for p > 1 and JC e / + . Now 

35A function ƒ defined on a complex Hubert space is analytic if ƒ(x + wy) is an analytic 
function of o) E C. 
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x(<f>) = Sx,/*, with xt = x(lt) and n( = At{<^\ so x(<f>) is bounded by a 
multiple of 2/fy2 for some q < oo. Thus, the sum in question is bounded by a 
multiple of 

2 n o + /*?)V < n I (i + /'"2)V. 
tame « /> i , ^ | « • - » 

The proof is finished by estimating 

2 (1 + iqn2)Plf < 1 + 21+ ' 2 i^rPlf - 1 + 0(/,1/3). 

PROOF that © (JC +• ) w analytic on the complexification of H* when 
x E À :̂ This is immediate from the estimate of Lemma 1: in fact, for 
x E K* andy from the complexification of H\ 

2 i^irV^TLw+^wl-dr^/rWi < constant X e*W?HW 

for any complex <o. 

COROLLARY 3. ƒ(̂ )) = OD(X̂  — S,^*,) û a (many-valued) analytic function 
ofp E S. 

PROOF. By Lemma 1, it suffices to remark that 

I f*d& < constant x^H[$] , 

locally on S. Observe that ƒ* d$ is a weakly analytic map of p into the 
complexification of H * and, as such, is strongly analytic. 

THEOREM 3. ©(*) is positive on K*. 

AMPLIFICATION 1. This fact will be important in connection with the 
Riemann vanishing theorem, a variant of which is proved below. 

PROOF.36 Introduce the Gaussian distribution dP(x) on R°° specified by37 

ExtXj = (2irV - 1 )" lQy. Let 0 < JC/ < 1 be congruent to xi9 modulo 1. Then 

defines a measurable mapping of x into K^/LK = 3- Now 3 is an oo-dimen-
sional torus with characters exp 2TTV- 1 *(</>), indexed by the tame functions 
<t> « 2^1,, and you may compute the </>*/* Fourier coefficient of the 
distribution dP' of x' as follows: 

£e2irV^\ JC'(4») = £e2irV=\ x(<f>) _ £e2nV^l 2*,*, 

The upshot is that dP' « CD(JC) */JC, dx being the Haar measure of 3f> from 
which it is apparent that © > 0 on AT* since o E C^A^ and the support of 
dx is dense in $. Now let 

36S. R. S. Varadhan helped us with this proof. 
31 E is the mean or expectation. 
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Then o 1/2 E C(K*) just like © ; also, 

*>(*) = £ ®i/2(* - y)<Dl/2(y) dy 

and if CD (X) vanishes at some point x0 E S? then CD I/2(X0 "~ ƒ) ©1/2OO 
vanishes identically on 3. But CD1/2(0) 7*= 0, so CD1/2 vanishes in the vicinity of 
x0; it is required to prove that this cannot happen. The distributions dPl/2 

and dP[f2 — ©1/2C*) àx associated with 2~1/2JC should now be introduced, 
but the extra notation is burdensome, and it is simpler to finish the proof 
under the assumption that CD, itself, vanishes on an open set: the argument is 
just the same. Now under the translation x-> x + y with y E H*, dP(x) 
transforms by the factor38 ^«xW-i'/Wly), i.e#, dP(x +y)/dP(x)9 evaluated 
at x = JC' is given by e^M-i"/2)1*^ x(y) being the Gaussian quantity 2 * ^ 
with^ = At(y) (1 > 1); the latter makes sense because 

2mE\ - - V=T S yiQijyj < H[y] < 00. 
ij<d 

Let F' be the field of events concerning x which are insensitive to integral 
translations, i.e., the smallest field over which x' is measurable. Then, by the 
previous remarks, dP\x + y)/dP(x), evaluated at x = x\ is given by 
E[e2«x(y)-(v/2)H[y)\F,] t h e concütional expectation being < 00 and > 0, with 
probability 1. Now if dP' vanishes on an open set U c 8, then it will also 
vanish on any translate U + y, provided y E Hf. The proof is finished by the 
remark that a finite number of such translates cover % contradicting P'(8) = 
1; 3 Œ K*/LK, being compact, is covered by a finite number of translates 
with y E K*. But Ht c K1* is dense in the latter, so the necessary translates 
may be taken from H*. 

