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appear to some that years of herculean effort have yielded limited progress, 
but after all the antagonist is a formidable foe. 
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The Selberg trace formula for PSL (2, R), Volume I, by Dennis A. Hejhal, 
Lecture Notes in Mathematics, Springer-Verlag, Berlin, Heidelberg, New 
York, 1976, iv + 516 pp., $ 15.20. 

For the last twenty-five years or so the Selberg trace formula has had, in 
the general mathematical community, an aura of mystery which is only slowly 
dissipating. This circumstance makes it necessary for us to look a little at the 
history and nature of this formula in order to understand properly the 
position of this new book. 

First of all, the Selberg trace formula has precedents some of which are 
very old indeed. The underlying technical ideas have been in common 
currency amongst applied mathematicians since the turn of the century; these 
arose in the study of Laplace's equation and we would now associate them 
with groups like O (3, R). Furthermore, various versions are to be found in 
earlier investigations concerning automorphic forms. These were mostly 
number-theoretical and hinged around the class-number formulae discovered 
by Kronecker and studied further by Fricke, Mordell, Hecke and Eichler. But 
also from the differential-geometric point of view both J. Delsarte and H. 
Huber came very close to an explicit trace formula (for PSL(2, R)). 

Yet, nevertheless, Selberg's discovery of this formula in the early 1950's was 
a revolutionary event and its impact is far from spent. This lies in the nature 
of the formula. Although I have continually referred to it as a formula it is 
much more a method; a method, that is, for probing more deeply into the 
nature of discontinuous groups and their function theory. In broad terms, the 
Selberg trace formula arises when one learns to think functional-analytically 
about automorphic functions and forms. This has been the pons asinorum; it 
forces one to shed preferences for complex-analytic functions and prejudices 
against 'soft analysis'. Once this has been done a new land, full of promise, 
opens up. 

There are two approaches to the trace formula; that due to Selberg which 
uses differential and integral operators-and in fact the differential operators 
can be eliminated-and that due to Gelfand and his collaborators which uses 
representation theory. The latter is now almost indispensable for general, 
especially number-theoretic questions, whereas for the study of Fuchsian 
groups the former is more flexible. It is this that is used in this book and we 
shall first look at it a little more closely. 

The basic idea is the following. Let S be a 'good' topological space and m a 
measure on S. Let A be a commutative family of compact integral operators 
on L2(S, m) and we suppose that the adjoint of any operator in A is also in A. 
Then, from spectral theory, we know that A can be 'diagonalised' and under 
our assumptions there exists a countable orthonormal basis {vn; n EN} of 
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L\Sy m) so that if K(x,y) is the kernel of an operator in A then there is a 
function n h» c(K9 n) so that 

K{*>y) = 2 c(K9 n)vn(x) vn(y) . 

At the moment this exists only in an L2-sense but if we put a few more 
conditions on K it converges absolutely and uniformly. Thus if we set x = y 
and integrate 

(K(X, X) dm(x) = 2 c(K9 n). Js 
This is the basic form of the trace formula and the argument here shows why 
it is so-called. Note that in this formula there is no reference to the vn about 
which we cannot expect to know much in general. 

The problem now is to construct a useful algebra A and to compute 
c(K, ri). As an example let S = R/Z and let m be the Lebesgue measure. Let 
A be made up of all K of the form 

K(x,y) = 2 Kx - y + m) 

where k is a continuous function of compact support on R. Then {vn} can be 
taken to be {exp(27r/jc): m E Z} and the formula above becomes the Poisson 
summation formula. Here the structure of R as an additive group has come to 
our aid and this happens much more generally. 

Suppose that we are given a group G (often a Lie group or a /?-adic Lie 
group) acting transitively on a space X (and satisfying some further 
conditions) and that S is of the form T \ X (quotient space with T acting on 
the left) where T is a discrete subgroup acting discontinuously on X so that S 
is compact. Then we can often form such an algebra A (e.g. from spherical 
functions) in a natural fashion. In such cases the two sides of the above 
formula can be brought in to more elegant forms; the left-hand side depends 
on the conjugacy classes of I\ the right-hand side on the 'spectrum' of A, or 
by abuse of language, of T. The trace formula then puts these two into a sort 
of duality. To see how all this works in the case G = PSL(2, R), X = the 
upper half-plane, the reader can hardly do better than to read the first 30 
pages of the book under review. This case is especially important as every 
Riemann surface of genus > 2 can be realized as such an 5. One can, from 
this point of view, unify much of the classical function theory of compact 
Riemann surfaces and derive the Riemann-Roch theorem. This is because 
complex-analytic functions are solutions of differential equations, but the 
Selberg trace formula, which is not restricted to such functions, is much more 
general. 

