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It is a well-known result of Kadec that every two separable infinite dimen­
sional Banach spaces are homeomorphic. Also in large classes of nonseparable 
Banach spaces (perhaps all) the density character of a Banach space is its only 
topological invariant (see the book [2] for details). The situation changes con­
siderably if we consider uniform homeomorphisms. Several results are known 
which prove the nonexistence of uniform homeomorphisms between certain 
Banach spaces of the same density character. As a matter of fact, the following 
problem was raised by many mathematicians: Do there exist two nonisomorphic 
Banach spaces which are uniformly homeomorphic? (Le. does the uniform struc­
ture of a Banach space determine its linear structure?) For a recent survey of 
results related to this problem see [3]. 

While studying the question of existence of nonlinear liftings, we found in 
a surprisingly simple manner an example which answers this problem. Let T be 
a set of the cardinality of the continuum. Then c0(T) is lipschitz equivalent to 
a certain closed subspace X of l^ (i.e. there is a map T from c0(r) onto X so 
that T and T~x satisfy a lipschitz condition). Since there is no sequence of 
continuous linear functionals which separate the points in c0(T), this space is not 
isomorphic to a subspace of /«. 

Let UD F be Banach spaces and let <p: U—• U/Vbe the quotient map. 
We say that </> admits a lipschitz (resp. uniformly continuous) lifting if there is 
a lipschitz (resp. uniformly continuous) map \p: UjV—• C/so that <pi// is the 
identity of U/V. If such a lifting exists then C/ is Lipschitz (respectively uni­
formly) homeomorphic to the direct sum V © U/V. A suitable map T which es­
tablishes the homeomorphism is Tu — (u- tyiç(u), <p(u)). 

Let {Ny}y^T be a collection of subsets of the integers N so that each Ny 

is infinite and Ny n Ny* is finite for y # y'. Let X be the closed linear subspace 
of /^ spanned by c0 and the characteristic functions Xy of Ny9 y E I\ Clearly 
X/c0 is isometric to c0(r) with ^x7 corresponding to the natural unit vectors ey 

of c0(T). The map <p admits a lipschitz lifting and thus X is lipschitz equivalent 
of c0(T) © c0 « c0(r). Indeed, let 

#t— 1 tn — 1 
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with at > a2 > a3, . . . , bt > b2 > ô 3 , . . . , 0 < s, t < °°, be the unique repre­
sentation of y E c0(T) as a difference of disjointly supported positive elements 
y+ and y~ (we assume also that yf =£ yf9 y\ + yj for i =£ ƒ). Put 

w = l n m = l m 

where XA denotes the characteristic function of a set A. It is evident that $$ = 
identity of c0(F). That ^ is a lipschitz map, follows from the following easily 
verified formula. For y E c0(T)r « E TV we have 

^(y)(n) = distO+, Zn) - dist(y", Z„) 

where 

Z„ = span{e7;«^iV7} . 

REMARKS, (i) It is of course of interest to find also separable examples. 

Plausible separable candidates are the pairs cQ and c(o;w) or even c0 and C(0, 1) 

(cf. [1]). 
(ii) In the linear case the existence of a bounded lifting to the quotient 

map U—• U/Vte of course equivalent to the existence of a bounded projection 
from U onto V. In the nonlinear case the existence of a lifting trivially implies 
the existence of a projection, but the converse is not true in general. For exam­
ple let D be the space of all real-valued functions on [0, 1] such that 
\\mhX0f(t - h) exists and f(t) = lim,, j 0 / ( f + h) for every t and so that the only 
possible jumps of ƒ are for rational t, with 

11/11 = s u p { | / ( f ) | , 0 < f < l } . 

Then D D C(0, 1), there is a Lipschitz projection from D onto C(0, 1) (by [4]) 
but there is no lipschitz lifting ty from c0(Q) = c0 = D/C(0,1) into D (where 
Q denotes the rationals). Indeed suppose that such a # exists and let K be its 
lipschitz constant. Let x, y E c0(Q) be such that \\\j/(x) - #0)11 > (K - 1/4) 
||JC -ƒ11. Then there is an open set G in [0,1] so that 

liW*X0 - MFXOI > C* -1/4)11* ~y\\ 

for t E G and so that both #(*) and #00 vary by less than ||JC - ƒ 11/8 on G. Let 
q be a rational point in G so that the unit vector eq in c0(Q) satisfies 

\\x-y±\\x-y\\eql2\\ = \\x-y\\9 

and put z = (x + j;)/2 + ||x - ylk„/4. Then \\z - x|| « ||z - j l l » ||x - j!t/2 and 
hence 
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M(z) - <K*)||f \\m - i>(y)\\ <K\\x - y||/2. 

In particular we get that W00(0 - 0K*XO + ^O)(0)/2I < llx -,y||/8 for t E G 
but this contradicts the fact that \jj(z) has a jump of size ||x - y\\/2 at q. A slight 
variant of this argument shows that y: D —» JD/C(0, 1) does not admit even a 
uniformly continuous lifting. 

(iii) It follows from results of [4] that in many cases (e.g. if V is reflexive) 
the existence of a uniformly continuous lifting to </?: U—+U/V already implies 
the existence of a bounded linear lifting (i.e. that Vis complemented in U). 
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