AMPLIFICATION 2. The proof of Theorem 3 leads to an amusing variant of 
the Jacobi transformation of the theta-function in the present setting. 
Formally, 

dP{x) = e
 t d°°x, 
Vdetg 

in which d°°x is the (formal) flat measure on R °°. Because dP\x) is o(x) dx, 
this suggests a Jacobi formula: 

^ p-Q-nx+n] 
vol(S) 2 , • CD(*), 

integral n V det Q 

which is only formal, too, since e.g., vol(^) = det Q = 00. The proper 
interpretation of the Jacobi formula is the relation 

x <D(x)dx = P(E), 
E' 

38This is the formula of Cameron-Martin [1944]. It is closely related to Theorem 1. 
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in which E is the inverse image of the measurable set £ ' c ^ relative to the 
mapx -» x' of R°° into 3 . 

AMPLIFICATION 3. An improvement upon Lemma 1 is required below. This 
states that, for x E K\y E H\ and \n\ = 2|w,|, 

\n\>m 

PROOF. Letj>, = At{y) (i > 1). Then the sum in question is over-estimated, 
just as in Lemma 1, by the product of e^H[y] and 

2 II If < e— II f e^2 

tame « f > ! f > 1 * = - o o 
\n\>m 

- e - - I I [1 + 0(/V2)]<oo. 
/ > i 

8. The vanishing theorem. Let xp(̂ >) = / ^ rf$ and *,(</>) = ƒ {Jj </$ with fy 
(i > 1) is real position on 5, as for the Jacobi map. Then f(p) = G>(xp — 
2,>i*,) is analytic in p9 by Corollary 7.3; also,/(oo) = o ( - 2 l > 1 x l ) ^ 0, by 
Theorem 7.3, so that ƒ(£) does not vanish identically. The next result is a 
variant of the Riemann vanishing theorem; see Baker [1897: 296-342] for the 
classical case employed in the proof and Siegel [1971: 165-172] for general 
information. 

THEOREM l.fQp) vanishes simply at pt (i > 1) and no place else. 

REMARK 1. The classical proof39 for surfaces of finite genus could have 
been followed if a good appraisal of ƒ (p) in the vicinity of p = oo had been 
available; as it is, the easiest way is to approximate © by theta-functions of 
such surfaces and to make gfoo. 

PROOF. Fix the genus g = 1 ,2 , . . . , let R (X) be replaced by 

**(A) =V-n?io(A-\>-4g(g!)"4» 
the numerical factor being introduced to make Rg tend to R as gîoo, and let 
Sg9 Hg9 and @g be defined in analogy to the case g = oo. Let pt (/ > 1) be 
fixed in real position on S9 let paths from o, to pt be chosen there, as for the 
Jacobi map, not winding more than once about their respective circles, and 
let ƒ*J: (/ = 1 , . . . , g) signify integration along the same paths on Sg. Let 
p = ( jut, R ( /*)) be a general point of S and let the same letter denote the point 
(jit, Rg(fi)) of Sg determined by ascribing to Rg the same signature as to R. 
Note that this is stable for gjoo, locally in p9 i.e., if p is confined to a compact 
piece of S and if g is sufficiently large, then the signature depends upon p but 
not upon g. Let a path from oo. to p be fixed on S and let ƒ£, signify 
integration along the same path on Sg9 assuming that g is large enough for 
this to be possible. Now introduce the functional xg = ƒ£, - 2f»i/S; acting 
upon the general differential of the first kind for Sg. This represents a point of 
the Jacobian variety $ g of Sg9 and, in this language, the classical vanishing 

39Siegel [1971: 165]. 
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theorem states thatfg(p) = 0g(j*o - ^U\IPo) vanishes simply at p = pt (i = 
1 , . . . , g) and no place else;40 it is required to prove that the same statement 
holds for g = oo. Now^(£) is analytic in p, and if it could be proved that it 
approximates ƒ(p) = o ( / ^ - 2I>1/S;), e.g., locally boundedly, as gfoo, then 
the proof could be finished by use of the classical theorem of Hurwitz. Now, 
on Sg, the general differential of the first kind is of the form d$ = <t>Rfl d\ 
with a polynomial <f> of degree < g, and you may pick a normalized basis 
d$j » IjRf1 d\ (J = 1 , . . . , g) of differentials of the first kind such that 
2/xw-i d<bj = 1 if i =j and vanishes otherwise. In this language, the theta 
function can be expressed as 

the sum being taken over <f> = 2f«i/%l,-, and the appraisal of Amplification 
7.3 applies: 

V^ |^2irV=Tx(^)-(ir/2)/f fM| < c ^-m^/^timagx] 

\n\>m 

with a constant c1 independent of g. The moral is that the tail of the sum may 
be neglected if /^[imag x] is controlled and that it suffices for the proof of 
Theorem 1 to check two points: (a) that the individual summands of ®g(fZo — 
2f-i/S;) approximate the summands of o (ƒ£, — 2/^i/Sj), and (b) that 
//j[imag/£j is bounded, independently of g^oo.for p confined to a compact part 
ofS. 

