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found and the objects detected but not yet verified. Optimal solutions which 
use this information cannot be determined with the methods used (see 
Chapter VI); policies which are "optimal" neglecting the feedback can be 
found, but simple adaptive policies are shown to improve on them. 

(If there is a significant criticism of the work under review, it is that 
insufficient attention is paid to algorithms which achieve or approximate 
optima in relatively complex situations, as opposed to problems which admit 
of elegant solutions.) 

I have surveyed essentially the first six chapters of the book but have not 
done justice to the thoroughness and clarity of the exposition nor to the 
numerous and helpful examples. The remaining chapters deal with approxi­
mations and with moving targets, for which some interesting results are 
found, though not of the same generality as the earlier work. 
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Finite free resolutions, By D. G. Northcott, Cambridge Univ. Press, New 
York, xii + 271 pp., $29.50. 

This book gives a beautifully self-contained treatment of the recent Buchs-
baum-Eisenbud theory [4], [5] of finite free resolutions over a commutative 
ring with identity, as well as of a number of related topics (e.g. MacCrae's 
invariant [11]). There are two features in which the author's treatment differs 
from existing accounts of the subject: first, he confines himself almost 
entirely to elementary methods, avoiding Ext, Tor, and even exterior powers 
(we shall do likewise), and, second, he exploits a new notion of grade (or 
depth) in the non-Noetherian case which permits him to dispense entirely 
with the Noetherian restrictions on the ring. The very elementary form of the 
treatment enables the author to make accessible some fancy results from the 
homological theory of rings to readers with virtually no background in 
algebra. 

Hubert [7] gave the theory of finite free resolutions its initial impetus. 
Suppose that one is trying to understand a finitely generated module M over 
a Noetherian ring R (Noetherian means that every ideal is finitely generated, 
and implies that every submodule of a finitely generated module is finitely 
generated). To give generators ul9..., un for M is essentially the same as to 
map a free module F0 — Rn° onto M (the map then takes (rl9..., rWo) to 
S/fjty). To understand Af, one simply needs to understand the kernel 
{(r„ . . . ,rH() E Rn°: 2/,**, * 0}, call it syz*M, of this map (of course it is not 
unique: it depends on the choice of generators). This kernel is called a relation 
module or module of syzygies for M. Note that M a F0/syzlM. But then, to 
understand syz'Af, it is entirely natural to choose, say, nx generators for syz'M 
(equivalently, to map Fx » R"1 onto syzlM) and so obtain a module of 
syzygies of the module of syzygies, denoted syi?M. Of course, there is no 
reason to stop at this point, and so one can obtain a (usually infinite) 
sequence of modules of syzygies syz'M each contained in a free module 
iV_, » il1*-1. For each i we have a composite map (î -*» syẑ Af c+ ƒ)_,), call 
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it dj, and putting these together we obtain an exact sequence 
dt dx 

> F^ F^-* >FX^ F o->M-*0, 

a so-called free resolution of M. If the Fg all have finite rank and Ft = 0 for 
all sufficiently large i, we call the resolution & finite free resolution. 

Hubert established the credibility of this notion by proving that if R is a 
polynomial ring over the complex numbers and M is a finitely generated 
graded module, then M does indeed have a finite free resolution: this is the 
famous Hubert syzygy theorem. He even gave an algorithm for finding the 
resolution, and showed that its length (the subscript on the last nonzero Ft)9 if 
it is chosen of minimal length, does not exceed the number of variables. 
While he was at it, he proved that polynomial rings in finitely many variables 
are Noetherian. All this was motivated by the problem of showing that rings 
of invariants of matrix groups are finitely generated (later to become part of 
Hubert's fourteenth problem). The restriction to the graded case is unne­
cessary: this has been known for a long time if one allows projective modules 
(i.e. direct summands of free modules) to play the role of the Ft. Recently, 
Quillen [13] and Suslin showed (independently) that all projective modules 
over polynomial rings over a field (or principal ideal domain) are free. 