Selberg wrote his original paper [2] emphasising the nature of the method 
but without going into the detailed calculations of any particular case. Such 
case-studies require considerable analytical ingenuity and facility with special 
functions-precisely those virtues that were taught in older mathematics 
courses. Selberg did, however, discuss such cases in lectures at Princeton and 
Göttingen and there is extant in Göttingen a partial set of lecture notes that is 
very illuminating. 
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Despite what has been said above, several people have understood and 
made use of the Selberg trace formula. The antinomy arises as those who 
have done this have usually not given an exposition in general terms of the 
lines of thought that led to their understanding. Thus the often spectacular 
results have appeared like black magic and, to use a cliché, the gulf between 
the 'haves' and 'have-nots' has widened. The most notable exception to this 
has been the German school (Maass, Roelcke, Elstrodt) but their work has 
not become as widely known as it deserves. 

This "brings us by a commodius vicus of recirculation back to " Professor 
Hejhal's book. It describes the author's own process of understanding and 
applying the ideas of Selberg. In other cases this might well be considered a 
weakness but here, I am sure, it will lead many people into this beautiful 
circle of ideas. There are a great number of informal notes, especially at the 
ends of chapters, which motivate and explain what is being done, and, 
sometimes, what is not being done. This informal and unpolished style is 
entirely in keeping with the declared intentions of the 'Springer Lecture 
Notes' series. To say it again, this is not the final treatise but a set of notes of 
considerable interest. 

The book splits naturally into two parts, Chapter 2 being different in kind 
to the other four. In these other four the Selberg trace formula for Fuchsian 
groups of compact quotient (cocompact) is developed in its simplest form (in 
Chapter 1) and later extended to cover 'vector-valued' automorphic functions, 
automorphic forms to nonzero integral weight and modular correspondence 
(i.e. Hecke operators). These essentially involve working out Selberg's ideas in 
these cases and the material is not novel. On the other hand the formulae, 
which elsewhere, are usually left as exercises for the energetic reader, are 
proved in detail. This material could have been unified and generalized by a 
slightly more sophisticated use of spectral theory and Petersson's theory of 
unitary multipliers of arbitrary real weight and dimension. This would have 
had the advantage of yielding the full Riemann-Roch theorem (a point left 
open on p. 433), although then the calculations have to be approached rather 
differently. Much of this is hinted at in the notes. 

The most substantial part of the book is Chapter 2. It deals with the theory 
of the Selberg zeta-function. This is a function whose analytic properties 
essentially contain the Selberg trace formula; it can also be regarded as more 
or less a determinant of the resolvent of the Laplace-Beltrami operator. The 
relation of this function to the Selberg trace formula is the same as that 
subsisting between the Riemann zeta-function and the 'explicit formulae' of 
prime number theory. Moreover the 'Riemann hypothesis' for the Selberg 
zeta-function is, with a small caveat, true. It also has an 'Euler product' 
expansion. Thus one is led to try to apply the methods of analytic number 
theory to study the Selberg zeta-function. This is precisely what Professor 
Hejhal does in Chapter 2, although only for the 'simplest' trace formula. The 
chief consequence drawn is an asymptotic description of the conjugacy 
classes of the group in question; this is analogous to the prime number 
theorem. This is a remarkable fact that, by using spectral theory and only the 
most rudimentary geometrical information one can deduce quite refined 
geometrical results that are automatically (but, in a sense, not universally) 
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true. Not even the leading terms of the expansions have been proved by 
geometric (i.e. packing and covering) arguments. 

In this chapter the author strives both towards the best possible results of 
this type and towards discovering their limitations by proving what are often 
called $2-theorems. There is, as one would expect, still quite a large gap 
between these. The development has not been made as slick as possible and 
the results proved in one section are often improved later using better 
techniques. But it is quite possible, as the author remarks, that the expertise 
so gained in handling the Selberg zeta-f unction will be more significant in the 
long run than the specific results presented here. 