LEMMA 1. Let d$j = IjRf1 d\(J = 1 , . . . , g) be the differentials of the first 
kind introduced above. Then it is possible to make gfoo in such a way that \j 
tends to the analogous function for g = oo, locally uniformly, for every j = 1, 
2 

PROOF. 2/ĵ j d$j = 1 if i — j and vanishes otherwise, so it is possible to 
select points /i>' G [\2i-i, X2i] (i = 1 , . . . , g) such that 

l / f t ) x 2 P v V 1 r f / i = l i f / = y , 

= 0 iîi¥°j. 
Now deg \j < g, so \j may be recovered from this information by inter­
polation, 

* - f t 

•%/-i i < /<g n ft 

just as in Amplification 6.1. The estimate A2i_i> ^2/ = ^ 2 + 0(*~2) (/|oo), 
combined with the convergence of the integral to 2ƒ£*_ /? " * <A, permits 
making g|oo so as to make 17 converge locally uniformly in the plane. The 
limiting differential is denoted by d$f = \fR~x dX; it is of class K since 

^Baker [1897: 297]. This variant of the vanishing theorem is peculiar to the hyperelliptic case: 
the special choice of base points o, (/'=•= 1 , . . . , g) avoids the introduction of the Riemann 
constant 2f«i ƒ %. 
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lj°(\) is of the f o r m a l * X)(X - X')~ !, X' being a root of y2{\, X) « 0, and 
may be identified by the fact that 2/^j t d$j° = 1 if i =y and vanishes 
otherwise. The proof is finished. 

LEMMA 2. |1,(X)| (^(X))"1 < c2|X|~3/2 for -oo < X < Xo - 1, say, with a 
constant c2 depending uponj but not upon g; in particular, ifg\oo in the manner 
of Lemma 1, then ƒ£, d$j tends to the analogous quantity for g = oo, locally 
uniformly in p. 

PROOF. The estimation is elementary: for fixed y > 1, large positive X, and 
ft (i •» 1 , . . . , g) as in the proof of Lemma 1, 

| l /X) | |^(X) | - 1 <c 3 |X | -V2n [1 + 0 ( 4 ) ] . 
i>2 

The proof is finished by use of the rapid decrease of /,. 

LEMMA 3. |1,(X)| | * g (X) | - f < c 3 r 3 4[(A - X^-Ofa - \)VX/1 for \^x < X 
< X2| with a constant c3 depending uponj but not upon i or g; in particular, the 
tail of'Sf-1 ft d$j is negligible, independently of g. 

PROOF. The estimation is much as before: just appraise the ith factors of 
the products for ly and R£, separately. 

PROOF OF (a). This is now plain from Lemmas 1, 2, 3; in fact, for tame n 
and for gfoo in the manner of Lemma 1, 

xg 

g 
2 njlj 

g 

2 ", 
tends to the analogous quantity for g = oo, locally uniformly in p , while 
^ [ S f - i t y l / ] S h a v e s itself, too, as may easily be seen by writing it out in 
terms of imaginary periods: 

- f t 
g 

2 rtjlj > 2 n^jXlV 
U<g 

Z7Î fx*- dQ,. 

The proof is finished. 
PROOF OF (b). It is required to control tfjimag f*x] as gfoo. ƒ*, differs 

from41 ƒ J by something real, and 

JT 2 n, d*\ <Jo
P\R

gr
ld kagfo X « ^ 2 »AJ\ 

Let 2 / « i^ly » ^ and let Z> be a disc enclosing the projection of the path onto 
the plane. Then 

max |<f>|2 < cA |<f>|2rfarea < cA |<J>|2|/y_2</area X max \R$ < c5Hg[<f>] 

with a constant cs depending upon D but not upon g, the upshot being 

<<Ao,0). 
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H* imagj^l < c5\j
P \Rg\'

1 d length! 

independently of g|oo. A variant of the vanishing theorem is expressed in 

THEOREM 2. a> (2/^i/SO viewed as a function of px vanishes simply at the 
points p'l9 p'3,... complementary42 to p2, p3, ; it has no other roots besides 
P\ - oo. 

PROOF. 2 I > I / J ; may be rewritten as ƒ*> + jfx - 2I>2/Sj; moreover, as it is 
a question only of the vanishing of o , j™ can be replaced by — ƒ*, the latter 
differing from the former by a real period. Thus, it suffices to look at 
f (Pi) = (ƒ& - f™ - 2 / > 2 /g) . This function vanishes simply at fa & . . . 
and no place else on S as may be seen by extending the proof of Theorem 1 
to cover the case that one of the fixed points pt (i > 1) is removed to oo. The 
fact that/(t)i) a k° vanishes at px = oo is seen in the same way. 