Over sixty years later the theory of finite free resolutions received a second 
enormous boost from the work of Auslander, Buchsbaum, and Serre [1], [2], 
[14]. To describe their results as simply as possible we shall want to assume 
that the ring R is local, i.e. has a unique maximal ideal. A suggestive example, 
which motivates the terminology, is the ring of germs of continuous (or C00, 
or analytic) real or complex valued functions at a point of a topological space 
(or differentiable manifold, or analytic space). The unique maximal ideal 
consists of germs of functions which vanish at the point. Any commutative 
ring R (we always assume the presence of a multiplicative identity) has lots of 
local rings associated with it, one for each prime ideal P, obtained by 
adjoining as universally as possible multiplicative inverses for the elements 
not in P. By and large, the theorems about finite free resolutions over an 
arbitrary ring R can be reduced to the corresponding statements about local 
rings of R by standard kinds of tricks, and the theorems tend to have a 
simpler statement in the local case. Moreover, when R is local, every projec­
tive module is free [10]. 

We can now describe the results of Auslander-Buchsbaum [1] concerning 
finite free resolutions over a Noetherian local ring R with maximal ideal m. It 
turns out that the existence of modules possessing finite free resolutions over 
such a ring R is intimately connected with the existence of so-called regular 
sequences. If E ^ 0 is a finitely generated /{-module, xx,..., xn E m is 
called a regular sequence on E or an E-sequence if xx is not a zerodivisor on E 
and for each /, 1 < i < n — 1, xi+x is not a zerodivisor on E/(xx,..., x^E. 
For example, if R = K[[xx, . . . , xn]]9 the formal power series ring in n 
variables over the field K, then xx,..., xn is an /{-sequence. It is a theorem 
that all maximal ^-sequences have the same length, and this length is referred 
to as the grade of E. 

On the one hand, if xx,..., x„ is an /{-sequence, then R/(xx,..., xn)R 
has a finite free resolution. In fact, let Ft be the free module on (") generators 
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£/(/<)>••• Jt-ù*1 < Jo< • * ' <Ji-i < ", and define 4 by 

4 ( ^ C/o> • • • .ir-i)) * 2 ( - l)'*j^U> • • •>/>•• • J/-0» 

where * indicates omission. Then 

0-+Fn-+ >FX% >Fx-± F0-+R/(xx,...9xn)R-+0 
is a finite free resolution. 

If a module E over a ring R has a projective resolution of finite length, the 
length of a shortest such resolution is denoted pdRE (theprojective dimension 
of E over /?). In the above example it turns out that no shorter free (free and 
projective are equivalent in the local case) resolution exists, and so 
pdR(R/(xl9 ...,xn)R) = n. 

On the other hand, if a Noetherian local ring R possesses a finitely 
generated module E ¥= 0 such that pd^i? * n9 then R must possess an 
/?-sequence of length n. The fundamental (and much more precise) theorem 
along these lines is the result of Auslander-Buchsbaum [1] which asserts: 

If R is a Noetherian local ring and E =£ 0 is a finitely generated ü-module 
which has a finite free resolution, then 

grade R « pd^i? -f grade E. 

Since all terms are nonnegative, we have in particular that pdA E < 
grade R. 

We note the following example: If R * K[[xX9..., xn]] and E * 
R/(xl9. • . , xd)R, then pdRE * d9 grade E = n — d (xd+l9..., xn is a maxi­
mal ^-sequence) and grade R = n. 

A Noetherian local ring is called regular if its maximal ideal is generated by 
a regular sequence (on the ring). Formal and convergent power series rings 
over a field are good examples. Geometrically, a point of an algebraic variety 
over an algebraically closed field or of an analytic variety is smooth ( = 
simple = nonsingular) if and only if the local ring (of germs of appropriate 
functions) at the point is regular. Among the early triumphs of the thoery of 
finite free resolutions are the proof by Auslander-Buchsbaum-Serre [1], [14] 
that a Noetherian local ring is regular if and only if every finitely generated 
module has a finite free resolution, and the proof by Auslander-Buchsbaum 
[2] that every regular local ring has unique factorization: this had been a 
longstanding problem. 

We now jump to the present. There are several remarkable new results, due 
to Buchsbaum and Eisenbud, which bring deeper insight into the connection 
between /^-sequences and existence of finite free resolutions. 

A special case of the first of their theorems gives a criterion (derived from 
the acyclicity lemma of Peskine-Szpiro [12]) for a finite free complex 0 -* R"* 
^d. . . _y*i /j*o ̂  o to be acyclic (i.e. exact, er t possibly at Rn°). Here, 
we assume that the n( are positive integers and thai At denotes the nt by n^x 

matrix of the ith map for 1 < i < d. (The condition for this sequence to be a 
complex is fhatAiAtmml » 0,1 < f < d.) 