In this connection it is worth pointing out that the techniques lay stress on 
the 'explicit formulae', especially where these are not absolutely convergent. 
Such questions are very delicate; the author has courageously undertaken this 
investigation and has found several interesting results. This part of the book 
form in itself a useful little compendium on analytic number theory 
containing much that is not readily accessible. This, and the excellent 
bibliography will prove useful to many. 

To end this review I shall state two problems, both of which are quite old 
now, but which are more 'structural' than those considered in this book. They 
appear to me to be the most significant problems about the type of Selberg 
zeta-f unction considered in this book; however if one widens the class of 
Fuchsian groups under consideration one is led to many difficult problems, 
some of which are to appear in the promised "Volume 2". These problems 
will, I hope, pose a challenge to the readers of this book. 

At this late stage it is necessary to be more specific. Let G be a Fuchsian 
group acting on the upper half-plane H so that G \ H is compact and suppose 
that G has no elements of finite order. Let G be the group of characters of G 
(1-dimensional unitary representations); this is then naturally isomorphic to 
the Jacobian variety of G \ H. If x ^ G let ZG(s, x) be the Selberg zeta-
function attached to G and x- If X *s trivial we write ZG(s) for ZG(s, x); this is 
the function studied in this book. The following problem is due to Ray and 
Singer [1] (where there are also more details about ZG(s9 x)): 

(a) Express ZG(1, x) *w terms of theta functions. 
There is a fair amount of circumstantial evidence that this is possible and 

such a formula would represent a far-reaching generalisation of the second 
Kronecker limit formula. More generally, and more vaguely, if x is an 
arbitary unitary representation of G does ZG(1, x) have an interesting 
interpretation in terms of the moduli spaces of vector bundles introduced by 
Weil, Narashiman and Mumford? 

The second question is attributed to Gelfand: 
(b) Does ZG(s) determine G? 
It is known that there are at most finitely many G with the same ZG(s) 

(McKean) but it is not, as far as I know, even known if two G of arithmetic 
type need have distinct zeta-functions. Both of these problems touch on the 
relation of Selberg's theory to Teichmüller theory (d'après Ahlfors, Bers, 
Rauch,. . . ). Some results in this direction have been obtained by John D. 
Fay but the general picture remains very obscure. 
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Gaussian processes, function theory, and the inverse spectral problem, by H. 
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A stationary Gaussian process is a continuous map / -> & from the real line 
into the real L2 space of a probability measure, P, with the following 
properties: 

( i ) /£dP = 0forall/; 
(ii) ƒ£,£, dP depends only on the difference t — s (and so can be written as 

Q(t — s)9 where Q is a continuous positive definite function on the line, 
known as the covariance function of the process); 

(iii) every function in the linear span of the functions £, is normally 
distributed. 

By Bochner's theorem, the covariance function Q admits a representation 

Q(t)=feitxdA(x), 

where A is a positive measure on the line, symmetric with respect to the 
origin. This leads to what is called the spectral representation of the process: 
the map sending £, to the function eitx on the line extends to an isometry 
sending the span, in complex L\P), of the functions £ onto the space 
Z = L2(A). 

The Gaussian condition (that is, condition (iii)) enables one to give 
geometric interpretations to various probabilistic aspects of the process. The 
simplest instance is the statement that, in the L2 span of the functions £„ 
orthogonality is equivalent to stochastic independence. Because of the 
spectral representation, one can go a step further, translating probabilistic 
questions about the process into questions in analysis. The questions in 
analysis that arise usually involve the theory of Hardy spaces in the upper 
half-plane and the theory of entire functions of exponential type. It is to them 
that the book under review is devoted. 

The process is called deterministic if its past determines its future. This 
means, in probabilistic terms, that every function £ is measurable with 
respect to the a-algebra generated by the family {£: s < 0}. Because the 
process is Gaussian, the latter reduces to the condition that every £, belong to 
the span, in L2(P), of the family {£,: s < 0}. Application of the spectral 
representation now shows that the process is deterministic if and only if Z is 
spanned by the functions eisx, s < 0. A criterion is provided by a theorem 