AMPLIFICATION 1. The vanishing theorem extends in a self evident way to 
the case in which a finite number of the points pé (i > 1) he in general 
position on S. 

COROLLARY 1. Let all but a finite number of points pt (i > 1) be in real 
position on S. Then the set of points x E K* + V —1 H * expressible as 
ƒ J' — 2/_É//S

/ is independent of the choice of i = 1, 2, <D(JC) vanishes on 
this set and conversely: modulo periods, these are the only roots of o(x) = 0 in 
K^ + V - 1 H* expressible as x = ƒ£, + 2/^i/Sj with only a finite number of 
the points pt (i > 1) in general position on S. 

COROLLARY 2. In the real analytic case43 the map p -» xp = ƒ£, viewed 
modulo periods of class K* + V - 1 H*, is an embedding of S into the 
associated cony?lex Jacobian variety.44 

PROOF. ^ E ^ + V - l # f , and the fact that the map is 1:1 is 
immediate from the vanishing theorem: if pt (i > 2) are in real position on S 
and if £j, qx are different from these, then the function/^) of Theorem 1 
vanishes at ql9 pl9 p2,..., and that is one root too many. Now xp = 
^j^\Xp(lj)Aj9 so its differential dxp at a point p of S is proportional to 
2 y > 1 lj(p)Aj. This is a tangent vector to the complex Jacobian variety; in fact, 
H[Aj] = Ofllog lj\-1) = OU"1) while lj(p) - OCT1), by Amplification 6.1, 
so that Sy^lyO^M/ E H*. The proof that £-»Xp is an embedding is now 
finished by noting that dxp cannot vanish: dxp = 0 requires lj(p) = 0 (ƒ > 1) 
and since ly (j > 1) spans //, this would require the vanishing at p of every 
element of H, which is certainly not the case. 

9. The Baker-Its-Matveev formula. The map M -» 3f is complicated: q Œ M 
determines, first, the points p( = (ft, ü (ft)) (i > 1) of 5 and then the element 
(x = 2 />1/o; mod periods) of J^/Lj = 3- Luckily, the inverse map 3 -» M 
has a remarkably simple expression in terms of the theta function of §7. 

42If p • ( jti, /? ( JK)), then the point p' complementary to p is ( /A, - i* ( JH)). 
43£ < ae~^ when q is real analytic. See Trubowitz [1977: §3] for a proof. 
MK* + V - 1 / f t , modulo periods of that class. 
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Its-Matveev [1975] discovered this for finite genus; a deeper formula for 
general hyperelliptic surfaces of finite genus can be found in Baker [1897: 
323]. The present extension to infinite genus is new. Let vx = 2c0 E J * be the 
direction corresponding to the infinitesimal translation V^ CD is positive on % 
by Theorem 7.3; it is also infinitely differentiable in the t^-direction, by 
Theorem 7.2. 

THEOREM 1 (BAKER'S FORMULA FOR HILL'S SURFACES). Let x = S/^/S; be 
the general point of K^9 the points px, p2> • • • being in real position on S. Then 

o = 0 ' W + , ( * / ! ) . . " , ( X ) 

<D(x) v ' ' ©(*) /£Vo, 2R(X) 
the prime designating differentiation in the x>x-direction. 

The Its-Matveev formula adapted to infinite genus is 

THEOREM 2. q(® - -2(d2/d£2)log o (x + &,) (0 < £ < 1), x £ 3 being 
the point corresponding to q £ M. 

COROLLARY 1. Let v2 = 4c, + 2(XQ + 2„>i/„)co, as in Theorem 4.4. Then 

q{t, t) = -2(rf2M2)log<D(x + &, + tv2) 

is the solution of the Korteweg-deVries equation 

dq/dt = 3qdq/d^-(\)d3q/de. 

PROOF OF THE ITS-MATVEEV FORMULA. It suffices to check the formula for 
£ = 0; the rest follows by translation. Lety2(l, X) = II^Kft - X){m)~2. Then 

2R (ft) 
ft'-V.ft 

JiO. Mi) 
(' > 1)» 

so by Baker's formula, 

-2[lo, . (*)]•-2 ^ g r f 22 
A'(ft) 

«>i W0.ft) 

Now A'(A) does not belong to / , but A'(X) + y2(l, X) does since 

y2(\, X) - sin VX /VX~ + 0(X_ 3 / 2) , 

while A(X) = -s in VX / VX + 0 ( \ _ 3 / 2 ) , and the roots X; (/ > 1) of A(X) = 
0 interlace the periodic spectrum: X2/_, < Xj < X2/- (i > 1). Thus, 