Now, if R were a field one could give an acyclicity condition purely in 
terms of the (determinantal) ranks r, of the matrices At: to wit, for each i, 
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1 < i < d9 /iif * r/+i + rf (where rd+x is defined to be 0). For an arbitrary 
Noetherian local ring, which has a much more complicated ideal structure 
than a field, this condition fails miserably. However, there is a beautiful pair 
of necessary and sufficient conditions [4] as follows: 

(i) for each i, nt * r<+, + r„ and 
(ii) for each i, 1 < i < d, the ideal generated by the r, size minors of A is 

either the unit ideal, or else contains an /{-sequence of length at least i. 
Here we see the intimate relationship between iî-sequences and finite free 

resolutions revealed in a particularly concrete way. 
Northcott's book gives a second result of Buchsbaum-Eisenbud [5] in detail 

which we shall only mention briefly here: the result gives a factorization 
theorem for certain matrices of minors derived from the matrices occurring in 
a finite free resolution. It turns out that unique factorization in regular local 
rings is an immediate corollary. There are expositions in [6\ and [9]. 

When the assumption that R is Noetherian is dropped, great difficulties 
arise. A key point in the Noetherian case is that if I is an ideal of R, E is a 
finitely generated /{-module, and every element of / is a zerodivisor on E, 
then there is an element uinE, not 0, and a prime ideal P containing I such 
that £umRu * P. In particular, we can choose u ^= 0 so that lu ~ 0. Counter­
examples are easy to construct if the finiteness hypotheses are dropped (e.g. 
every element of m is a zerodivisor on E = @x(Em R/xR, but no single 
nonzero element u E Eis killed by m, unless m is principal). 

Now, the condition, for example, for 0^>R->A Rn-+0 to be acyclic, 
where A=[ax... an], is that there not exist u ^ 0 in R with a(u = 0, 
1 < i < it. In the Noetherian case this condition implies (in fact, is equivalent 
to) the condition that the ideal (al9..., an)R contains a nonzerodivisor, but 
this is false in the non-Noetherian case. A non-Noetherian theory of grade 
was introduced in [3] and studied in [8] to overcome this difficulty. The idea 
is to define the "true grade" as the supremum of lengths of regular sequences 
which occur after allowing adjunction of indeterminates. In the present 
example, for instance, if we enlarge R to R[x], #! + • • • + anxn~l is a 
nonzerodivisor. 

Professor Northcott has systematically exploited this idea and shown that 
with this notion of grade, virtually all the theorems from the Noetherian case 
work in general. 

The book is extremely well written and there is a large set of Exercises 
dispersed through the text which are completely solved at the ends of the 
various chapters. 

This book should be of great value to anyone with little background in 
algebra who wishes to plunge directly into the homological theory of modules 
over commutative rings. 
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Introduction to ergodic theory, by Ya. G. Sinai, Princeton Univ. Press, Prince­
ton, New Jersey, 1977, 144 pp., $6.00. 

The author has endeavored to present the general results of ergodic theory 
by examining special cases. His very considerable success testifies to the care 
and insight with which his examples, illustrating the methods and basic 
concepts of ergodic theory, have been chosen. The examples are, moreover, 
explained very clearly and at a level which should make the book accessible 
to a wide audience. The reader should be warned, however, that some of the 
results appear on first reading to be simpler than they really are, and that not 
all areas of ergodic theory are treated. The last section of this review will 
discuss a particularly important omission. 

Ergodic theory arose from efforts to abstract some mathematically interes­
ting aspects of dynamical systems. Two such systems, which are very closely 
connected, may be studied as examples. Consider first an ideal gas whose 
molecules are subject to the laws of classical mechanics and which are 
enclosed in a container. Statistical mechanics consists of the study of this 
system, and especially of the limiting behavior of its properties as the number 
of molecules tends to infinity. As a second example, consider a planetary 
system also subject to the laws of classical mechanics. Celestial mechanics 
deals with the study of such planetary systems. The second example differs 
from the first merely in that the case of interest is not the limiting one, and in 
that there are no collisions against the walls of a container. Ergodic theory is, 
to a large extent, the study of ideas which have their origin in statistical or 
celestial mechanics. 

We proceed now to the concept of phase space, which has come to be a 
crucial idea in the study of dynamical systems. Phase space does not corre­
spond to the physical space of the dynamical system. It is rather a représenta-


