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these things should fit into a general framework are challenges that should be 
given serious consideration by any student of transcendental number theory. 
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Combinatorial optimization: networks and matroids, by Eugene L. Lawler, 
Holt, Rinehart and Winston, New York, 1976, x + 374 pp. 

This is a well-written introduction to an attractive area of modem 
mathematics. It is highly recommended. 

Some problems in this area are: 
1. Find the shortest path through a finite network. 
2. Find the A:th shortest path through a finite network. 
3. Find the path of shortest length through all points of a finite network 

("the travelling salesman" problem or technically a Hamiltonian circuit.) 
4. How does one process m items on n machines? 
5. How does one calculate 2n with a minimum number of multiplications? 
6. How does one compute a polynomial in many variables with a minimum 

number of multiplications? 
7. How does one find m defective coins among n coins? 
The fourth, fifth, sixth, and seventh problems are not treated in this book. 

The fourth problem is very important in many industrial applications and in 
operating a computer installation. Nabeshima has written a book in Japanese 
on this problem, which he is translating into English. Many other mathema­
ticians have worked on this problem. Branch and bound techniques have 
been used by many. The fifth problem has no applications that the reviewer 
knows of. It is like many problems in number theory, simply stated and 
intractable. The sixth problem has many applications in a number of 
algorithms. In this case of polynomials of one variable, the problem is solved. 
Ostrowski treated the case of polynomials up to degree four, and the general 
case was treated by Pan. They showed that the well-known technique of 
Horner was best. 

In problem 7 the case m = 1 is a well-known puzzle which may be solved 
using many methods. The case m = 2 was treated in [1]. The case of general 
m is part of a mathematical theory of experimentation which does not yet 
exist. 

Since these are finite problems and we have a digital computer at our 
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disposal, it might be thought that they could readily be solved by 
enumeration. This is not the case. A convenient unit for combinatorial 
problems is 10!. This number is 3,628,800. 20! is easily seen to be more than 
1010 times as large. Consequently, whatever time is required to examine 10! 
cases, 20! cases will require 1010 times as much. Yet, simply stated combina­
torial problems lead to 100! or 1000! cases and even a larger number of cases. 

Another convenient unit is that a year has approximately w X 107 seconds. 
We see then, that even at microsecond speed enumeration is not a feasible 
procedure. Mathematical analysis is required. 

What is so attractive about these problems is that they require a blend of 
analysis, algebra, topology, computer science and often, a knowledge of 
where the problem arose. This origin often provides valuable clues to the 
nature of the solution. At very least, it furnishes a very useful first approxi­
mation. This is true in many parts of analysis. Thus, they force the mathema­
tician to learn many branches of mathematics. If he hopes for success, he 
cannot be a narrow specialist. 

A knowledge of graph theory is indispensable. (An excellent book on this 
subject is [5].) The book under review contains a chapter on the shortest path 
problem. This is one of the basic problems of modern mathematics. As the 
author shows, many problems can be solved directly in terms of this problem. 
Many other problems use this problem as part of the solution. For example, 
Dreyfus in his work on the Steiner problem uses the shortest path problem. 

A simple dynamic programming argument yields a basic nonlinear 
equation. Thus, the original combinatorial question has been converted into 
an analytic one. This equation can be treated in various ways by successive 
approximations which yield upper and lower bounds. Many of the approxi­
mations have simple interpretations as approximate policies. 

The author also gives many other ways of treating this problem in this 
chapter and a later chapter. 

This problem also plays a major role in the calculus of variations (see [3]); 
it can also be used to treat a number of puzzles (see [2]); and, finally, it can 
be made a fundamental part of decision making by a digital computer (see 
[4]). 

The later chapters are more technical and contain a great deal of work 
original with the author. 

One of the great merits of the book is that it shows how much research 
remains to be done. First of all, there is no such thing as a final solution of 
any of these problems. The algorithms that are used depend upon mathe­
matical analysis as well as the development of computers. As parallel compu­
ters become available, there will be many new algorithms. Secondly, we face 
the problem of deriving feasible procedures where no mathematical analysis 
exists. Thirdly, all of these problems can be extended to the case where 
stochastic effects are present. We can expect an interesting blend of classical 
topology and stochastic processes. Fourthly, all of these problems can be 
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extended to the case where there is learning. It is important to consider the 
fuzzy versions of these problems. The word "fuzzy" is used in the sense of 
Lotfi Zadeh. 

Finally, a historical note . Problems of this type were considered by many 
mathematicians: Euler, Hamilton and Steiner, to name a few. But the first 
systematic study of these problems was carried out at the RAND Corporation 
during the years after 1948 under the inspiration, and often participation, of 
von Neumann. Major names were: George Dantzig, Stuart Dreyfus, Lester 
Ford and Ray Fulkerson. Many other mathematicians worked on these 
problems. They are closely connected with the theory of games, linear and 
nonlinear programming, as well as integer programming. 
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Doubly stochastic Poisson processes, by Jan Grandell, Lecture Notes in 
Mathematics, vol. 529, Springer-Verlag, Berlin, Heidelberg, New York, 
1976, x + 234 pp., $10.30. 

A point process on a space T is a random distribution of points throughout 
T. Its values are atomic measures on the space with the atoms having weights 
1, 2, 3 , . . . (corresponding to 1, 2, 3, . . . points at the atoms). An ordinary 
stochastic process refers to a random entity whose possible values are 
functions. In contrast, a point process refers to a random entity whose 
possible values are counting measures. Inherent and central to the notion of 
such a process is the idea of whether the points tend to be abundant and 
closely packed or sparse and widely separated, i.e. their intensity. To forma­
lize this idea, suppose ƒ is a measurable subset of the space. Suppose N(I) 
denotes the number of points that are in I for a realization of the process. 
Then the expected or average value of N(I), E{N(I)} = /i(7), is called the 
intensity measure of the process. In the case that the space is the real line, 
and the measure /A is absolutely continuous, its derivative is called the 
intensity function of the process. A point process is called Poisson with 
intensity measure /i if (i) for measurable ƒ, 

(1) Prob{iV(/) = n) = M ( / ) " C X P { - M ( / ) } / « ! , 