,>i .ViO'ft) 
= lim X 2 

A'( ft) + ^20» ft) 1 

wO» ft) * - f t 

= lim X 
A i - 0 0 

= lim X 
A i - 0 0 1 

A-(X) 

* 0 . A) 
+ 1 

î - n x-\-
, > i x - ^ 

- 2(\:-ft)-
<>i 
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The proof is finished by use of the trace formula 45 XQ + 2/>i(A2/_i + A2l """ 
2tt) - 9(0)- The additive constant Ao + 2l>1(X2,_i + A2| ~" 2\") appears in 
the result; this is seen to equal H0 = jx

0q = 0 by translating and averaging 
over a period 0 < £ < 1. 

PROOF OF BAKER'S FORMULA. Let p2, £3» • • • be fixed in real position on 5, 
let* -2/>!ƒ?;, and let 

for general px e 5. Baker's formula states that ƒ(px) vanishes identically; in 
particular, 

©'(*) ft, A-(X) 
-fîM^^W'^^W ©(*) J0l 2R(X) 

on coverings of nice circles. We now show that Baker's formula would 
follow from this estimate. 

Step l.fiPi) is locally analytic on S. 
PROOF, CD (*) vanishes simply at p2, p'3,... and no place else on 5, by 

Theorem 8.2. Let X(p) be the projection of p to the plane and suppose, for the 
moment, that p2 is not a branch point. Then, in the vicinity of px = p2, 
o(x) = (\(P\) - Mtfd)c with c » c(pl9 p2,... ) =£ 0, and o'(*) vanishes at 
t>, « p2 since V^O^) » V^Q^ at that point. Clearly, G>'(x) also vanishes if 
p2 is a branch point, so CD'(*)/ CD(X) is analytic at £1 « £2 and, likewise, at £3, 
etc. 

Step 2. /(-pj) w single-valued on S. 

PROOF. Let px make a clockwise circuit once about the segment [A2l_i, A2|]. 
By Theorem 7.1, /ft^) is augmented by 4(A'/2) - 2ffa_R~ldA/2 « 0. 
Thus, /(^j) is real periodic; it is required to prove that it is imaginary 
periodic, too. Let px make a counterclockwise circuit once about the segment 
[\Q, Afl-il- By Theorem 7.1, f(px) is augmented by -2TTV - 1 ^(1,) + 
5l(A'/2). This is shown to vanish by explicit calculation in the next two 
lemmas. 

LEMMA 1. B^/2) « ITTV^J Xi (i > 1). 

PROOF. The actual determination of the radical R (A) is important now: it is 
taken real and positive for À < Ao and determined elsewhere by analytic 
continuation off the cut [\Q, 00), as in Figure 5. 

1 ! - ^ - ! • ^ • ! • - ^ - l ^ • A -
Ao t Aj Aj A3 >4 A5 A6 X7 A8 

FIGURE 5 

Thus, 

45Sce McKean-van Moerbeke [1975: 254-258]. 
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• -,y^rp_£W_.,x + 7y^rr- ƒ<*> ,A-. . . 
J*o V 4 - A2(A) ^2 V 4 - A2(A) 

J2 V 4 - A 2 , / - 2 V 4 - A 2 

- -27rV:=rT Xi. 

LEMMA 2. ^,(1,) = / (/ > 1). 

PROOF. Under translation through a period 0 < £ < 1, fy makes i full 
circuits about the segment [A2/-i> ^2/]- Thus, for <f> E / , 

t>,(*)-2 2;P*</*-2/4/(*)-

The evaluation follows at once. 
Step 3. f (Pi) has no pole at px = oo; in fact, f'(px) vanishes identically. 
PROOF. The estimate of CD'/ CD now comes into play: ƒ(p,) is seen thereby 

to be bounded on the covering of nice circles. Now f(px) is necessarily of the 
form a(X) + R (\)b(\) with X * X(px) and integral a, b; in particular, 2a(X) * 
/(t>i) + ƒ(t>i) is bounded and so constant, as is 4R2(\)b2(\) = [/(t^) -
/(Pi)]2- Thus, ƒ (Ĵ ) is constant. Now if £„ like £2, £ 3 , . . . , is placed in real 
position, then ©'(*)/ &(*) + *(A'/2) is symmetrical in fy (i > 1); as such, it 
cannot depend on any of these variables, and its value, namely 0, is deduced 
by taking fy « o, (i > 1). Then x » 0, o (x) is at its maximum value on & 
and since Ü, is tangent to 3, CD'(0) * 0. The proof is finished. 

Unfortunately, the estimate of ©'/ CD in the vicinity of pt = oo is not 
directly available, and it is necessary to pass to the limit from finite to infinite 
genus in the style of the proof of Theorem 8.1. To do this, let Sg, R£(X) * 
-II?£o(^ "" \)> Hg> ®g> %g>

 ctc- be as before, excepting the temporary 
omission of the convergence factor ir~4g(g\)~4 from the second item. Let vf 
be the direction tangent to %g defined by vf(<p>) =•= the coefficient of\8~l for 
polynomials <f> of degree < g, let p2> • • • > P8 be fixed in, e.g., real position on 
S> and for \>x in general position, let x * 2f« iƒ£;. Let 4. (i * 1 , . . . , g) be the 
real periods for Sg9 let the normalized basis d$j (J' =* 1 , . . . , g) of 
differentials of the first kind be as in §8, and let Aj be the unique polynomial 
\g + cx\

8-1 + • • • such that A,(A$ — 0 (« — 1, , g).46 Baker's formula 
for finite genus asserts the vanishing of 

the prime designating differentiation in the t?f-direction. Let d^tg be the 
normalized differential of the second kind (A* /2)R~l d\. 

^W-X'-Sf-i^CXWiX). 
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Step 1 is performed as for infinite genus. 
Step 2 is also the same, except for the proof of the imaginary periodicity. 

This requires 

LEMMA 3.47 -2TTY=Î vf(If) + 4,(2^/2) - 0 (/ - 1 , . . . , g). 

PROOF. If the statement of the lemma is correct, then for any polynomial <J> 
of degree < g 

2vV=lvf (+) = 2*V=T 2 M<t>)vf(lf) - 2 4(*)*,(V2)-
i - i i - i 

To prove this equivalent statement, let B, C, and D be as in Figure 3 with 
it » g and A2* < ** < °o- Then, for any differential rf$ of the first kind, 

0-fd*gAdQ-f*8d9 

« ƒ V* + ? f^W+) + */-)]<» 
•'C /«o ^2i 

+ if[*,(+)-w* 
i—1 *2i-i 

the integrals in the sum being taken on the upper bank of the cut. The proof 
is finished by evaluating these contributions, separately. The first integral is 
easy: /^ ~ e\*+1/2 on C with a root of unity e = ± V ^ , so 

%(\) ~ e"1 ƒX -Q- - | VA , rf#(X) - of (*)c-1X-3/2 rfA, 

o(l) + 6-2üf(^)/ ^ - o(l) - W=Ti>f (•). 

and the integral contributes 
d\ 

Now inspection of Figure 3 shows that the integrands ^ ( + ) + %(-) in the 
first sum vanish by reason of 4(A^) = 0 (/ = 1 , . . . , g), so this sum 
contributes nothing. The second sum is now evaluated as 
(l/Dlf^Ati&B^/l) by noting that * , ( + ) - * , ( - ) - * , ( V 2 ) * 
[̂ 2/-i> ̂ 2/1 (« ™ 1» . . . , g). The stated identity now appears by making r|oo. 

Step 3 is an elementary estimate. &g(x) vanishes simply at £, = oo by the 
vanishing theorem of Baker [1897: 309]. Thus, ƒQpx) has at worst a pole at oo, 
and this can be detected by letting \(px) = /A,| - oo: The simple vanishing of 
Qg(x) at p{ - oo implies ®g(x)~ c/if ^2 and %(x)/@g(x)~ - (1 /2) ^ / / A , 
in the vicinity; it is required to estimate this quantity. To do this, compute ftj 
by differentiating x(<p>) = 2 f_i ƒ£</<& in the t?f-direction and substituting <t>x(\) 

**B (y » 1 , . . . , g) are the imaginary periods for Sg. 
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- II/^CA - tyX/i, - lij) \ This produces /A', = Rgvf(<J>,) ~ 
(-1)^"^—Mi)3/ • Thus, 0;/©^ - ( - lyi-fry1'2 as ji,| - oo. This is to be 
compared to 

f ' ^ ~ ( - i ) « / ' " - % = (-ir'(-MI)-
,/2

> 
•'o, •'o V — A 

the upshot being that ƒ (£,) has no pole at oo. The rest of Step 3 is as before. 
The proof of Baker's formula for finite genus is finished. 

To carry Baker's formula over to infinite genus, it is necessary to reintro­
duce the normalizing factor ?r4g(g!)~4 into R2 and to compensate by the 
factor tf~2g(g!)~2 in Â . 

LEMMA 4. Let Â  be so renormalized. Then it is possible to make g|oo in such 
a way that Â  converges to A' locally uniformly. 

PROOF. Ag(ù:g) = 0 (/ = 1 , . . . , g) implies that Aj,(A) = 0 has a root A/ in 
each of the intervals [A2I-I> ^2/] (* = 1, • • . , g) anc* no others. Thus, Â (A) = 
nf.iO'V2)"1^ — A/) converges, locally uniformly, to a function /̂(A) of the 
general form — y2(l, A) with48 At($) = 0 (/ = 1, 2 , . . . ). The identification of 
\p with A' is now accomplished by noting that ^ - A' is of class 13/2 and so 
vanishes by reason of AÉ(\p - A') = 0 (1 = 1, 2 , . . . ) and Corollary 5.1. 

LEMMA 5. 

lim 2 ƒ*'<**,- 2 rà'(X)R-ld\ 

for g|oo in the manner of Lemma 4. 

PROOF. The details are left to the reader. It is necessary to estimate the tail 
of the left-hand sum; this is facilitated by assuming that the path from o, to fy 
winds not more than once about the circle covering [A^-i, A2/]. 

Now, by §8, ®g(x) and xg = 2f«i/Jj, tend to their analogues for infinite 
genus as gfoo in any manner. The proof of Baker's formula is finished by 
confirming that49 

%(*) - 2 2<JTV=Î vf (<t>)e2vV^ V*>-<»/2)*fW 

does the same as gfoo in the manner of Lemma 4. Now the renormalization 
introduced a factor ir2g(gl)2 into vf9 so, by Lemma 3, 2TTV - 1 vf(lf) = 
5,(Al/2) with the renormalized Â . Thus, by Lemmas 1, 2, and 4, 
ITTV^X t>f (If) tends to its analogue ITTY^^X VX(\J) = 5,(A#/2), for infinite 
genus. The final step is to control the tail of the sum. The rest of the proof 
will be plain from §8. Let & (/ = 1, . . . , g) be as in Lemma 8.1. vf (If) is the 
same, normalized or not; for the present, the unnormalized form is best, 
leading easily to the appraisal 

TT V ( A ; - A 2 , ,)(A;-A2 /) 
K(l/)| = 0(y)X n U-l -OU) 

**At (1 > 1) are now the real periods for infinite genus. 
49The sum is taken over £ = 2f.i«/lf, n e Zg. 
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with O (J) independent of g and A,' intermediate between \2j-\
 an(* ^2/- Now 

let px, like p2, p3,... 9 be in real position and let \n\ = 2f.ii|fy|. Then 

is bounded, as in §7, by a multiple of 

£ 2 M2H«*<£ 2 n(i + /KI)¥ 
W |#i|>m I > 1 w tamc/ i ,^! 

tame/i 

< i n i (i + /I«DV 
i > 1 n * — oo 

- 0 ( l / m ) , 

independently of g. The proof of Baker's formula for infinite genus is 
finished. 

10. Meromorphic functions. A meromorphic function on S is of the form 
ƒ (J)) = tf(A) -f R(\)b(X), in which a and b are meromorphic on the plane. 
Naturally, without some control on ƒ (p) in the vicinity of p = oo, nothing 
more can be said about such functions. The adjective "meromorphic" is 
therefore construed from now on in a narrower sense: in terms of the local 
parameter f = X~1/2, it is required that f(p)~ cnÇ

n + . . . on the double 
coverings of nice circles./is said to have a root (pole) at p = oo of multiplicity 
m = \n\ if /i > 0 (A < 0) and c„ =̂ 0. 

EASY HALF OF ABEL'S THEOREM. Let ƒ be meromorphic on 5, let d$ be of 
class 13/2 or fefter, a/zrf let50 $(p) = ƒ£</$. 77ie/*, modulo periods, 

2 $ 0 0 ~ 2 $(t>) + >*$(oo) = 0. 

AMPLIFICATION 1. The sum requires clarification. $(p) is single-valued only 
on the universal covering of 5, so periods intervene. The correct statement is 
that, if xp - ƒ£, then 2xq - ^xp + nxw = 0, the possibly infinite sum being 
taken in £5, i.e., modulo periods of class 73 / 2 t , summing first over the roots 
and poles inside the covering of a nice circle and then letting the radius of 
this circle approach infinity. 

AMPLIFICATION 2. Presumably, 2 $ ( Q ) - ?L$(P) + /*$(oo) = 0, properly 
interpreted modulo periods, is also a sufficient condition for the existence of a 
meromorphic function with divisor 2(q — p) + /100, but this is not proven 
here. 

PROOF. Let Bx be a nice circle Cx of radius r with a 2-banked cut along 
[0, r], and small detours to avoid the roots and poles of ƒ, and let B2 be its 
double covering on 5. Then $(p) is single-valued inside 2?2, and 

. L - ƒ *(*> )d log ƒ ft) = 2 <*>(<?) " 2 *(*>) = sfy) 

the sum being taken over the roots q and poles p of ƒ inside B2. The integral is 

'0 - (Ao, 0). 



HILL'S SURFACES AND THEIR THETA FUNCTIONS 1083 

now divided into a part coming from the covering C2 of Cx and a part coming 
from the covering of the cut. Now <t> e P/2

9 so |<KA)| I^MI"1 * 0(r"5 /4) 
on Cj, by an estimate similar to that employed in the proof of Theorem 4.2. 
Thus, on C2, |$(t>) - $(oo)| - 0(r'^4)9 while dlogf(p) « O Ci'1 d\) -
0(d0),sothat 

ƒ |«(») - «(oo)| |</log/(t))| - ©(i-1/4) 

can be neglected, with the result that 

—j=r ƒ *(P)dlogf(p) « OCr-'/4) - *«(oo). 

The proof is finished by evaluating the integral along the covering of the cut. 
This contributes 

2 J L _ ƒ[$(+) -<*>(-)]* tog/»); 

the integral is extended along the double covering of the upper bank, and 
$(+) [$(—)] is the value of ${p) on the upper [lower] bank. Now 4>(+) — 
$ ( - ) is a period of rfO, alternately vanishing and constant between the 
points \ (i > 0). Thus, the cut contributes a sum of the form 

2 period X L _ (</ log ƒ(*>), 

the ith integral being taken about a double covering of the segment 
[A2,-i> A2l]. This circuit returns f(p) to its initial value, so each integral 
contributes an integer, i.e., the cut contributes a period, and the upshot is 
that, modulo periods of class 73/2t, s(r) + n$(oo) » 0(r~1 /4). The proof is 
finished. 

DEGREE. The same procedure with 1 in place of <P(p) leads to the existence 
of the degree of a meromorphic function: with a technical interpretation, as 
in Amplification 1, a meromorphic function has the same number of roots as 
poles; in particular, a pole-free function is constant. 

RIEMANN-ROCH THEOREM. The classical theorem of Riemann-Roch states 
that if b = £i + • • • + pd is any divisor on a closed Riemann surface of 
finite genus g, if F is the class of meromorphic functions having the same or 
softer poles, and if D is the class of complex differentials of the first kind 
having the same or harder roots, then51 dim F = d + 1 - g + dim D. A 
number of simple examples will suggest that this relation may be interpreted 
for meromorphic functions construed as above and differentials of the first 
kind from the complexification of K. 

EXAMPLE 1. Let p' be the point complementary top E S and let \(p) be its 
projection to the plane. The divisor b * p + p' is of degree 2, while dim F = 
2: 1 dimension for the constants and 1 for the function ƒ (p) = (À - Aft)))""1 

with simple poles at p and p'. The Riemann-Roch relation predicts g-dim D 

51 dim is the complex dimension. 
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= 1. Now it is natural to interpret the left side as the (complex) codimension 
of D in the complexification of K. This is, in fact, correct: d$ E D if and 
only if <f> vanishes at the common projection \ of p and p'. This cuts the total 
dimension 'g = oo' down by 1, the evaluation map <J> -* <J>(\) being an element 
of the complexification of K*. 

EXAMPLE 2. Let pg (i > 1) be in real position on S and let b = p2 + £2 + £3 
+ £3 + Then b is of degree *2g - 2', dim Z) = l,52 and the Riemann-
Roch relation predicts dim F ='2g - 2 + 1 - g + Y='g\ This is confirmed 
by noting that the 'g - 1* functions ft(p) = (A - Aft/))""1 0" > 2) a r e inde­
pendent and, together with the constants, presumably account for the whole 
ofF. 

EXAMPLE 3. Let fy (1 > 1) be in real position on 5, as before. The divisor 
b = h + p2 + • • • is °f degree 'g\ Now the roots of a differential of the first 
kind come in complementary pairs, so dim D = 0, by interpolation. The 
Riemann-Roch relation predicts d i m F = ' g + 1 - g + 0'= 1, and that is 
correct: the poles of a meromorphic function come in complementary pairs, 
so functions of class F are pole-free, including at the point 00. But such a 
function is constant, i.e., dim F = 1. 

These examples suggest that the Riemann-Roch theorem still has much to 
say. Doubtless, it is always correct, properly construed, and it is natural to 
hope that this construction will make itself apparent upon reconsidering the 
proof, giving the geometrical facts underlying the dimension counts prece­
dence over the mere numerical dimensions. 
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